

16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone

Lecture 26: Advanced Topics -Beyond Cameras

Previously on VNAV: 2-view Geometry and VO

Visual odometry (VO): motion estimation estimation based on cameras (monocular, stereo, RGB-D, ...)

others: wheel odometry, inertial, visual-inertial

Today: Beyond Cameras

wheel odometry ► GPS Lidar Inertial Measurement 830g 160g 4g Зg Unit (IMU) 8 W 2.5 W 0.3W ~1 W Event Cameras

Lidar Odometry & Lidar SLAM

DARPA Subterranean Challenge, in collaboration with JPL^{*}

Registration: compute relative

pose between scans:

- extract features & descriptors
- use descriptors for matching
- compute relative pose

Registration: compute relative

pose between scans:

- extract features & descriptors
- use descriptors for matching
 - compute relative pose

pose between scans:

- extract features & descriptors
- use descriptors for matching
- compute relative pose

Feature Detection: 3D Harris Corners

igure 2 in Sipiran, I., Bustos, B. Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis Comput 27, 963 (2011). https://doi.org/10.1007/s00371-011-0610-y © Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

3D Harris Corner Detector

Vis Comput DOI 10.1007/s00371-011-0610-y

ORIGINAL ARTICLE

$$G = \sum_{oldsymbol{x} \in W(oldsymbol{x})}
abla \mathcal{I}(oldsymbol{x})
abla \mathcal{I}(oldsymbol{x})^\mathsf{T}$$

$$C(\boldsymbol{G}) = \det(\boldsymbol{G}) - k \operatorname{tr} (\boldsymbol{G})^2$$

-Consider neighborhood of v
-Fit paraboloid to sets of points
-Evaluate

gradients
(+some magic)
-Apply Harris
corner-ness score

Others: SIFT3D, SUSAN, ISS3D

Idea: describe neighborhood of a point in the point cloud as a multi-dimensional histogram

Idea: describe neighborhood of a point in the point cloud as a multi-dimensional histogram

Define: n_i $u = n_i, v = (p_i - p_i) \times u, w = u \times v$ For points (i,j), compute: $\alpha = v \cdot n_j$ $\phi = (u \cdot (p_j - p_i)) / ||p_j - p_i||$ $\theta = \arctan(w \cdot n_j, u \cdot n_j)$ ~ Angle between normals Bin results into a 3D histogram ~ Angle between normal "i" and vector between points "Local" direction of normal (Others: FPFH, learning-based,...)

Figure 13 (b) in Zhang, J., Singh, S. Low-drift and real-time lidar odometry and mapping. Auton Robot 41, 401–416 (2017). https://doi.org/10.1007/s10514-016-9548-2 © Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Common license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[Zhang and Singh: LOAM: Lidar Odometry and Mapping in Real-time, 2014]¹²

Dense Lidar Odometry

Iterative Closest Point (ICP)

- Alternative to feature-based approaches
- Simultaneous Pose and Correspondences

2. Easy to
compute
correspondences
given
ground-truth
alignment

Iterative Closest Point (ICP)

ICP algorithm: given initial guess, perform the following:1. Establish correspondences: associate to each point in Cloud 1 the closest point in Cloud 2

2. **Compute relative pose given correspondences** (e.g., using Horn's or Arun's method)

3. Transform point cloud and repeat

(stop when alignment does not improve or after max iter.)

Iterative Closest Point (ICP)

ICP algorithm: given initial guess, perform the following:

1. Establish correspondences: associate to each point in Cloud 1 the closest point in Cloud 2

2. Compute relative pose given correspondences

(e.g., using Horn's or Arun's method)

3. Transform point cloud and repeat

(stop when alignment does not improve or after max iter.)

© 2020 by Computer Science Department, Technion. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[courtesy: http://www.cs.technion.ac.il/~cs236329/tutorials/ICP.pdf]

Iterative Closest Point (ICP): Issues and Extensions

- •Kd-tree spatial subdivision
- •Different error metrics (e.g., point to plane)
- Reject outliers

Extensions

© 2020 by Computer Science Department, Technion. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

17

ICP-based SLAM: Failure Mode

DARPA Subterranean Challenge, in collaboration with JPL

Today: Beyond Cameras

- wheel odometry
- ► GPS
- ▶ Lidar
- Inertial
 Measurement
 Unit (IMU)
- Event Cameras

Visual-Inertial Odometry

- **Fixed-lag smoother**: estimate a fixed window of recent states from time k-T, k-T+1, ... k (sliding window)

MAP Estimation

Challenges:

IMU measurements arrive at high-rate (~200Hz) IMU preintegration
 IMU preintegration

structureless

vision

- camera observes hundreds of landmarks per frame
- need to solve optimization problem quickly

IMU Preintegration

Key idea: integrate IMU measurements between frames

many measurements & states

$$\begin{aligned}
z_{i,i+1}^{\text{IMU}} &= f(x_i, x_{i+1}) + \epsilon \\
z_{i+1,i+2}^{\text{IMU}} &= f(x_{i+1}, x_{i+2}) + \epsilon \\
&\vdots \\
z_{j-1,j}^{\text{IMU}} &= f(x_{j-1}, x_j) + \epsilon
\end{aligned}$$

IMU Preintegration

Carlone, Kira, Beall, Indelman, Dellaert, Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors, ICRA'14. Forster, Carlone, Dellaert, Scaramuzza, *IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation*, RSS'15 (best paper finalist)23

Pre-integration

After 10 seconds, original problem has ~10⁴ states

After 10 seconds, preintegrated problem has ~10² states

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TRO 2017]

Structureless Vision Model

Marginalization of 3D landmarks

Schur complement trick:

- solve for each landmark separately
- substitute back in the optimization

Further reduction of the number of variables in the optimization!

X;

 x_i

Schur complement

Visual-Inertial Odometry

C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, "On-Manifold Preintegration for Real-Time Visual–Inertial Odometry," in IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017, doi: 10.1109/TRO.2016.2597321 © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TRO 2017]

Today: Beyond Cameras

- wheel
 odometry
- GPS
- Lidar
- Inertial Measurement Unit (IMU)
- Event Cameras

Event-based Vision: A Survey

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger, Andrew J. Davison, Jörg Conradt, Kostas Daniilidis, Davide Scaramuźza

Event-based Cameras

•Speed of robot is constrained by speed at which it can sense (and compute)

Common cameras: 20-120fps

- event-based cameras (e.g., Dynamic Vision Sensor, DVS)
 - Temporal resolution: 1 µs
 - High dynamic range: 120 dB
 - Low power: 20 mW
 - Cost: 2,500 EUR

Event-based Cameras

© Scaramuzza et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Event-based Cameras for SLAM

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios R-AL 2018.³⁰ A.R. Vidal, H. Rebecq, T. Horstschaefer and D. Scaramuzza, "Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios," in IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 994-1001, April 2018, doi: 10.1109/ **30**

Event-based Cameras for SLAM

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios R-AL 2018.³¹ Igure 4 in A. R. Vidal, H. Rebecq, T. Horstschaefer and D. Scaramuzza, "Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios," in IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 994-1001, April 2018, doi: 31

Overview of Open Problems in Robot Perception

Feedback on this Zoom lecture (single-choice):

- A: audio and video are good!
- B: audio and video are adequate (sometimes you break up)
- •C: audio quality is very bad
- D: audio AND video quality is bad :-(

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

16.485 Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.