Unconstrained Optimization and Least Squares

Kasra Khosoussi

MIT 16.485: VNAV
Visual Navigation for Autonomous Vehicles

I I I H B Massachusetts

I I Institute of
Technology

http://www.mit.edu/~mrrobot

Review/Motivation: Point Estimation

find the “best” estimate of x given noisy measurements z

@ Maximum likelihood (ML) estimate

XMLE € argmax p(z|x)
X

® Maximum-a-posteriori (MAP) estimate

XMap € argmax p(x|z) = argmax p(z|x) p(x)
X X

» Under additive Gaussian noise and Gaussian priors - least squares

Our Plan LINEAR

NONLINERR
LEASTISQUARES

» Today’s Lecture:

LEAST)
SOUARES ON|

MATRINLIEGROUPS

Unconstrained Optimization and Least Squares

ORTIMIZATION

© imgflip LLC. Al rghts reserved. This content is excluded | (][I TTHITITES
» Next Lectures: from our Creative Commons license. For more information,

see https://ocw.mit. fair-use/

e

Introduction to Optimization on Manifolds and Least Squares on Matrix Lie
Groups

3/46

https://ocw.mit.edu/help/faq-fair-use/

Basic Terminology

» Objective function f : R™ — R and decision variable x € R"

minimize f(x)
xeRn

» x* is aglobal minimizer and f(x*) is a global minimum iff f(x*) < f(x)

forallx ¢ R”

» x*is alocal minimizer and f(x*) is a local minimum iff f(x*) < f(x)

for all x € B(x",r) with positive radius r

Example

lfcos(Bmc)/x ‘

Mixed blessing

» Many problems can be formulated as optimization problems
» Sometimes hard problems - easy-looking optimization problems

» Deciding global (even local) optimality is NP-hard in general

Fun example: Fermat’s Last Theorem (1637-1995)

Murty and Kabadi (1987)

7/46

Structure

w Br g ot
W aiiget

© WallpaperCave. Allights reserved: This content i excluded from our Creative Commons
license. For more i see https:/focw.mit.

8/46

https://ocw.mit.edu/help/faq-fair-use/

Structures: Smoothness

» f:R" >R
[0%f 0% f
TI% 8IE1 81’2
gradient e RT 0 Hessian € Sym(n) 82 f o2 f
T 01 T Oxo Ox 922
. A . A 2 1 2
Vix)= : H(x) =
of
Oz
0% f 0% f
| Ox,, Ox1 Oz, 0o

» fis (sufficiently) smooth and analytic = Taylor expansion

Flxtd) = f()+ V/(x)Td + 3 d Hx) d +o(|d]?)

0% f
6351 (%n
O f
&ng 8xn

o f

ox2

n

Second-order Taylor approximation

» Local quadratic approximation

F(x0+d) ~ fx,(d)
2 f(xo0) + V/(x0)Td+ % d"H(xo)d

» Another interpretation after change of variables x £ x, + d

fx)

Q

fx)
f

(x0) + V/(x0) " (x — x0) +

L

2

1 (x — xO)TH(xo) (x —xp)

10/46

Recognizing Local Minima

» First-order necessary condition for f € C*(R")

Vfix)=0

» Second-order necessary condition for f € CQ(R”)

Vf(x)=0 and H(x) >0

» Second-order sufficient condition for f € C?(R™)

Vfx)=0 and H(x)>-0

11/46

Structure: Convexity
f:R"™ = R (domf = R")is convex iff:

@ Forallx;,x; e R"andall§ € [0,1]:

f(O0x1+ (1 = 0)x2) < Of(x1) + (1 —0)f(x2)

f(0z1 + (1 —0)x2)

ﬂf’(’:m) + (1= 0)f(x2)

12/46

Structure: Convexity
f:R" = R (domf = R")is convex iff:

® Forallx; x, € R"andall € [0,1]:
f(0x1 + (1 = 0)x2) < 0f(x1) + (1 = 0) f(x2)
@ First-order condition (differentiable f): For all x,y € R™:
Fy) = f(x) +V/(x) (y —x)

What happens when V f(x) = 0?

® Second-order condition (twice differentiable f): For all x € R™:

H(x) >0

12/46

Problem 1: Linear Least-Squares

vV vV.v. v .Yy

1
f(x) = 5l Ax — b
A cecR™™andb € R™

Gradient

Vf(x)=A"(Ax —b)
Hessian

H(x)=A"A

Claim: f is convex (why?)
Claim: V f(x) = 0is necessary and sufficient for global optimality (why?)
Claim: unique minimizer iff rank(A) = n (why?)
i.e.,, A is atall matrix (m > n) with full column rank
Just solve the normal equations:

(ATA)x=A"b

13/46

Problem 2: Nonlinear Least Squares (NLS)

1
f(x) = §||I‘(X)||2 r:R* > R™ wherem >n

v

r is smooth, but not necessarily affine anymore

v

x)||? = Zr ywherer; : R" — R

v

First- order Taylor

ri(x) & ri(x0) + Vri(xo) " (x — %)

» Stackr;’s:
r(x) ~ r(xg) + J(xo) (x — xo)
Jacobian
» Same story, different narrative (change of variable):

r(xo 4+ d) = r(xg) + J(x0)d

14/46

Jacobian

(O O O]
ox1 Oxg oxy,
Ox1 Oxg 0xy,
J(x) 2 a‘(;(;) - e R™X"
Orm O Orm
8$1 8:@ 8$n

15/46

Gauss-Newton

@ start from aninitial guess x°
for k = 0,1, --- and until “convergence”:

@® linearize the residual at the current guess x*
r(x® 4+ d) =~ r(x®) + J(x*)d
© solve the resulting linear least squares to find the step d
minimize [r(x*) 4+ I(x7)d|?
(T T)d = 3] r(x")

0 x"! =x"4d

16/46

Newton’s Method

» Common Idea in Optimization: locally approximate the objective function
around x* by a simpler (often quadratic) model function

» “Optimal” Choice — Taylor (here g, £ Vf(x*)and H, £ V?f(x"))

1
F(xF 4+ d) = my(d) £ f(xF) +gfd+ 5dTH,ﬂ

constant

» my(d) gives the local quadratic approximation

» Choose a d that is a stationary point (hopefully, minimizer) for m (d):
Vmi(d)=0=Hyd +g, =0

» Well-defined (i.e., actually moves towards a local minimum) if

H,~0=|d=-H;'g

and x*t! =xF + d

X In general, has no preference for local minima over other types of
stationary points (local maxima or saddle points)

v/ Very fast (“quadratic”) convergence near stationary points

17/46

Newton vs. Gauss-Newton

» Recall Nonlinear Least Squares (NLS) fnis(x) = %||r(x)||2

» Verify that the gradient and Hessian of fy.s are given by:
VfNLs(xk) =g = J;—r(xk)

V2 fas(xF) = Hk_JkajLZn)V (x")
i=1

S

» Thus (pure) Newton step for NLS will be the solution of
(I Ik 4+ 9)d = —J] r(x")
» Now compare this to Gauss-Newton step:

(JpJi)d = —Jr(x")

18/46

Cont'd

= Gauss-Newton (in NLS) approximates the Hessian matrix in Newton’s
method - less expensive than computing the Hessian

= Gauss-Newton step will be “close” to Newton step (e.g., fast convergence
close to a solution) if S is “small”

» e.g., whenr is “close” to an affine function
» and/or when the residuals are “close” to zero at a local solution

= J;Jk in Gauss-Newton is a PSD approximation of Hessian in NLS — S can
make Hessian non-PSD - (Thanks, Guass!)

19/46

Globalization Strategies

» Pure Newton'’s or Gauss-Newton iterations may fail to converge at all even
to stationary points depending on the initial guess!

» Partly due to the fact that our model functions (and the linearization of
residual in Gauss-Newton) are valid approximations of the original
function close to x*, but these algorithms in pure form disregard this.

» d can be “too large” — we may end up increasing the objective!

= Need safeguards (“globalization strategies”) to converge (hopefully, to a
local minimum) from any initial guess

» Note that “globalization” has nothing to do with “global” optimality here
(that'd be way too ambitious for generic non-convex objectives)

» Two approaches: (i) Line Search and (ii) Trust-Region Methods

20/46

Globalization Strategies: Line Search

1

» Idea: x* ! = x* + ad where a is the step size

» Plan: First find a “good” direction, then choose a “good” step size

“Good” Direction

d is adescent direction if 3o > 0such that f(x**1) < f(x*)foralla € (0,a0)

» Recall the definition of directional derivative at x* along direction d

DF(<*)[d] & lim - (f(xk Tad)- f(xk)> _gld

a—0

If the directional derivative along d is negative = d is a descent direction \

» What does this say about the angle between such d’s and g.?

21/46

Cont'd

@ Pick adescentdirectiond

» Newton'’s direction is a descent direction if Hy > 0 (why?)
» Gauss-Newton direction is a descent direction if J;, is full column rank (why?)
» More generally,d = —Bgy, is a descent direction for any B > 0 (why?)

@ Find the “best” step size o (exact line search) by solving

minimize f(x* + ad)
”ERZO

» In practice — inexact (backtracking) line search until achieve “sufficient”
descent suffices: shrink an initial o until satisfy Armijo (or Wolfe) condition

» Resulting algorithms are sometimes called damped Newton/Gauss-Newton

22/46

Globalization Strategies: Trust-Region

» Plan: Pick max step size first, then choose the step d
» How much do we trust our local approximate quadratic model away from
d = 0 (i.e., away from x*)?

@ Pick a maximum step size A,
@ Pick d by solving the trust-region subproblem
minidmize mi(d) suchthat ||d|| < Ag

©® Quantify and re-evaluate our trust on the model (i.e., A) based on

actualreduction f(x*) — f(x* +d)
expected reduction ~ my(0) — my(d)

» If ratio is above a threshold, accept d (i.e., x**! = x* + d) and scale A, up
by a factor (unless you get to a pre-defined global max value)

» If ratio is above a smaller threshold, accept d but don’t change A,

» Otherwise, reject d (x**! = x*) and shrink A, by a factor

23/46

Trust Region vs. Line Search

«-.. Trust region

Line search direction

Trust region step

contours of f

contours of my,

Figures from from Numerical Optimization by Nocedal and Wright

24/46

Trust Region

: contours of m

Figures from from Numerical Optimization by Nocedal and Wright

25/46

A Trust-Region Method: Levenberg-Marquardt

» Has a trust-region interpretation
» Instead of solving the trust-region subproblem, adds a penalty term A||d||?
tomy(d) to penalize large d

1 1
idT(Hk)dT +gpd+ f(xF)+ N\l[d]]? = §dT(Hk +AD)dT +gid+ f(x)

» Gives the solution of trust-region subproblem for a particular value of A
» Larger Ay < larger trust region < smaller penalty factor A\,
» Oftenimplemented using \; (penalty) rather than A}, (explicit constraint)
>)\, is updated similarto A,
» Originally was purposed for nonlinear least squares:

» Levenberg (J} Jj + \eI)d = —J; r(x")

» Marquardt (J} J;, 4+ Apdiag(J, Jp))d = —J) r(x")
» Interpolates between gradient descent (large \) and (Gauss-)Newton

(small \) — (why?)

26/46

Our “Unconstrained Optimization” Trilogy: Big Reveal

» Key idea: Locally approximate the function with a quadratic model
function and minimize the model

1
fxF+d)~ f(xF) +gld+=d"Bd
BT g

(ideally, B = 0)
» Setting the gradient to zero, we get:

Bd=—gy

If B = H;, we get (pure) Newton (using actual second-order information!)
If B = H; + \I we get (general) Levenberg-Marquardt

In NLS problems, if B = J| J;, we get (pure) Gauss-Newton

In NLS problems, if B = J;| J;, + AT we get (NLS) Levenberg-Marquardt

If B = I we get gradient descent

vV V.V v v Y

27/46

Direct Methods for Solving Linear Systems

» Ultimately need to solve Ad = bwhere A € Sym(n)andb € R"

» e.g., in Gauss-Newton
A=(J}/J)andb=—-J]r(x"
» e.g., in Levenberg-Marquardt

A=J]J,+)andb = —J] r(x")

» Donotinvert A!
» Will lose structure (e.g., A may be sparse but A~! will be generally
dense)
» Numerical stability

» We consider two direct methods based on Cholesky and QR factorizations

28/46

Cholesky solver

e Solving triangular systems (non-zero diagonal) is fast/easy
(forward/backward substitution)

(1 1 O 0 yl bl
521 ZQQ 0 Y2 - b2
a1 lz U3 ys bs

» Cholesky decomposition (assuming A >~ 0)
i. A =LL" whereLis lower triangular and thus L is upper triangular
LL'd=b
—~—~
Yy

ii. Solve Ly = b viaforward substitution

iii. SolveL"d = y via backward substitution

29/46

QR solver

» Notethat A =M 'Mandb = M'cwhere M € R™*"
> e.g.,inGauss-Newton M = J; and ¢ = —r(x")

J k
» e.g.,inLevenberg-Marquardt M = Lf)\kl] andec = — {r(z)}

» “Economic” QR factorizationof M = QR
» QeR™"andQ'Q =1,
» R € R™"*" isupper triangular

» Solve Rd = Q' cinsteadof Ad =b

Ad=b=R'Q'QRI=R'Qc Q'Q=1I,
=R'Rd=R'Q'c premultiply by R= T
= solve via backward substitution

» QR vs. Cholesky

J

v QR does not need to form A - works with J, or [\f)\kl }
V' Better numerical stability than Cholesky "
x Slower than Cholesky

30/46

To be continued...

» We did not cover iterative (vs. direct) methods for solving (large) linear
systems (see, e.g., conjugate gradient, Gauss-Seidel, etc)

» Ad = b has anumber of algorithmically exploitable structures in
geometric estimation problems such as SLAM and bundle adjustment

» We will see how these structures can be exploited to speed up solvers

31/46

https://ocw.mit.edu/help/faq-fair-use/

! >

© NYP Holdin nc. All rights reserved. This content > w.mit.edu/help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

Today’s Plan

>

In robotics and computer vision, we often need to solve optimization
problems involving rotations and poses - these variables do not live on
(flat) vector spaces
But in the previous lectures we ignored the constraints on such variables
(just like flat-Earthers!)
Can we use generic constrained optimization methods? Yeahnah...
Structure: Our (constrained) decision variables (rotations and rigid-body
transformations) are matrix Lie groups (smooth manifolds and groups)
Idea: Exploit the smooth geometry of constraints and generalize
Gauss-Newton (and other unconstrained algorithms) to do
“unconstrained” optimization over our matrix Lie groups!
Advantages:

V" Simpler, more natural, and faster methods

v lterations never leave the feasible set (manifold)
V" Canretain desirable traits of the algorithm in the unconstrained setting

https://www.urbandictionary.com/define.php?term=yeahnah

Introduction to Optimization on Manifolds: Key Idea

Recall that in each iteration of unconstrained optimization over R™:
» Started atapointz € R” =: M
» Chose a “suitable” direction d € R™ = 7, M (“tangent space” at)
» Next iterate was found by moving along the line x + td with step size ¢ that
gives us sufficient descent:

x <+ x+td=: R,(td) e M

» In other words, we walked on a (flat) curve t — x + td that starts (¢t = 0) at
2 and has velocity d for ¢ units of time
» This worked out in part because = + td remained on our manifold M = R"

34/46

Introduction to Optimization on Manifolds: Key Idea

Figure courtesy of Wen Huang

T.M

Ny,
a

This idea can be generalized to useful classes of manifolds beyond R™

(e.g., spheres, orthogonal matrices, rotations, rigid-body transformations)

You can think of these manifolds (i.e., feasible set of our optimization problem) as
“smooth surfaces” embedded in higher dimensional (Euclidean) ambient spaces
(e.g,R" orR™*™)

The ideais to treat constrained optimization problems with such constraints as
“unconstrained” problems over the corresponding manifold

» But these manifolds are not “flat” anymore (i.e., not vector spaces)

v

If we move on a line, we'll leave the manifold, resulting in infeasible points

35/46

Introduction to Optimization on Manifolds: Key Idea

» A natural idea is to move on smooth curves that live on the manifold
~v:(—€e) = M : t— ~(t)and pass through z att = 0;i.e.,v(0) =z

» Velocities of all such curves live on the tangent space to M at z, i.e., T, M

» Fortunately, 7, M is a vector space (i.e., T, M = R™ for an m-dimensional manifold
M)! Therefore, (with the help of a Riemannian metric) we can use the same ideas
that underpin unconstrained optimization methods over Euclidean spaces to
choose a velocity (search direction) d € T, M

» After choosing a velocity d € 7..M, we move on a curve that passes through x at
t = 0 with initial velocity 4(0) = d for ¢ units of time (e.g., selected via “line” search)

» Geodesics (generalization of straight lines in R™) are the most natural choices for
- but in practice, we may prefer computationally cheaper and simpler alternatives
(approximations) called retractions R, : ToM — M

36/46

Introduction to Optimization on Manifolds: Key Idea

T. M

Figure courtesy of Wen Huang

Introduction to Optimization on Manifolds: Key Idea

In Riemannian optimization methods, until convergence we:
» Lift: “Lift” (pullback) the objective function to the tangent space 7, M using
aretraction

» Solve: Use ideas from unconstrained optimization methods to choose a
“direction” (velocity) d on the tangent space 7, M

» Retract: Choose t (e.g., in line search methods) and move from x to
R, (td) € Mwhere R, : T,M — M isaretractionand R, (td) = ~(t) fora
curvey : R — M : t+— ~v(t) suchthatv(0) = z and 4(0) = d;

x < R, (td)
- Note that this generalizes the Euclidean iteration REY(td) = = + td

http://tiny.cc/flat-earth-society

[activate layers (colored circles on the left) one by one]

38/46

http://tiny.cc/flat-earth-society

Optimization over Matrix Lie Groups

» The procedure that was just presented is quite general and can be easily
implemented on any Riemannian manifold - we only need to be familiar with the
geometry of our manifolds, choose a retraction, and use an optimization method on
tangent spaces — in most cases, all of these are already well understood and readily
available (see, e.g., Manopt)

» We are particularly interested in (nonlinear) least squares problems that involve
elements of SO(p) and SE(p) where p € {2,3} (i.e., 2/3D rotations and poses)

» Aswe saw before, these manifolds are in fact matrix Lie groups and thus enjoy
additional structures. This makes it even simpler to develop methods based on the
lift-solve-retract framework

» Specifically, it turns out that instead of (explicitly) operating on different tangent
spaces T, M as x evolves, we can (equivalently) always pullback to the tangent
space at the identity element 714 M (i.e, Lie algebra) and use matrix exponential to
define retractions (in case of SO(p), this even gives us geodesics).

39/46

www.manopt.org

Review: Special Orthogonal Group SO(3)

> We learned about SO(3) (rotations) and SE(3) (poses) in Lecture 3
» Inmatrix Lie groups, matrix exponential exp maps elements in the Lie algebra (i.e.,
tangent space at the identity element) to the Lie group

A — A
k=1

> Liealgebra (e.g., s¢(3) and s0(3)) has vector-space structure
» Basis “vectors” (generators)

@ €50(3) > b= 1G1 + p2Ga2 + $3Gs

where ¢ € R* and

0 0 O 0 0 1 0 -1 0
Gi=1|0 0 -1 Ga=|0 0 O Gs=1|1 0 O
0 1 0 -1 0 0 0o 0 O

40/46

Review: Special Euclidean Group SE(3)
Similarly, for se(3) consider ¢ € R® and p € R® and the overloaded hat operator:

— —

[qb] €se(3) & tﬂ = 01G1 + $2Go + P3G3 + p1 Gy + p2Gs + p3Gs

P
where
0 0 0 o0 0 010 0 -1 0 0
00 —1 0 0 00 0 1 0 00
(;1 - (;2 = (}3 =
01 0 0 100 0 0 0 0 0
00 0 0 0 00 0 0 0 0 0
[0 0 0 1 000 0 000 0
0000 000 1 000 0
G4: G5: G6:
0000 000 0 000 1
000 0 000 0 000 0

41/46

Nonlinear Least Squares over Matrix Lie Groups

1
F60 = SlrGer.)P wherer s M £ My x My -+ x My — B™
Example:
» x; € M; = SE(3) c R***(3D pose)
> x5 € My = S0(3) c R**3 (3D rotation)

v

As we saw before, x**1 = x* + d is not valid anymore (e.g.,addingd to a
rotation matrix results in an infeasible point)

» Choose a search direction d on the Lie algebra of M?
» Usex"! = x* exp(d) to move “along”? d from x* to x**1

» x"T1is afeasible point (why?)

1Review the definition of hat operator

2Modulo some technical details
42/46

Linearizing Residual
> Gauss-Newton over R"
r(x"4+d) = r(xF)4+J,d where T
» Gauss-Newton over SO(3) —d € R?
r(x" exp(d)) ~ r(x*) +Jpd where
» Gauss-Newton over SE(3) —d € R®

~

r(x* exp(d)) =~ r(x®) + Jpd where

[I>

d=0

43/46

Lift-Solve-Retract for NLS over Matrix Lie Groups

xFHl = xk eXp(a)

@ Lift (pullback) to the tangent space at the indenity element (Lie algebra):
g:R™ 5 R™:dws r(xF exp(a))

e.g,nqg = 3inSO(3) and ny = 6in SE(3)

g(d) ~ g(0) + W)y (Taylor at d = 0)
od | o
r(x* exp(d)) ~ r(x*) + Jpd (definition of g)

@® Solve for d by solving a (flat) linear least squares

C 1 ~ 1
minimize (<t exp(@)] = S lrGeh) + 3pd

44/46

Several Tips for Computing J;.

» Note that Ji isevaluatedatd = 0

~

» Afirst-order approximation of exp(d) at d = 0 (why?)

exp(d) ~ I+ d

» Use the chain rule and vectorization of matrices (for convenience):

~

Avec(x* exp(d))
ad d=0

or(x* exp(a))
od

_ Oreee(s)

JEe = Os

d=0 s=vec(xF)

» Usual Jacobian - compute partial derivatives wrt elements of d
» Youcanalsoused = Z d;G; and take derivatives w.r.t. each d;
(i.e., columns of Ji)

> Useful identity: vec(AB) = (I ® A)vec(B) where ® denotes Kronecker product

45/46

Example with Multiple Variables

» Consider ||r(x;,x2)||? where x; € R? (e.g., 3D point) and x, € SO(3)

le(x} + dy,x5 exp(da)) || & ||r(x}x5) + J1edy + Jo,edal|”

3. b Or(x) Or(x¥ + dy,xk)
1,k = = — - =
(2251 x=(xF,x5) ddy d,=0
- s Or(xfxb exp(dy))
J2.k =
dds dy=0

» Solve the resulting linear least squares
» Retract: x ™! = x¥ 4+ d; and x5+ = x8 exp(dy)

46/46

MIT OpenCourseWare
https://ocw.mit.edu/

16.485 Visual Navigation for Autonomous Vehicles (VNAV)
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

