Unconstrained Optimization and Least Squares

Kasra Khosoussi

MIT 16.485: VNAV Visual Navigation for Autonomous Vehicles

Massachusetts Technology

Review/Motivation: Point Estimation

find the "best" estimate of ${\bf x}$ given noisy measurements ${\bf z}$

1 Maximum likelihood (ML) estimate

$$\hat{\mathbf{x}}_{\mathsf{MLE}} \in \operatorname*{arg\,max}_{\mathbf{x}} \ p(\mathbf{z}|\mathbf{x})$$

2 Maximum-a-posteriori (MAP) estimate

$$\hat{\mathbf{x}}_{\mathsf{MAP}} \in \operatorname*{arg\,max}_{\mathbf{x}} \ p(\mathbf{x}|\mathbf{z}) = \operatorname*{arg\,max}_{\mathbf{x}} \ p(\mathbf{z}|\mathbf{x}) \, p(\mathbf{x})$$

► Under additive Gaussian noise and Gaussian priors → least squares

Our Plan

Today's Lecture:

Unconstrained Optimization and Least Squares

Next Lectures:

© imgflip LLC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

mm

Introduction to Optimization on Manifolds and Least Squares on Matrix Lie Groups

Basic Terminology

• Objective function $f : \mathbb{R}^n \to \mathbb{R}$ and decision variable $\mathbf{x} \in \mathbb{R}^n$

 $\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} \quad f(\mathbf{x})$

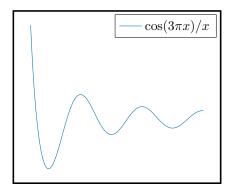
• \mathbf{x}^* is a global minimizer and $f(\mathbf{x}^*)$ is a global minimum iff $f(\mathbf{x}^*) \leq f(\mathbf{x})$

for all $\mathbf{x} \in \mathbb{R}^n$

• \mathbf{x}^* is a local minimizer and $f(\mathbf{x}^*)$ is a local minimum iff $f(\mathbf{x}^*) \leq f(\mathbf{x})$

for all $\mathbf{x} \in \mathcal{B}(\mathbf{x}^*, r)$ with positive radius r

Example



Mixed blessing

- Many problems can be formulated as optimization problems
- ► Sometimes hard problems → easy-looking optimization problems
- Deciding global (even local) optimality is NP-hard in general

Fun example: Fermat's Last Theorem (1637-1995)

K.G. Murty, S.N. Kabadi / NP complete QPs

Example 1. Fermat's Last Theorem. Some of the most difficult unsolved problems in mathematics can be posed as problems of finding a global minimum in a smooth nonconvex NLP. Consider Fermat's last theorem, unresolved since the year 1637. It states that there exists no positive integer solution (x, y, z) to the equation

 $x^n + y^n = z^n$

when *n* is an integer ≥ 3 (here, *x*, *y*, $z \in \mathbb{R}^1$). Even though this conjecture has been shown to be true for several individual values of *n*, in general, it remains open. Obviously, Fermat's last theorem is not true iff the global minimum objective value in the following NLP is 0 and attained where α is a positive penalty parameter.

minimize $(x^n + y^n - z^n)^2$ + $\alpha ((1 - \cos(2\pi x))^2 + (1 - \cos(2\pi y))^2 + (1 - \cos(2\pi z))^2$ + $(1 - \cos(2\pi n))^2$) subject to x, y, z \ge 1, n \ge 3.

Murty and Kabadi (1987)

119

Structure

© WallpaperCave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Structures: Smoothness

 $\blacktriangleright f: \mathbb{R}^n \to \mathbb{R}$

$$\begin{array}{c} \operatorname{gradient} \in \mathbb{R}^{n} \begin{bmatrix} \frac{\partial f}{\partial x_{1}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}} \end{bmatrix} & \begin{array}{c} \operatorname{Hessian} \in \operatorname{Sym}(n) \\ \uparrow \\ \mathbf{H}(\mathbf{x}) \triangleq \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2}^{2} \partial x_{n}} \end{array}$$

• f is (sufficiently) smooth and analytic \rightarrow Taylor expansion

$$f(\mathbf{x} + \mathbf{d}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\top} \mathbf{H}(\mathbf{x}) \mathbf{d} + o(\|\mathbf{d}\|^2)$$

Second-order Taylor approximation

Local quadratic approximation

$$egin{aligned} f(\mathbf{x}_0+\mathbf{d}) &pprox \hat{f}_{\mathbf{x}_0}(\mathbf{d}) \ &\triangleq f(\mathbf{x}_0) +
abla f(\mathbf{x}_0)^{ op} \mathbf{d} + rac{1}{2} \, \mathbf{d}^{ op} \mathbf{H}(\mathbf{x}_0) \, \mathbf{d} \end{aligned}$$

• Another interpretation after change of variables $\mathbf{x} \triangleq \mathbf{x}_0 + \mathbf{d}$

$$\begin{aligned} f(\mathbf{x}) &\approx \hat{f}(\mathbf{x}) \\ &\triangleq f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} \left(\mathbf{x} - \mathbf{x}_0 \right)^\top \mathbf{H}(\mathbf{x}_0) \left(\mathbf{x} - \mathbf{x}_0 \right) \end{aligned}$$

Recognizing Local Minima

First-order necessary condition for $f \in C^1(\mathbb{R}^n)$

$$\nabla f(\mathbf{x}) = \mathbf{0}$$

Second-order necessary condition for $f \in C^2(\mathbb{R}^n)$

$$abla f(\mathbf{x}) = \mathbf{0}$$
 and $\mathbf{H}(\mathbf{x}) \succeq \mathbf{0}$

• Second-order sufficient condition for $f \in C^2(\mathbb{R}^n)$

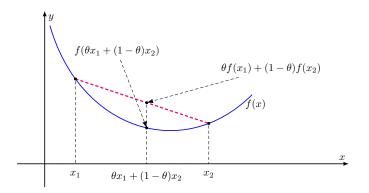
$$abla f(\mathbf{x}) = \mathbf{0}$$
 and $\mathbf{H}(\mathbf{x}) \succ \mathbf{0}$

Structure: Convexity

 $f: \mathbb{R}^n \to \mathbb{R}$ (dom $f = \mathbb{R}^n$) is convex iff:

1 For all $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ and all $\theta \in [0,1]$:

$$f(\theta \mathbf{x}_1 + (1-\theta)\mathbf{x}_2) \le \theta f(\mathbf{x}_1) + (1-\theta)f(\mathbf{x}_2)$$



Structure: Convexity

 $f: \mathbb{R}^n \to \mathbb{R}$ (dom $f = \mathbb{R}^n$) is convex iff:

1 For all $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ and all $\theta \in [0,1]$:

$$f(\theta \mathbf{x}_1 + (1-\theta)\mathbf{x}_2) \le \theta f(\mathbf{x}_1) + (1-\theta)f(\mathbf{x}_2)$$

2 First-order condition (differentiable f): For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

What happens when $\nabla f(\mathbf{x}) = \mathbf{0}$?

3 Second-order condition (twice differentiable f): For all $\mathbf{x} \in \mathbb{R}^n$:

 $\mathbf{H}(\mathbf{x}) \succeq \mathbf{0}$

Problem 1: Linear Least-Squares

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

- $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$
- Gradient

$$\nabla f(\mathbf{x}) = \mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b})$$

Hessian

$$\mathbf{H}(\mathbf{x}) = \mathbf{A}^{\!\!\top} \mathbf{A}$$

- Claim: f is convex (why?)
- Claim: $\nabla f(\mathbf{x}) = \mathbf{0}$ is necessary and sufficient for global optimality (why?)
- Claim: unique minimizer iff rank(A) = n (why?)
- i.e., A is a tall matrix ($m \ge n$) with full column rank
- Just solve the normal equations:

$$(\mathbf{A}^{\!\!\top}\mathbf{A})\mathbf{x} = \mathbf{A}^{\!\!\top}\mathbf{b}$$

Problem 2: Nonlinear Least Squares (NLS)

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|^2$$
 $\mathbf{r}: \mathbb{R}^n \to \mathbb{R}^m$ where $m \ge m$

- r is smooth, but not necessarily affine anymore
- $||\mathbf{r}(\mathbf{x})||^2 = \sum_{i=1}^m r_i^2(\mathbf{x}) \text{ where } r_i : \mathbb{R}^n \to \mathbb{R}$
- First-order Taylor:

$$r_i(\mathbf{x}) \approx r_i(\mathbf{x}_0) + \nabla r_i(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0)$$

► Stack r_i 's:

$$\mathbf{r}(\mathbf{x}) \approx \mathbf{r}(\mathbf{x}_0) + \underset{\text{Jacobian}}{\mathbf{J}(\mathbf{x}_0)} (\mathbf{x} - \mathbf{x}_0)$$

Same story, different narrative (change of variable):

$$\mathbf{r}(\mathbf{x}_0 + \mathbf{d}) \approx \mathbf{r}(\mathbf{x}_0) + \mathbf{J}(\mathbf{x}_0)\mathbf{d}$$

Jacobian

$$\mathbf{J}(\mathbf{x}) \triangleq \frac{\partial \mathbf{r}(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial r_1}{\partial x_1} & \frac{\partial r_1}{\partial x_2} & \cdots & \frac{\partial r_1}{\partial x_n} \\ \frac{\partial r_2}{\partial x_1} & \frac{\partial r_2}{\partial x_2} & \cdots & \frac{\partial r_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial r_m}{\partial x_1} & \frac{\partial r_m}{\partial x_2} & \cdots & \frac{\partial r_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Gauss-Newton

1 start from an initial guess \mathbf{x}^0

for $k = 0, 1, \cdots$ and until "convergence":

2 linearize the residual at the current guess \mathbf{x}^k

$$\mathbf{r}(\mathbf{x}^k + \mathbf{d}) \approx \mathbf{r}(\mathbf{x}^k) + \mathbf{J}(\mathbf{x}^k)\mathbf{d}$$

3 solve the resulting linear least squares to find the step d

$$\begin{array}{l} \underset{\mathbf{d}}{\text{minimize}} & \|\mathbf{r}(\mathbf{x}^k) + \mathbf{J}(\mathbf{x}^k)\mathbf{d}\|^2 \\ \\ & (\mathbf{J}_k^\top \mathbf{J}_k)\mathbf{d} = -\mathbf{J}_k^\top \mathbf{r}(\mathbf{x}^k) \end{array}$$

 $\mathbf{4} \ \mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{d}$

Newton's Method

- Common Idea in Optimization: locally approximate the objective function around x^k by a simpler (often quadratic) model function
- "Optimal" Choice \rightarrow Taylor (here $\mathbf{g}_k \triangleq \nabla f(\mathbf{x}^k)$ and $\mathbf{H}_k \triangleq \nabla^2 f(\mathbf{x}^k)$)

$$f(\mathbf{x}^k + \mathbf{d}) \approx m_k(\mathbf{d}) \triangleq f(\mathbf{x}^k) + \mathbf{g}_k^{\top} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\top} \mathbf{H}_k \mathbf{d}$$

- $m_k(\mathbf{d})$ gives the local quadratic approximation
- ► Choose a d that is a stationary point (hopefully, minimizer) for m_k(d):
 ∇m_k(d) = 0 ⇒ H_kd + g_k = 0
- ▶ Well-defined (i.e., actually moves towards a local minimum) if $\mathbf{H}_k \succ \mathbf{0} \Rightarrow \boxed{\mathbf{d} = -\mathbf{H}_k^{-1} \mathbf{g}_k}$ and $\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{d}$
- In general, has no preference for local minima over other types of stationary points (local maxima or saddle points)
- ✓ Very fast ("quadratic") convergence near stationary points

Newton vs. Gauss-Newton

- Recall Nonlinear Least Squares (NLS) $f_{NLS}(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|^2$
- ► Verify that the gradient and Hessian of *f*_{NLS} are given by:

$$\nabla f_{\mathsf{NLS}}(\mathbf{x}^k) =: \mathbf{g}_k = \mathbf{J}_k^{\top} \mathbf{r}(\mathbf{x}^k)$$
$$\nabla^2 f_{\mathsf{NLS}}(\mathbf{x}^k) =: \mathbf{H}_k = \mathbf{J}_k^{\top} \mathbf{J}_k + \underbrace{\sum_{i=1}^m r_i(\mathbf{x}^k) \nabla^2 r_i(\mathbf{x}^k)}_{\mathbf{S}}$$

> Thus (pure) Newton step for NLS will be the solution of

$$(\mathbf{J}_k^\top \mathbf{J}_k + \mathbf{S})\mathbf{d} = -\mathbf{J}_k^\top \mathbf{r}(\mathbf{x}^k)$$

Now compare this to Gauss-Newton step:

$$(\mathbf{J}_k^{\top}\mathbf{J}_k)\mathbf{d} = -\mathbf{J}_k^{\top}\mathbf{r}(\mathbf{x}^k)$$

Cont'd

- ⇒ Gauss-Newton (in NLS) approximates the Hessian matrix in Newton's method – less expensive than computing the Hessian
- ⇒ Gauss-Newton step will be "close" to Newton step (e.g., fast convergence close to a solution) if S is "small"
 - e.g., when r is "close" to an affine function
 - and/or when the residuals are "close" to zero at a local solution
- \Rightarrow $\mathbf{J}_{k}^{\top}\mathbf{J}_{k}$ in Gauss-Newton is a PSD approximation of Hessian in NLS S can make Hessian non-PSD (Thanks, Guass!)

Globalization Strategies

- Pure Newton's or Gauss-Newton iterations may fail to converge at all even to stationary points depending on the initial guess!
- Partly due to the fact that our model functions (and the linearization of residual in Gauss-Newton) are valid approximations of the original function close to x^k, but these algorithms in pure form disregard this.
- d can be "too large" we may end up increasing the objective!
- ⇒ Need safeguards ("globalization strategies") to converge (hopefully, to a local minimum) from any initial guess
 - Note that "globalization" has nothing to do with "global" optimality here (that'd be way too ambitious for generic non-convex objectives)
 - Two approaches: (i) Line Search and (ii) Trust-Region Methods

Globalization Strategies: Line Search

- Idea: $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha \mathbf{d}$ where α is the step size
- Plan: First find a "good" direction, then choose a "good" step size

"Good" Direction

d is a descent direction if $\exists \alpha_0 > 0$ such that $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$ for all $\alpha \in (0, \alpha_0)$

Recall the definition of directional derivative at x^k along direction d

$$Df(\mathbf{x}^k)[\mathbf{d}] \triangleq \lim_{\alpha \to 0} \frac{1}{\alpha} \left(f(\mathbf{x}^k + \alpha \mathbf{d}) - f(\mathbf{x}^k) \right) = \mathbf{g}_k^\top \mathbf{d}$$

Theorem

If the directional derivative along \mathbf{d} is negative $\Rightarrow \mathbf{d}$ is a descent direction

▶ What does this say about the angle between such d's and g_k?

Cont'd

1 Pick a descent direction d

- Newton's direction is a descent direction if H_k > 0 (why?)
- Gauss-Newton direction is a descent direction if J_k is full column rank (why?)
- More generally, $\mathbf{d} = -\mathbf{Bg}_k$ is a descent direction for any $\mathbf{B} \succ \mathbf{0}$ (why?)

2 Find the "best" step size α (exact line search) by solving

$$\underset{\boldsymbol{\alpha} \in \mathbb{R}_{\geq 0}}{\text{minimize}} f(\mathbf{x}^k + \boldsymbol{\alpha} \mathbf{d})$$

- In practice → inexact (backtracking) line search until achieve "sufficient" descent suffices: shrink an initial α until satisfy Armijo (or Wolfe) condition
- Resulting algorithms are sometimes called *damped* Newton/Gauss-Newton

Globalization Strategies: Trust-Region

- > Plan: Pick max step size first, then choose the step d
- How much do we trust our local approximate quadratic model away from d = 0 (i.e., away from x^k)?
- **1** Pick a maximum step size Δ_k
- 2 Pick d by solving the trust-region subproblem

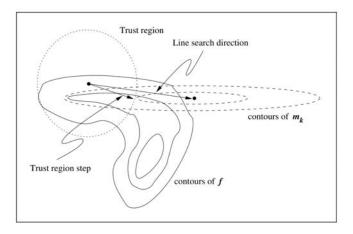
minimize $m_k(\mathbf{d})$ such that $\|\mathbf{d}\| \leq \Delta_k$

3 Quantify and re-evaluate our trust on the model (i.e., Δ) based on

 $\frac{\text{actual reduction}}{\text{expected reduction}} = \frac{f(\mathbf{x}^k) - f(\mathbf{x}^k + \mathbf{d})}{m_k(\mathbf{0}) - m_k(\mathbf{d})}$

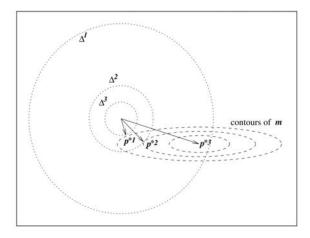
- If ratio is above a threshold, accept d (i.e., x^{k+1} = x^k + d) and scale ∆_k up by a factor (unless you get to a pre-defined global max value)
- If ratio is above a smaller threshold, accept d but don't change Δ_k
- Otherwise, reject d ($\mathbf{x}^{k+1} = \mathbf{x}^k$) and shrink Δ_k by a factor

Trust Region vs. Line Search



Figures from from Numerical Optimization by Nocedal and Wright

Trust Region



Figures from from Numerical Optimization by Nocedal and Wright

A Trust-Region Method: Levenberg-Marquardt

- Has a trust-region interpretation
- ► Instead of solving the trust-region subproblem, adds a penalty term λ ||d||² to m_k(d) to penalize large d

$$\frac{1}{2}\mathbf{d}^{\top}(\mathbf{H}_k)\mathbf{d}^{\top} + \mathbf{g}_k^{\top}\mathbf{d} + f(\mathbf{x}^k) + \lambda_k \|\mathbf{d}\|^2 = \frac{1}{2}\mathbf{d}^{\top}(\mathbf{H}_k + \lambda_k \mathbf{I})\mathbf{d}^{\top} + \mathbf{g}_k^{\top}\mathbf{d} + f(\mathbf{x}^k)$$

- Gives the solution of trust-region subproblem for a particular value of Δ_k
- Larger $\Delta_k \Leftrightarrow$ larger trust region \Leftrightarrow smaller penalty factor λ_k
- Often implemented using λ_k (penalty) rather than Δ_k (explicit constraint)
- λ_k is updated similar to Δ_k
- Originally was purposed for nonlinear least squares:
 - Levenberg $(\mathbf{J}_k^{\top}\mathbf{J}_k + \lambda_k \mathbf{I})\mathbf{d} = -\mathbf{J}_k^{\top}\mathbf{r}(\mathbf{x}^k)$
 - Marquardt $(\mathbf{J}_k^{\top} \mathbf{J}_k + \lambda_k \operatorname{diag}(\mathbf{J}_k^{\top} \mathbf{J}_k))\mathbf{d} = -\mathbf{J}_k^{\top} \mathbf{r}(\mathbf{x}^k)$
- Interpolates between gradient descent (large λ) and (Gauss-)Newton (small λ) – (why?)

Our "Unconstrained Optimization" Trilogy: Big Reveal

Key idea: Locally approximate the function with a quadratic model function and minimize the model

$$f(\mathbf{x}^k + \mathbf{d}) \approx f(\mathbf{x}^k) + \mathbf{g}_k^{\top} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\top} \mathbf{B} \mathbf{d}$$

(ideally, $\mathbf{B} \succ \mathbf{0}$)

Setting the gradient to zero, we get:

$$\mathbf{B}\mathbf{d} = -\mathbf{g}_k$$

- If $\mathbf{B} = \mathbf{H}_k$ we get (pure) Newton (using actual second-order information!)
- If $\mathbf{B} = \mathbf{H}_k + \lambda \mathbf{I}$ we get (general) Levenberg-Marquardt
- ▶ In NLS problems, if $\mathbf{B} = \mathbf{J}_k^\top \mathbf{J}_k$ we get (pure) Gauss-Newton
- In NLS problems, if $\mathbf{B} = \mathbf{J}_k^\top \mathbf{J}_k + \lambda \mathbf{I}$ we get (NLS) Levenberg-Marquardt
- $\blacktriangleright \ \ \mathsf{lf} \, \mathbf{B} = \mathbf{I} \, \mathsf{we} \, \mathsf{get} \, \mathsf{gradient} \, \mathsf{descent}$

Direct Methods for Solving Linear Systems

- Ultimately need to solve $\mathbf{Ad} = \mathbf{b}$ where $\mathbf{A} \in \mathsf{Sym}(n)$ and $\mathbf{b} \in \mathbb{R}^n$
 - e.g., in Gauss-Newton

$$\mathbf{A} = (\mathbf{J}_k^\top \mathbf{J}_k)$$
 and $\mathbf{b} = -\mathbf{J}_k^\top \mathbf{r}(\mathbf{x}^k)$

e.g., in Levenberg-Marquardt

$$\mathbf{A} = (\mathbf{J}_k^{\top} \mathbf{J}_k + \lambda \mathbf{I}) \text{ and } \mathbf{b} = -\mathbf{J}_k^{\top} \mathbf{r}(\mathbf{x}^k)$$

- Do not invert A!
 - Will lose structure (e.g., A may be sparse but A⁻¹ will be generally dense)
 - Numerical stability
- We consider two direct methods based on Cholesky and QR factorizations

Cholesky solver

• Solving triangular systems (non-zero diagonal) is fast/easy (forward/backward substitution)

$$\begin{pmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

- Cholesky decomposition (assuming $\mathbf{A} \succ \mathbf{0}$)
 - i. $\mathbf{A} = \mathbf{L} \mathbf{L}^\top$ where \mathbf{L} is lower triangular and thus \mathbf{L}^\top is upper triangular

$$\mathbf{L} \underbrace{\mathbf{L}}_{\mathbf{y}}^{\top} \mathbf{d} = \mathbf{b}$$

- ii. Solve $\mathbf{L}\mathbf{y} = \mathbf{b}$ via forward substitution
- iii. Solve $\mathbf{L}^{\top}\mathbf{d}=\mathbf{y}$ via backward substitution

QR solver

- Note that $\mathbf{A} = \mathbf{M}^{\top} \mathbf{M}$ and $\mathbf{b} = \mathbf{M}^{\top} \mathbf{c}$ where $\mathbf{M} \in \mathbb{R}^{m \times n}$
 - e.g., in Gauss-Newton $\mathbf{M} = \mathbf{J}_k$ and $\mathbf{c} = -\mathbf{r}(\mathbf{x}^k)$
 - e.g., in Levenberg-Marquardt $\mathbf{M} = \begin{bmatrix} \mathbf{J}_k \\ \sqrt{\lambda} \mathbf{I}_n \end{bmatrix}$ and $\mathbf{c} = -\begin{bmatrix} \mathbf{r}(\mathbf{x}^k) \\ \mathbf{0} \end{bmatrix}$
- "Economic" QR factorization of $\mathbf{M} = \mathbf{Q}\mathbf{R}$
 - $\mathbf{Q} \in \mathbb{R}^{m \times n}$ and $\mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}_n$
 - $\mathbf{R} \in \mathbb{R}^{n imes n}$ is upper triangular
- Solve $\mathbf{Rd} = \mathbf{Q}^{\top}\mathbf{c}$ instead of $\mathbf{Ad} = \mathbf{b}$

$$\begin{aligned} \mathbf{Ad} &= \mathbf{b} \Rightarrow \mathbf{R}^{\top} \mathbf{Q}^{\top} \mathbf{Q} \mathbf{Rd} = \mathbf{R}^{\top} \mathbf{Q} \mathbf{c} \qquad \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}_n \\ &\Rightarrow \mathbf{R}^{\top} \mathbf{Rd} = \mathbf{R}^{\top} \mathbf{Q}^{\top} \mathbf{c} \qquad \text{premultiply by } \mathbf{R}^{-\top} \\ &\Rightarrow \boxed{\mathbf{Rd} = \mathbf{Q}^{\top} \mathbf{c}} \qquad \text{solve via backward substitution} \end{aligned}$$

 $\Rightarrow \lfloor \mathbf{Rd} = \mathbf{Q}^{\top} \mathbf{c} \rfloor$ • QR vs. Cholesky

- \checkmark QR does not need to form A works with J_k or $\begin{vmatrix} J_k \\ \sqrt{\lambda_T} \end{vmatrix}$
- Better numerical stability than Cholesky
- × Slower than Cholesky

To be continued ...

© WallpaperCave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

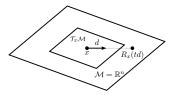
- We did not cover iterative (vs. direct) methods for solving (large) linear systems (see, e.g., conjugate gradient, Gauss-Seidel, etc)
- Ad = b has a number of algorithmically exploitable structures in geometric estimation problems such as SLAM and bundle adjustment
- We will see how these structures can be exploited to speed up solvers

© NYP Holdings, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Today's Plan

- In robotics and computer vision, we often need to solve optimization problems involving rotations and poses – these variables do not live on (flat) vector spaces
- But in the previous lectures we ignored the constraints on such variables (just like flat-Earthers!)
- Can we use generic constrained optimization methods? Yeahnah...
- Structure: Our (constrained) decision variables (rotations and rigid-body transformations) are matrix Lie groups (smooth manifolds and groups)
- Idea: Exploit the smooth geometry of constraints and generalize Gauss-Newton (and other unconstrained algorithms) to do "unconstrained" optimization over our matrix Lie groups!
- Advantages:
 - ✓ Simpler, more natural, and faster methods
 - Iterations never leave the feasible set (manifold)
 - Can retain desirable traits of the algorithm in the unconstrained setting

Introduction to Optimization on Manifolds: Key Idea



Recall that in each iteration of unconstrained optimization over \mathbb{R}^n :

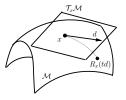
- Started at a point $x \in \mathbb{R}^n =: \mathcal{M}$
- Chose a "suitable" direction $d \in \mathbb{R}^n = \mathcal{T}_x \mathcal{M}$ ("tangent space" at x)
- ▶ Next iterate was found by moving along the line *x* + *td* with step size *t* that gives us sufficient descent:

$$x \leftarrow x + td =: R_x(td) \in \mathcal{M}$$

- In other words, we walked on a (flat) curve $t \mapsto x + td$ that starts (t = 0) at x and has velocity d for t units of time
- This worked out in part because x + td remained on our manifold $\mathcal{M} = \mathbb{R}^n$

Introduction to Optimization on Manifolds: Key Idea

Figure courtesy of Wen Huang



- ► This idea can be generalized to useful classes of manifolds beyond ℝⁿ (e.g., spheres, orthogonal matrices, rotations, rigid-body transformations)
- > You can think of these manifolds (i.e., feasible set of our optimization problem) as "smooth surfaces" embedded in higher dimensional (Euclidean) ambient spaces (e.g., \mathbb{R}^n or $\mathbb{R}^{n \times n}$)
- The idea is to treat constrained optimization problems with such constraints as "unconstrained" problems over the corresponding manifold
- But these manifolds are not "flat" anymore (i.e., not vector spaces)
- ▶ If we move on a line, we'll leave the manifold, resulting in infeasible points

Introduction to Optimization on Manifolds: Key Idea

- A natural idea is to move on smooth curves that live on the manifold $\gamma: (-\epsilon, \epsilon) \rightarrow \mathcal{M}: t \mapsto \gamma(t)$ and pass through x at t = 0; i.e., $\gamma(0) = x$
- Velocities of all such curves live on the tangent space to \mathcal{M} at x, i.e., $\mathcal{T}_x \mathcal{M}$
- ▶ Fortunately, $\mathcal{T}_x \mathcal{M}$ is a vector space (i.e., $\mathcal{T}_x \mathcal{M} \cong \mathbb{R}^m$ for an *m*-dimensional manifold \mathcal{M})! Therefore, (with the help of a Riemannian metric) we can use the same ideas that underpin unconstrained optimization methods over Euclidean spaces to choose a velocity (search direction) $d \in \mathcal{T}_x \mathcal{M}$
- After choosing a velocity $d \in T_x \mathcal{M}$, we move on a curve that passes through x at t = 0 with initial velocity $\dot{\gamma}(0) = d$ for t units of time (e.g., selected via "line" search)
- Geodesics (generalization of straight lines in \mathbb{R}^n) are the most natural choices for γ - but in practice, we may prefer computationally cheaper and simpler alternatives (approximations) called retractions $R_x : \mathcal{T}_x \mathcal{M} \to \mathcal{M}$

Introduction to Optimization on Manifolds: Key Idea

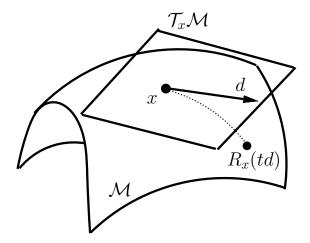


Figure courtesy of Wen Huang

Introduction to Optimization on Manifolds: Key Idea

In Riemannian optimization methods, until convergence we:

- Lift: "Lift" (pullback) the objective function to the tangent space $T_x \mathcal{M}$ using a retraction
- Solve: Use ideas from unconstrained optimization methods to choose a "direction" (velocity) d on the tangent space $\mathcal{T}_x \mathcal{M}$
- ▶ **Retract**: Choose *t* (e.g., in line search methods) and move from *x* to $R_x(td) \in \mathcal{M}$ where $R_x : \mathcal{T}_x \mathcal{M} \to \mathcal{M}$ is a retraction and $R_x(td) = \gamma(t)$ for a curve $\gamma : \mathbb{R} \to \mathcal{M} : t \mapsto \gamma(t)$ such that $\gamma(0) = x$ and $\dot{\gamma}(0) = d$;

$$x \leftarrow R_x(td)$$

- Note that this generalizes the Euclidean iteration $R_x^{\mathsf{Euc}}(td) = x + td$

http://tiny.cc/flat-earth-society

[activate layers (colored circles on the left) one by one]

Optimization over Matrix Lie Groups

- The procedure that was just presented is quite general and can be easily implemented on any Riemannian manifold – we only need to be familiar with the geometry of our manifolds, choose a retraction, and use an optimization method on tangent spaces — in most cases, all of these are already well understood and readily available (see, e.g., Manopt)
- ▶ We are particularly interested in (nonlinear) least squares problems that involve elements of SO(p) and SE(p) where $p \in \{2,3\}$ (i.e., 2/3D rotations and poses)
- As we saw before, these manifolds are in fact matrix Lie groups and thus enjoy additional structures. This makes it even simpler to develop methods based on the lift-solve-retract framework
- Specifically, it turns out that instead of (explicitly) operating on different tangent spaces $\mathcal{T}_x \mathcal{M}$ as x evolves, we can (equivalently) always pullback to the tangent space at the identity element $\mathcal{T}_{Id} \mathcal{M}$ (i.e., Lie algebra) and use matrix exponential to define retractions (in case of SO(p), this even gives us geodesics).

Review: Special Orthogonal Group SO(3)

- ▶ We learned about SO(3) (rotations) and SE(3) (poses) in Lecture 3
- In matrix Lie groups, matrix exponential exp maps elements in the Lie algebra (i.e., tangent space at the identity element) to the Lie group

$$\exp(\mathbf{A}) \triangleq \mathbf{I} + \sum_{k=1}^{\infty} \frac{\mathbf{A}^k}{k!}$$

- Lie algebra (e.g., $\mathfrak{se}(3)$ and $\mathfrak{so}(3)$) has vector-space structure
- Basis "vectors" (generators)

$$\widehat{\phi} \in \mathfrak{so}(3) \Leftrightarrow \widehat{\phi} = \phi_1 \mathbf{G}_1 + \phi_2 \mathbf{G}_2 + \phi_3 \mathbf{G}_3$$

where $oldsymbol{\phi} \in \mathbb{R}^3$ and

$$\mathbf{G}_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{G}_{2} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \quad \mathbf{G}_{3} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\blacktriangleright \ \widehat{\boldsymbol{\phi}} = [\boldsymbol{\phi}]_{\times} \Rightarrow \widehat{\boldsymbol{\phi}} \, \mathbf{a} = \boldsymbol{\phi} \times \mathbf{a}$$

Review: Special Euclidean Group SE(3)

Similarly, for $\mathfrak{se}(3)$ consider $\phi \in \mathbb{R}^3$ and $\rho \in \mathbb{R}^3$ and the overloaded hat operator:

$$\widehat{\begin{bmatrix} \boldsymbol{\phi} \\ \boldsymbol{\rho} \end{bmatrix}} \in \mathfrak{se}(3) \Leftrightarrow \widehat{\begin{bmatrix} \boldsymbol{\phi} \\ \boldsymbol{\rho} \end{bmatrix}} = \phi_1 \mathbf{G}_1 + \phi_2 \mathbf{G}_2 + \phi_3 \mathbf{G}_3 + \rho_1 \mathbf{G}_4 + \rho_2 \mathbf{G}_5 + \rho_3 \mathbf{G}_6$$

where

Nonlinear Least Squares over Matrix Lie Groups

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x}_1, \cdots, \mathbf{x}_n)\|^2$$
 where $\mathbf{r} : \mathcal{M} \triangleq \mathcal{M}_1 \times \mathcal{M}_2 \times \cdots \times \mathcal{M}_n \to \mathbb{R}^m$

Example:

- $\mathbf{x}_1 \in \mathcal{M}_1 = SE(3) \subset \mathbb{R}^{4 \times 4}$ (3D pose)
- $\mathbf{x}_2 \in \mathcal{M}_2 = \mathrm{SO}(3) \subset \mathbb{R}^{3 \times 3}$ (3D rotation)

- ► As we saw before, x^{k+1} = x^k + d is not valid anymore (e.g., adding d to a rotation matrix results in an infeasible point)
- Choose a search direction $\hat{\mathbf{d}}$ on the Lie algebra of \mathcal{M}^1
- Use $\mathbf{x}^{k+1} = \mathbf{x}^k \exp(\widehat{\mathbf{d}})$ to move "along"² $\widehat{\mathbf{d}}$ from \mathbf{x}^k to \mathbf{x}^{k+1}
- x^{k+1} is a feasible point (why?)

¹Review the definition of hat operator ²Modulo some technical details

Linearizing Residual

• Gauss-Newton over \mathbb{R}^n

$$\mathbf{r}(\mathbf{x}^k + \mathbf{d}) \approx \mathbf{r}(\mathbf{x}^k) + \mathbf{J}_k \mathbf{d}$$
 where $\mathbf{J}_k = \frac{\partial \mathbf{r}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x} = \mathbf{x}^k} = \frac{\partial \mathbf{r}(\mathbf{x}^k + \mathbf{d})}{\partial \mathbf{d}}\Big|_{\mathbf{d} = \mathbf{0}}$

• Gauss-Newton over $SO(3) - \mathbf{d} \in \mathbb{R}^3$

$$\mathbf{r}(\mathbf{x}^k \exp(\widehat{\mathbf{d}})) \approx \mathbf{r}(\mathbf{x}^k) + \mathfrak{J}_k \mathbf{d} \qquad \text{where} \qquad \mathfrak{J}_k \triangleq \left. \frac{\partial \mathbf{r}(\mathbf{x}^k \exp(\widehat{\mathbf{d}}))}{\partial \mathbf{d}} \right|_{\mathbf{d}=\mathbf{0}}$$

• Gauss-Newton over $SE(3) - \mathbf{d} \in \mathbb{R}^6$

$$\mathbf{r}(\mathbf{x}^k \exp(\widehat{\mathbf{d}})) \approx \mathbf{r}(\mathbf{x}^k) + \mathfrak{J}_k \mathbf{d} \qquad \text{where} \qquad \mathfrak{J}_k \triangleq \left. \frac{\partial \mathbf{r}(\mathbf{x}^k \exp(\widehat{\mathbf{d}}))}{\partial \mathbf{d}} \right|_{\mathbf{d} = \mathbf{0}}$$

Lift-Solve-Retract for NLS over Matrix Lie Groups

$$\mathbf{x}^{k+1} = \mathbf{x}^k \exp(\widehat{\mathbf{d}})$$

1 Lift (pullback) to the tangent space at the indenity element (Lie algebra):

 $g: \mathbb{R}^{n_d} \to \mathbb{R}^m : \mathbf{d} \mapsto \mathbf{r}(\mathbf{x}^k \exp(\widehat{\mathbf{d}}))$

e.g., $n_d = 3 \text{ in } SO(3)$ and $n_d = 6 \text{ in } SE(3)$

$$\begin{split} g(\mathbf{d}) &\approx g(\mathbf{0}) + \frac{\partial g(\mathbf{d})}{\partial \mathbf{d}} \bigg|_{\mathbf{d} = \mathbf{0}} \mathbf{d} \quad (\text{Taylor at } \mathbf{d} = \mathbf{0}) \\ \mathbf{r}(\mathbf{x}^k \exp(\widehat{\mathbf{d}})) &\approx \mathbf{r}(\mathbf{x}^k) + \mathfrak{J}_k \mathbf{d} \quad (\text{definition of } g) \end{split}$$

2 Solve for d by solving a (flat) linear least squares

$$\underset{\mathbf{d}}{\mathsf{minimize}} \quad \frac{1}{2} \|\mathbf{r}(\mathbf{x}^k \exp(\widehat{\mathbf{d}}))\|^2 \approx \frac{1}{2} \|\mathbf{r}(\mathbf{x}^k) + \mathfrak{J}_k \mathbf{d}\|^2$$

Several Tips for Computing \mathfrak{J}_k

- Note that \mathfrak{J}_k is evaluated at $\mathbf{d} = \mathbf{0}$
- A first-order approximation of $exp(\widehat{\mathbf{d}})$ at $\mathbf{d} = \mathbf{0}$ (why?)

$$\exp(\widehat{\mathbf{d}}) \approx \mathbf{I} + \widehat{\mathbf{d}}$$

Use the chain rule and vectorization of matrices (for convenience):

$$\mathfrak{J}_{k} = \frac{\partial \mathbf{r}(\mathbf{x}^{k} \exp(\widehat{\mathbf{d}}))}{\partial \mathbf{d}} \bigg|_{\mathbf{d} = \mathbf{0}} = \frac{\partial \mathbf{r}_{\mathsf{vec}}(\mathbf{s})}{\partial \mathbf{s}} \bigg|_{\mathbf{s} = \mathsf{vec}(\mathbf{x}^{k})} \frac{\partial \mathsf{vec}(\mathbf{x}^{k} \exp(\widehat{\mathbf{d}}))}{\partial \mathbf{d}} \bigg|_{\mathbf{d} = \mathbf{0}}$$

- Usual Jacobian compute partial derivatives wrt elements of d
- ▶ Useful identity: $vec(AB) = (I \otimes A)vec(B)$ where \otimes denotes Kronecker product

Example with Multiple Variables

• Consider $\|\mathbf{r}(\mathbf{x}_1, \mathbf{x}_2)\|^2$ where $\mathbf{x}_1 \in \mathbb{R}^3$ (e.g., 3D point) and $\mathbf{x}_2 \in \mathrm{SO}(3)$

$$\|\mathbf{r}(\mathbf{x}_1^k + \mathbf{d}_1, \mathbf{x}_2^k \exp(\widehat{\mathbf{d}_2}))\|^2 \approx \|\mathbf{r}(\mathbf{x}_1^k, \mathbf{x}_2^k) + \mathbf{J}_{1,k}\mathbf{d}_1 + \mathfrak{J}_{2,k}\mathbf{d}_2\|^2$$

$$\mathbf{J}_{1,k} \triangleq \frac{\partial \mathbf{r}(\mathbf{x})}{\partial \mathbf{x}_1} \bigg|_{\mathbf{x} = (\mathbf{x}_1^k, \mathbf{x}_2^k)} = \frac{\partial \mathbf{r}(\mathbf{x}_1^k + \mathbf{d}_1, \mathbf{x}_2^k)}{\partial \mathbf{d}_1} \bigg|_{\mathbf{d}_1 = \mathbf{0}}$$

$$\mathfrak{J}_{2,k} \triangleq \left. \frac{\partial \mathbf{r}(\mathbf{x}_1^k, \mathbf{x}_2^k \exp(\mathbf{d}_2))}{\partial \mathbf{d}_2} \right|_{\mathbf{d}_2 = \mathbf{0}}$$

- Solve the resulting linear least squares
- Retract: $\mathbf{x}_1^{k+1} = \mathbf{x}_1^k + \mathbf{d}_1$ and $\mathbf{x}_2^{k+1} = \mathbf{x}_2^k \exp(\widehat{\mathbf{d}_2})$

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

16.485 Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.