
UnconstrainedOptimization and Least Squares
Kasra Khosoussi

MIT 16.485: VNAV
Visual Navigation for Autonomous Vehicles

1 / 46

http://www.mit.edu/~mrrobot

Review/Motivation: Point Estimation
find the “best” estimate of x given noisy measurements z

1 Maximum likelihood (ML) estimate
x̂MLE ∈ arg max

x
p(z|x)

2 Maximum-a-posteriori (MAP) estimate
x̂MAP ∈ arg max

x
p(x|z) = arg max

x
p(z|x) p(x)

I Under additive Gaussian noise and Gaussian priors: least squares

2 / 46

Our Plan

I Today’s Lecture:
UnconstrainedOptimization and Least Squares

I Next Lectures:
Introduction toOptimization onManifolds and Least Squares onMatrix Lie
Groups

3 / 46

 © imgflip LLC. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

Basic Terminology
I Objective function f : Rn → R and decision variable x ∈ Rn

minimize
x∈Rn

f(x)

I x? is a globalminimizer and f(x?) is a globalminimum iff f(x?) ≤ f(x)

for all x ∈ Rn

I x∗ is a localminimizer and f(x∗) is a localminimum iff f(x∗) ≤ f(x)

for all x ∈ B(x∗,r)with positive radius r

4 / 46

Example

cos(3πx)/x

5 / 46

Mixed blessing

I Many problems can be formulated as optimization problems
I Sometimes hard problems: easy-looking optimization problems
I Deciding global (even local) optimality is NP-hard in general

6 / 46

Fun example: Fermat’s Last Theorem (1637-1995)

Murty and Kabadi (1987)

7 / 46

Structure

8 / 46

© WallpaperCave. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

Structures: Smoothness
I f : Rn → R

gradient∈ Rn
↑

∇f(x),


∂f

∂x1...
∂f

∂xn


Hessian∈ Sym(n)

↑
H(x) ,



∂2f

∂x21

∂2f

∂x1 ∂x2
· · · ∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1

∂2f

∂x22
· · · ∂2f

∂x2 ∂xn

...
∂2f

∂xn ∂x1

∂2f

∂xn ∂x2
· · · ∂2f

∂x2n


I f is (sufficiently) smooth and analytic: Taylor expansion

f(x + d) = f(x) +∇f(x)>d +
1

2
d>H(x)d + o(‖d‖2)

9 / 46

Second-order Taylor approximation

I Local quadratic approximation
f(x0 + d) ≈ f̂x0

(d)

, f(x0) +∇f(x0)>d +
1

2
d>H(x0)d

I Another interpretation after change of variables x , x0 + d

f(x) ≈ f̂(x)

, f(x0) +∇f(x0)>(x− x0) +
1

2
(x− x0)>H(x0) (x− x0)

10 / 46

Recognizing LocalMinima
I First-order necessary condition for f ∈ C1(Rn)

∇f(x) = 0

I Second-order necessary condition for f ∈ C2(Rn)

∇f(x) = 0 and H(x) � 0

I Second-order sufficient condition for f ∈ C2(Rn)

∇f(x) = 0 and H(x)�0

11 / 46

Structure: Convexity
f : Rn → R (domf = Rn) is convex iff:

1 For all x1,x2 ∈ Rn and all θ ∈ [0,1]:
f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

2 First-order condition (differentiable f): For all x,y ∈ Rn:
f(y) ≥ f(x) +∇f(x)>(y − x)

3 Second-order condition (twice differentiable f): For all x ∈ Rn:
H(x) � 0

12 / 46

f(x)

x1 θx1 + (1− θ)x2 x2

f(θx1 + (1− θ)x2)
θf(x1) + (1− θ)f(x2)

x

y

Structure: Convexity
f : Rn → R (domf = Rn) is convex iff:

1 For all x1,x2 ∈ Rn and all θ ∈ [0,1]:
f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

2 First-order condition (differentiable f): For all x,y ∈ Rn:
f(y) ≥ f(x) +∇f(x)>(y − x)

� What happens when∇f(x) = 0?
3 Second-order condition (twice differentiable f): For all x ∈ Rn:

H(x) � 0

12 / 46

Problem 1: Linear Least-Squares

f(x) =
1

2
‖Ax− b‖2

I A ∈ Rm×n and b ∈ Rm

I Gradient
∇f(x) = A>(Ax− b)

I Hessian
H(x) = A>A

I Claim: f is convex (why?)
I Claim:∇f(x) = 0 is necessary and sufficient for global optimality (why?)
I Claim: uniqueminimizer iff rank(A) = n (why?)
I i.e.,A is a tall matrix (m ≥ n) with full column rank
I Just solve the normal equations:

(A>A)x = A>b
13 / 46

Problem 2: Nonlinear Least Squares (NLS)
f(x) =

1

2
‖r(x)‖2 r : Rn → Rm wherem ≥ n

I r is smooth, but not necessarily affine anymore
I ‖r(x)‖2 =

m∑
i=1

r2i (x)where ri : Rn → R

I First-order Taylor:
ri(x) ≈ ri(x0) +∇ri(x0)>(x− x0)

I Stack ri’s:
r(x) ≈ r(x0) + J(x0)

Jacobian
(x− x0)

I Same story, different narrative (change of variable):
r(x0 + d) ≈ r(x0) + J(x0)d

14 / 46

Jacobian

J(x) ,
∂r(x)

∂x
=



∂r1
∂x1

∂r1
∂x2

· · · ∂r1
∂xn

∂r2
∂x1

∂r2
∂x2

· · · ∂r2
∂xn

... ... · · ·
...

∂rm
∂x1

∂rm
∂x2

· · · ∂rm
∂xn


∈ Rm×n

15 / 46

Gauss-Newton
1 start from an initial guess x0

for k = 0,1, · · · and until “convergence”:
2 linearize the residual at the current guess xk

r(xk + d) ≈ r(xk) + J(xk)d

3 solve the resulting linear least squares to find the step d
minimize

d
‖r(xk) + J(xk)d‖2

(J>k Jk)d = −J>k r(xk)

4 xk+1 = xk + d

16 / 46

Newton’sMethod
I Common Idea in Optimization: locally approximate the objective function
around xk by a simpler (often quadratic) model function

I “Optimal” Choice→ Taylor (here gk , ∇f(xk) andHk , ∇2f(xk))
f(xk + d) ≈ mk(d) , f(xk)

constant
+ g>k d +

1

2
d>Hkd

I mk(d) gives the local quadratic approximation
I Choose a d that is a stationary point (hopefully, minimizer) formk(d):

∇mk(d) = 0⇒ Hkd + gk = 0

I Well-defined (i.e., actually moves towards a local minimum) if
Hk � 0⇒ d = −H−1k gk and xk+1 = xk + d

7 In general, has no preference for local minima over other types of
stationary points (local maxima or saddle points)

3 Very fast (“quadratic”) convergence near stationary points
17 / 46

Newton vs. Gauss-Newton
I Recall Nonlinear Least Squares (NLS) fNLS(x) =

1

2
‖r(x)‖2

I Verify that the gradient andHessian of fNLS are given by:
∇fNLS(xk) =: gk = J>k r(xk)

∇2fNLS(xk) =: Hk = J>k Jk +
m∑
i=1

ri(x
k)∇2ri(x

k)︸ ︷︷ ︸
S

I Thus (pure) Newton step for NLSwill be the solution of
(J>k Jk + S)d = −J>k r(xk)

I Now compare this to Gauss-Newton step:
(J>k Jk)d = −J>k r(xk)

18 / 46

Cont’d

⇒ Gauss-Newton (in NLS) approximates the Hessianmatrix in Newton’s
method – less expensive than computing the Hessian

⇒ Gauss-Newton step will be “close” to Newton step (e.g., fast convergence
close to a solution) if S is “small”

I e.g., when r is “close” to an affine function
I and/or when the residuals are “close” to zero at a local solution

⇒ J>k Jk in Gauss-Newton is a PSD approximation of Hessian in NLS— S can
makeHessian non-PSD – (Thanks, Guass!)

19 / 46

Globalization Strategies
I Pure Newton’s or Gauss-Newton iterationsmay fail to converge at all even
to stationary points depending on the initial guess!

I Partly due to the fact that our model functions (and the linearization of
residual in Gauss-Newton) are valid approximations of the original
function close to xk , but these algorithms in pure form disregard this.

I d can be “too large” —wemay end up increasing the objective!
⇒ Need safeguards (“globalization strategies”) to converge (hopefully, to a

localminimum) from any initial guess
I Note that “globalization” has nothing to dowith “global” optimality here
(that’d be way too ambitious for generic non-convex objectives)

I Two approaches: (i) Line Search and (ii) Trust-RegionMethods

20 / 46

Globalization Strategies: Line Search
I Idea: xk+1 = xk + αdwhere α is the step size
I Plan: First find a “good” direction, then choose a “good” step size

“Good” Direction
d is a descent direction if ∃α0 > 0 such that f(xk+1) < f(xk) for all α ∈ (0,α0)

I Recall the definition of directional derivative at xk along direction d

Df(xk)[d] , lim
α→0

1

α

(
f(xk + αd)− f(xk)

)
= g>k d

Theorem
If the directional derivative along d is negative⇒ d is a descent direction

I What does this say about the angle between such d’s and gk?
21 / 46

Cont’d

1 Pick a descent direction d
I Newton’s direction is a descent direction ifHk � 0 (why?)
I Gauss-Newton direction is a descent direction if Jk is full column rank (why?)
I More generally,d = −Bgk is a descent direction for anyB � 0 (why?)

2 Find the “best” step size α (exact line search) by solving
minimize
α∈R≥0

f(xk + αd)

I In practice→ inexact (backtracking) line search until achieve “sufficient”
descent suffices: shrink an initial α until satisfy Armijo (orWolfe) condition

I Resulting algorithms are sometimes called dampedNewton/Gauss-Newton

22 / 46

Globalization Strategies: Trust-Region
I Plan: Pick max step size first, then choose the step d
I Howmuch dowe trust our local approximate quadratic model away from

d = 0 (i.e., away from xk)?
1 Pick amaximum step size∆k

2 Pick d by solving the trust-region subproblem
minimize

d
mk(d) such that ‖d‖ ≤ ∆k

3 Quantify and re-evaluate our trust on themodel (i.e.,∆) based on
actual reduction
expected reduction =

f(xk)− f(xk + d)

mk(0)−mk(d)

I If ratio is above a threshold, accept d (i.e., xk+1 = xk + d) and scale∆k up
by a factor (unless you get to a pre-defined global max value)

I If ratio is above a smaller threshold, accept d but don’t change∆k

I Otherwise, reject d (xk+1 = xk) and shrink∆k by a factor
23 / 46

Trust Region vs. Line Search

Figures from fromNumerical Optimization by Nocedal andWright

24 / 46

Trust Region

Figures from fromNumerical Optimization by Nocedal andWright

25 / 46

A Trust-RegionMethod: Levenberg-Marquardt
I Has a trust-region interpretation
I Instead of solving the trust-region subproblem, adds a penalty term λ‖d‖2
tomk(d) to penalize large d
1

2
d>(Hk)d>+g>k d+ f(xk) +λk‖d‖2 =

1

2
d>(Hk +λkI)d

>+g>k d+ f(xk)

I Gives the solution of trust-region subproblem for a particular value of∆k

I Larger∆k⇔ larger trust region⇔ smaller penalty factor λk
I Often implemented using λk (penalty) rather than∆k (explicit constraint)
I λk is updated similar to∆k

I Originally was purposed for nonlinear least squares:
I Levenberg (J>k Jk + λkI)d = −J>k r(xk)

I Marquardt (J>k Jk + λkdiag(J
>
k Jk))d = −J>k r(xk)

I Interpolates between gradient descent (large λ) and (Gauss-)Newton
(small λ) — (why?)

26 / 46

Our “UnconstrainedOptimization” Trilogy: Big Reveal
I Key idea: Locally approximate the function with a quadratic model
function andminimize themodel

f(xk + d) ≈ f(xk) + g>k d +
1

2
d>Bd

(ideally,B � 0)
I Setting the gradient to zero, we get:

Bd = −gk

I IfB = Hk we get (pure) Newton (using actual second-order information!)
I IfB = Hk + λIwe get (general) Levenberg-Marquardt
I In NLS problems, ifB = J>k Jk we get (pure) Gauss-Newton
I In NLS problems, ifB = J>k Jk + λIwe get (NLS) Levenberg-Marquardt
I IfB = Iwe get gradient descent
I . . .

27 / 46

DirectMethods for Solving Linear Systems
I Ultimately need to solveAd = bwhereA ∈ Sym(n) and b ∈ Rn

I e.g., in Gauss-Newton
A = (J>k Jk) and b = −J>k r(xk)

I e.g., in Levenberg-Marquardt
A = (J>k Jk + λI) and b = −J>k r(xk)

I Do not invertA!
I Will lose structure (e.g.,Amay be sparse butA−1 will be generally
dense)

I Numerical stability
I We consider two direct methods based on Cholesky andQR factorizations

28 / 46

Cholesky solver
• Solving triangular systems (non-zero diagonal) is fast/easy
(forward/backward substitution)

`11 0 0

`21 `22 0

`31 `32 `33




y1

y2

y3



=

b1

b2

b3




I Cholesky decomposition (assumingA � 0)

i. A = LL> whereL is lower triangular and thusL> is upper triangular
LL>d︸︷︷︸

y

= b

ii. SolveLy = b via forward substitution
iii. SolveL>d = y via backward substitution

29 / 46

QR solver
I Note thatA = M>M and b = M>cwhereM ∈ Rm×n

I e.g., in Gauss-NewtonM = Jk and c = −r(xk)

I e.g., in Levenberg-MarquardtM =

[
Jk√
λIn

]
and c = −

[
r(xk)

0

]
I “Economic” QR factorization ofM = QR

I Q ∈ Rm×n andQ>Q = In

I R ∈ Rn×n is upper triangular
I SolveRd = Q>c instead ofAd = b

Ad = b⇒ R>Q>QRd = R>Qc Q>Q = In

⇒ R>Rd = R>Q>c premultiply byR−>
⇒ Rd = Q>c solve via backward substitution

I QR vs. Cholesky
X QR does not need to formA - works with Jk or

[
Jk√
λIn

]
X Better numerical stability than Cholesky
× Slower than Cholesky

30 / 46

To be continued . . .

I Wedid not cover iterative (vs. direct) methods for solving (large) linear
systems (see, e.g., conjugate gradient, Gauss-Seidel, etc)

I Ad = b has a number of algorithmically exploitable structures in
geometric estimation problems such as SLAM and bundle adjustment

I Wewill see how these structures can be exploited to speed up solvers
31 / 46

© WallpaperCave. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

32 / 46© NYP Holdings, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

Today’s Plan
I In robotics and computer vision, we often need to solve optimization
problems involving rotations and poses – these variables do not live on
(flat) vector spaces

I But in the previous lectures we ignored the constraints on such variables
(just like flat-Earthers!)

I Canwe use generic constrained optimizationmethods? Yeahnah . . .
I Structure: Our (constrained) decision variables (rotations and rigid-body
transformations) arematrix Lie groups (smoothmanifolds and groups)

I Idea: Exploit the smooth geometry of constraints and generalize
Gauss-Newton (and other unconstrained algorithms) to do
“unconstrained” optimization over ourmatrix Lie groups!

I Advantages:
X Simpler, more natural, and faster methods
X Iterations never leave the feasible set (manifold)
X Can retain desirable traits of the algorithm in the unconstrained setting

33 / 46

https://www.urbandictionary.com/define.php?term=yeahnah

Introduction toOptimization onManifolds: Key Idea

x
d

Rx(td)

M = Rn

TxM

Recall that in each iteration of unconstrained optimization overRn:
I Started at a point x ∈ Rn =:M
I Chose a “suitable” direction d ∈ Rn = TxM (“tangent space” at x)
I Next iterate was found bymoving along the line x+ tdwith step size t that
gives us sufficient descent:

x← x+ td =: Rx(td) ∈M

I In other words, wewalked on a (flat) curve t 7→ x+ td that starts (t = 0) at
x and has velocity d for t units of time

I This worked out in part because x+ td remained on ourmanifoldM = Rn
34 / 46

Introduction toOptimization onManifolds: Key Idea
Figure courtesy ofWenHuang

M

x
d

TxM

Rx(td)

I This idea can be generalized to useful classes of manifolds beyondRn

(e.g., spheres, orthogonal matrices, rotations, rigid-body transformations)
I You can think of thesemanifolds (i.e., feasible set of our optimization problem) as
“smooth surfaces” embedded in higher dimensional (Euclidean) ambient spaces
(e.g.,Rn orRn×n)

I The idea is to treat constrained optimization problemswith such constraints as
“unconstrained” problems over the correspondingmanifold

I But thesemanifolds are not “flat” anymore (i.e., not vector spaces)
I If wemove on a line, we’ll leave themanifold, resulting in infeasible points

35 / 46

Introduction toOptimization onManifolds: Key Idea
I A natural idea is tomove on smooth curves that live on themanifold
γ : (−ε,ε)→M : t 7→ γ(t) and pass through x at t = 0; i.e., γ(0) = x

I Velocities of all such curves live on the tangent space toM at x, i.e., TxM
I Fortunately, TxM is a vector space (i.e., TxM∼= Rm for anm-dimensional manifold
M)! Therefore, (with the help of a Riemannianmetric) we can use the same ideas
that underpin unconstrained optimizationmethods over Euclidean spaces to
choose a velocity (search direction) d ∈ TxM

I After choosing a velocity d ∈ TxM, wemove on a curve that passes through x at
t = 0with initial velocity γ̇(0) = d for t units of time (e.g., selected via “line” search)

I Geodesics (generalization of straight lines inRn) are themost natural choices for γ
– but in practice, wemay prefer computationally cheaper and simpler alternatives
(approximations) called retractionsRx : TxM→M

36 / 46

Introduction toOptimization onManifolds: Key Idea

M

x
d

TxM

Rx(td)

Figure courtesy ofWenHuang

37 / 46

Introduction toOptimization onManifolds: Key Idea
In Riemannian optimizationmethods, until convergence we:

I Lift: “Lift” (pullback) the objective function to the tangent space TxM using
a retraction

I Solve: Use ideas from unconstrained optimizationmethods to choose a
“direction” (velocity) d on the tangent space TxM

I Retract: Choose t (e.g., in line searchmethods) andmove from x to
Rx(td) ∈MwhereRx : TxM→M is a retraction andRx(td) = γ(t) for a
curve γ : R→M : t 7→ γ(t) such that γ(0) = x and γ̇(0) = d;

x← Rx(td)

– Note that this generalizes the Euclidean iterationREucx (td) = x+ td

http://tiny.cc/flat-earth-society

[activate layers (colored circles on the left) one by one]
38 / 46

http://tiny.cc/flat-earth-society

Optimization overMatrix Lie Groups
I The procedure that was just presented is quite general and can be easily
implemented on any Riemannianmanifold – we only need to be familiar with the
geometry of our manifolds, choose a retraction, and use an optimizationmethod on
tangent spaces— inmost cases, all of these are already well understood and readily
available (see, e.g., Manopt)

I We are particularly interested in (nonlinear) least squares problems that involve
elements of SO(p) and SE(p)where p ∈ {2,3} (i.e., 2/3D rotations and poses)

I Aswe saw before, thesemanifolds are in fact matrix Lie groups and thus enjoy
additional structures. This makes it even simpler to developmethods based on the
lift-solve-retract framework

I Specifically, it turns out that instead of (explicitly) operating on different tangent
spaces TxM as x evolves, we can (equivalently) always pullback to the tangent
space at the identity element TIdM (i.e., Lie algebra) and usematrix exponential to
define retractions (in case of SO(p), this even gives us geodesics).

39 / 46

www.manopt.org

Review: Special Orthogonal Group SO(3)
I We learned about SO(3) (rotations) and SE(3) (poses) in Lecture 3
I In matrix Lie groups, matrix exponential expmaps elements in the Lie algebra (i.e.,
tangent space at the identity element) to the Lie group

exp(A) , I+

∞∑
k=1

Ak

k!

I Lie algebra (e.g., se(3) and so(3)) has vector-space structure
I Basis “vectors” (generators)

φ̂ ∈ so(3)⇔ φ̂ = φ1G1 + φ2G2 + φ3G3

whereφ ∈ R3 and

G1 =

0 0 0

0 0 −1
0 1 0

 G2 =

 0 0 1

0 0 0

−1 0 0

 G3 =

0 −1 0

1 0 0

0 0 0


I φ̂ = [φ]× ⇒ φ̂a = φ× a

40 / 46

Review: Special Euclidean Group SE(3)
Similarly, for se(3) considerφ ∈ R3 and ρ ∈ R3 and the overloaded hat operator:

[̂
φ

ρ

]
∈ se(3)⇔

[̂
φ

ρ

]
= φ1G1 + φ2G2 + φ3G3 + ρ1G4 + ρ2G5 + ρ3G6

where

G1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 G2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 G3 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



G4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 G5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 G6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0


41 / 46

Nonlinear Least Squares overMatrix Lie Groups
f(x) =

1

2
‖r(x1, · · · ,xn)‖2 where r :M ,M1 ×M2 × · · · ×Mn → Rm

Example:
I x1 ∈M1 = SE(3) ⊂ R4×4 (3D pose)
I x2 ∈M2 = SO(3) ⊂ R3×3 (3D rotation)

I Aswe saw before, xk+1 = xk + d is not valid anymore (e.g., adding d to a
rotationmatrix results in an infeasible point)

I Choose a search direction d̂ on the Lie algebra ofM1

I Use xk+1 = xk exp(d̂) to move “along”2 d̂ from xk to xk+1

I xk+1 is a feasible point (why?)
1Review the definition of hat operator
2Modulo some technical details

42 / 46

Linearizing Residual
I Gauss-Newton overRn

r(xk+d) ≈ r(xk)+Jkd where Jk =
∂r(x)

∂x

∣∣∣∣
x=xk

=
∂r(xk + d)

∂d

∣∣∣∣
d=0

I Gauss-Newton over SO(3)— d ∈ R3

r(xk exp(d̂)) ≈ r(xk) + Jkd where Jk ,
∂r(xk exp(d̂))

∂d

∣∣∣∣
d=0

I Gauss-Newton over SE(3)— d ∈ R6

r(xk exp(d̂)) ≈ r(xk) + Jkd where Jk ,
∂r(xk exp(d̂))

∂d

∣∣∣∣
d=0

43 / 46

Lift-Solve-Retract for NLS overMatrix Lie Groups
xk+1 = xk exp(d̂)

1 Lift (pullback) to the tangent space at the indenity element (Lie algebra):
g : Rnd → Rm : d 7→ r(xk exp(d̂))

e.g., nd = 3 in SO(3) and nd = 6 in SE(3)

g(d) ≈ g(0) +
∂g(d)

∂d

∣∣∣∣
d=0

d (Taylor at d = 0)

r(xk exp(d̂)) ≈ r(xk) + Jkd (definition of g)
2 Solve for d by solving a (flat) linear least squares

minimize
d

1

2
‖r(xk exp(d̂))‖2 ≈ 1

2
‖r(xk) + Jkd‖2

linear least squares⇒ normal equations
d = −(J>k Jk)−1J>k r(xk)

3 Retract:
xk+1 = xk exp(d̂)

44 / 46

Several Tips for Computing Jk
I Note that Jk is evaluated atd = 0

I A first-order approximation of exp(d̂) atd = 0 (why?)
exp(d̂) ≈ I+ d̂

I Use the chain rule and vectorization of matrices (for convenience):

Jk =
∂r(xk exp(d̂))

∂d

∣∣∣∣
d=0

=
∂rvec(s)
∂s

∣∣∣∣
s=vec(xk)

∂vec(xk exp(d̂))

∂d

∣∣∣∣
d=0

I Usual Jacobian - compute partial derivatives wrt elements ofd
I You can also use d̂ =

∑
i

diGi and take derivatives w.r.t. each di
(i.e., columns of Jk)

I Useful identity: vec(AB) = (I⊗A)vec(B)where⊗ denotes Kronecker product
45 / 46

Example withMultiple Variables
I Consider ‖r(x1,x2)‖2 where x1 ∈ R3 (e.g., 3D point) and x2 ∈ SO(3)

‖r(xk1 + d1,x
k
2 exp(d̂2))‖2 ≈ ‖r(xk1 ,x

k
2) + J1,kd1 + J2,kd2‖2

J1,k ,
∂r(x)

∂x1

∣∣∣∣
x=(xk

1 ,x
k
2)

=
∂r(xk1 + d1,x

k
2)

∂d1

∣∣∣∣
d1=0

J2,k ,
∂r(xk1 ,x

k
2 exp(d̂2))

∂d2

∣∣∣∣
d2=0

I Solve the resulting linear least squares
I Retract: xk+1

1 = xk1 + d1 and xk+1
2 = xk2 exp(d̂2)

46 / 46

MIT OpenCourseWare
https://ocw.mit.edu/

16.485 Visual Navigation for Autonomous Vehicles (VNAV)
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

