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Recall … 

Motion estimation 

In the previous lecture: 

• Perception problem can systematically formulated using estimation theory 
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Recall … 

Motion estimation 

In the previous lecture: 

• Perception problem can systematically formulated using estimation theory 

• Estimation theory: 

(1) Maximum likelihood (ML) estimate, 

(2) Maximum a-postiriori (MAP) estimate 

Which is this? ML or MAP? 
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Recall … 

Motion estimation 

In the previous lecture: 

• Perception problem can systematically formulated using estimation theory 

• Estimation theory: 

(1) Maximum likelihood (ML) estimate, 

(2) Maximum a-postiriori (MAP) estimate 

• Abstract Model: 

If 
and independent across 

state variable 

measurements 

noise 
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Recall … 

Motion estimation 

In the previous lecture: 

• Perception problem can systematically formulated using estimation theory 

• Estimation theory: 

(1) Maximum likelihood (ML) estimate, 

(2) Maximum a-postiriori (MAP) estimate 

• Linear Model: 

If 
and independent across 

state variable 

measurements 

is called Mahalanobis distance. 

noise 
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Today 

• Nonlinear least squares problem 

• Gauss-Newton Method 

A quick detour 

• Nonlinear optimization 

• Convexity 

• Optimality conditions 

• Gradient descent and Newton’s method 
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Nonlinear Least Squares Problem 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 

• For our abstract model 

• Linear model 
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Nonlinear Least Squares Problem 

• 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 

Nonlinear 
optimization 

problem 

• 
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Nonlinear Optimization Problem 

• Unconstrained nonlinear optimization problem: 

local minimum 

global minimum • Global minimum: 

• Local minimum: 
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Nonlinear Optimization Problem 

• Unconstrained nonlinear optimization problem: 

local minimum 

global minimum • Necessary conditions for local minimum 

• Sufficient conditions for local minimum 
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Recall 
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Nonlinear Optimization Problem 

• Unconstrained nonlinear optimization problem: 

local minimum 

global minimum • Necessary conditions for local minimum 

• Sufficient conditions for local minimum 

• Gradient descent converges to local minimum 
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• Unconstrained nonlinear optimization problem: 

Nonlinear Optimization Problem 

local minimum 

global minimum • Necessary conditions for local minimum 

• Sufficient conditions for local minimum 

Finding global minimum is hard!! … possible with an added structure of convexity 19



Convex Problems 

• Convex optimization problem: 

local minimum 

global minimum • 
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Convex Problems 

• Convex optimization problem: 

local minimum Not convex! 

global minimum • 
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Convex Problems 

• Convex optimization problem: 

• 

• 
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Convex Problems 

• Convex optimization problem: 

• 

• 

• 
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Convex Problems 

• Convex optimization problem: 

• Local minima is also a global minima 

• Necessary and sufficient condition 

• Gradient descent converges to global minima 
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Back to Nonlinear Least Squares Problem 

• 

• 

• 
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Linear Least Squares Problem 

• 

• The objective function is convex! 

• Gradient descent algorithm converges to the global minimum 

• But, we can do much better (computationally) by exploiting the problem structure 
and using the optimality conditions 
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Linear Least Squares Problem 

• 

• The objective function is convex! 

• Recall: 
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Linear Least Squares Problem 

• 

• The objective function is convex! 

• Recall: 

• 

• 
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Linear Least Squares Problem 

• 

• The objective function is convex! 

• Recall: 

• 

suffices to solve this linear • system of equations 
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Linear Least Squares Problem 

• 

• The objective function is convex! 

• Recall: 

• 

suffices to solve this linear • system of equations Do not invert! 
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Cholesky Solver 

• Assuming 
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Cholesky Solver 

Illustrative example • Assuming 

• Cholesky decomposition of 
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Cholesky Solver 

Illustrative example • Assuming 

• Cholesky decomposition of 

• We now have to solve     . We solve it in two steps. 
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Cholesky Solver 

Illustrative example • Assuming 

• Cholesky decomposition of 

• We now have to solve     . We solve it in two steps. 

• Forward substitution:  and obtain 

• Backward substitution:  and obtain 
34



QR Solver 
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QR Solver 

• 
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QR Solver 

• 

• 
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QR Solver 

• 

• 
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QR Solver 

• 

• 

• 
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QR Solver 

• 

• 

• 
can be solved by backward substitution 
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Cholesky vs QR Solver 

• QR is slower than Cholesky 

• QR gives better numerical stability than Cholesky 
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Linear Least Squares Problem 

• 

• The objective function is convex! 

• Recall: 

• 

Done!!• 
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Back to Nonlinear Least Squares Problem 

• 

• 

• 
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Back to Nonlinear Least Squares Problem 

• 

• 

• 

44



Linear Approximations 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 

Will it? Yes or No? 
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Nonlinear Least Squares Problem 

• 

• 

No!! 
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Nonlinear Least Squares Problem 

• 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 

• 
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Nonlinear Least Squares Problem 

• 

• 

• 

This is called the Gauss-Newton Method 
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Gauss-Newton Method 

1. 
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Gauss-Newton Method 

1. 

2. 
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Gauss-Newton Method 

1. 

2. 

3. 

56



Gauss-Newton Method 

1. 

2. 

3. 

4. 
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Gauss-Newton Method 

1. 

2. 

3. 

4. 
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Nonlinear Least Squares Problem 

• 

• 

• 

• 
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Summary 

• Nonlinear least squares problem 

• Linear least squares problem 
• Gradient descent 

• Cholesky solver 

• QR solver 

• Gauss-Newton Method 

A quick detour 

• Nonlinear optimization 

• Convexity 

• Optimality conditions 

• Gradient descent 
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Summary 

• Nonlinear least squares problem 

• Linear least squares problem 
• Gradient descent 

• Cholesky solver 

• QR solver 

• Gauss-Newton Method 

A quick detour 
Next 

• Nonlinear optimization • Issues with Gauss-Newton Method 
• Convexity • Levenberg-Marquardt Method 
• Optimality conditions • Nonlinear least squares on Riemannian 
• Gradient descent Manifolds 
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