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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor(s).

This lecture discusses:

• how to model uncertainty and noise on positions, rotations, and poses.

• the use of optimization to mitigate the presence of measurement noise and the fact that one can choose
different objective functions in these optimization problems, and

• introduces Maximum Likelihood and Maximum a Posteriori estimation which provide a probabilisti-
cally grounded way to select objective functions given assumptions on the measurement noise.

An introduction to (nonlinear) estimation is given in [1, Chapter 4]. A good introduction to uncertainty
modeling for poses and rotations is [1, p. 255-283].

16.1 Representing uncertainty on positions, rotations, and poses

16.1.1 Representing uncertainty on positions

As we saw, positions and translations live in a vector space, hence we can use any multivariate distribution
from traditional statistics to model an uncertain vector.

A particularly popular choice is to use a multivariate Gaussian or Normal distribution to model an uncertain
vector in Rd:

t ∼ N (t̄,Σ)
.
=

1√
(2π)d det(Σ)

exp

(
−1

2
(t− t̄)TΣ−1(t− t̄)

)
(16.1)

where t̄ is the mean of the distribution and Σ ∈ Rd×d is the covariance matrix. The inverse of Σ, is often
called the information matrix Ω

.
= Σ−1.

Theorem 1 (Sum of uncertain vectors). Given two Normally distributed vectors t1 ∼ N (t̄1,Σ1) and t2 ∼
N (t̄2,Σ2), it holds:

t1 + t2 ∼ N (t̄1 + t̄2,Σ1 + Σ2) (16.2)

As a consequence of Theorem 1, for a fixed t̄, we can write t ∼ N (t̄,Σ) equivalently as:

t = t̄+ εt εt ∼ N (0d,Σt) (16.3)

16.1.2 Representing uncertainty on rotations

The Gaussian distribution is a popular choice to represent uncertainty on positions. Unfortunately, the
Gaussian is defined on a vector space and we know that rotations (and poses) are not vector spaces, but
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Lie groups. Moreover, there are multiple potential choices of distributions that “behave” similarly to the
Gaussian distribution. We review two of them in the following.

16.1.2.1 Wrapped Gaussian distribution

A fairly natural way to define the equivalent of a Gaussian distribution on a rotation is:

R = R̄ exp(ε∧r ) εr ∼ N (0d,Σr) (16.4)

The previous relation implies a distribution over the rotation R:

R ∼ W(R̄,Σr)
.
=

1

Jr(log(R̄TR)∨)

1√
(2π)d det(Σr)

exp

(
−1

2
(log(R̄TR)∨)TΣ−1r (log(R̄TR)∨)

)
(16.5)

where R̄ is the mean rotation and Σr is the covariance of the distribution.

When Σr is “small”, εr = log(R̄TR)∨ is also small (with high probability) and Jr(εr) ≈ Id and the
distribution (16.6) is approximated as:

W(R̄,Σr) ≈
1√

(2π)d det(Σr)
exp

(
−1

2
(log(R̄TR)∨)TΣ−1r (log(R̄TR)∨)

)
(16.6)

16.1.2.2 Isotropic Langevin distribution

The Isotropic Langevin distribution is defined as [3]:

L(R̄, κ) =
1

cd(κ)
exp(κ tr

(
R̄TR

)
) (16.7)

where R̄ and κ are called the mode and the concentration parameter of the distribution, and cd(κ) is a
normalization constant.

In the 2D case, the Langevin distribution is known as the Von Mises distribution:

V(θ̄, κ) =
1

c2(κ)
exp(κ cos(θ − θ̄)) (16.8)

where the equivalence can be seen from tr
(
R̄TR

)
= tr

(
R(θ̄)TR(θ)

)
= 2 cos(θ − θ̄), where the factor “2” is

included in the normalization constant c2(κ).

16.1.3 Representing uncertainty on poses

A fairly natural way to define the equivalent of a Gaussian distribution on a pose is:

T = T̄ exp(ε∧T ) ε ∼ N (0,ΣT ) (16.9)

where T̄ is the mean pose and ΣT is the covariance of the distribution.

In alternative, one can consider a pose at a pair of rotation and translation and assume (uncorrelated)
distributions on each, e.g., use a Langevin distribution for the rotation and a Gaussian distribution on the
translation. A longer discussion on how to represent uncertainty on poses is given by [2].
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16.2 Estimating unknown quantities via optimization

Similarly to what we often suggested in the previous lectures, here we discuss how to use optimization to
mitigate the presence of noise in the measurements, when estimating some unknown quantity. In particular,
we consider 2 examples: point triangulation, and bundle adjustment.

16.2.1 Example 1: Point triangulation

Consider the case where we have two cameras at known poses (Rc1
w , t

c1
w ) and (Rc2

w , t
c2
w ) and known calibration

matrices K1 and K2. Assume that we measure the pixel projection x̃1 and x̃2 of an unknown 3D point pw

in both cameras. The triangulation problem (or “structure reconstruction”) is: estimate the 3D position of
the point given the pixel measurements.

From basic perspective projection, we know that:

λ1x̃1 = K1[Rc1
w tc1w ]p̃w (16.10)

λ2x̃2 = K2[Rc2
w tc2w ]p̃w (16.11)

Using a more compact notation:

λ1x̃1 = Π1p̃
w (16.12)

λ2x̃2 = Π2p̃
w (16.13)

where Π1 = K1[Rc1
w tc1w ] and Π2 = K2[Rc2

w tc2w ].

To get rid of the scale λ1 and λ2, let us multiply the first equation by [x̃1]× and the second equation by
[x̃2]×, from which we get:

[x̃1]×Π1p̃
w = 0 (16.14)

[x̃2]×Π2p̃
w = 0 (16.15)

or more succinctly: [
A1

A2

]
p̃w = 0 (16.16)

where A1 = [x̃1]×Π1 and A2 = [x̃2]×Π2.

In the presence of noise the equation above (6 equalities in 3 variables) will have no solution, hence we rather
look for a least square solution:

min
‖p̃w‖=1

∥∥∥∥[ A1

A2

]
p̃w
∥∥∥∥2 = min

‖p̃w‖=1
‖Ap̃w‖2 with A =

[
A1

A2

]
(16.17)

which can be solved in closed form (solution is the eigenvector corresponding to the smallest eigenvalue of
ATA). The objective in (16.17) in said to minimize the “algebraic” error.

An alternative objective. Recall that the pixel measurements can be written as:

x1 =

[
u1
v1

]
=

[
[Π1p̃

w]1
[Π1p̃w]3
[Π1p̃

w]2
[Π1p̃w]3

]
= π(Rw

c1 , t
w
c1 ,p

w) (16.18)

x2 =

[
u2
v2

]
=

[
[Π2p̃

w]1
[Π2p̃w]3
[Π2p̃

w]2
[Π2p̃w]3

]
= π(Rw

c2 , t
w
c2 ,p

w) (16.19)
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where on the right-hand-side we introduced a more compact notation for the perspective projection function
π(·). Therefore, an alternative objective can be obtained as follows:

min
pw
‖x1 − π(Rw

c1 , t
w
c1 ,p

w)‖2 + ‖x2 − π(Rw
c2 , t

w
c2 ,p

w)‖2 (16.20)

In general, the solution of (16.20) will be different from the solution of (16.17). The objective in (16.20) in
said to minimize the “geometric” error.

Invariance. The formulation (16.20) is invariant to a rigid-body transformation of all the two cameras.
Numerically, one can show that the formulation (16.17), instead, is not invariant to rigid-body transforma-
tions.

16.2.2 Example 2: Bundle Adjustment

In the previous lecture we have seen how to estimate the relative pose between two cameras given N pixel
correspondences (let us assume for now that there are no outliers). Now let’s assume that we can track the
same N features across 3 consecutive images, i.e., we can detect and match features in image 1 and 2, and
then we can match features in image 2 against features extracted in image 3.

As done in the previous lecture we can compute the motion between camera 1 and 2 and between 2 and 3
by estimating the corresponding essential matrices:

E12 = arg min
E12∈SE

N∑
k=1

|ỹT
k,2E12ỹk,1|2 (16.21)

E23 = arg min
E23∈SE

N∑
k=1

|ỹT
k,3E23ỹk,2|2 (16.22)

from which one can compute the relative poses (up to scale).

An alternative objective. An alternative approach to estimate the poses between the three cameras is to
formulate a single optimization problem:

min
(Rw

ci
,twci

),i=1,2,3

pw
k ,k=1,...,N

N∑
k=1

3∑
i=1

‖xk,i − π(Rw
ci , t

w
ci ,p

w
k )‖2 (16.23)

where we minimize the reprojection error of the N points in each camera. Note that in (16.23), besides
optimizing for the camera poses, we also optimize for the unknown positions of the 3D points pwk , k =
1, . . . , N .

The previous formulation, which easily extends to the case of K cameras is known as bundle adjustment.
Since it does not admit a closed-form solution in general, in the next lecture we will discuss numerical
optimization methods to obtain a (local) minimizer of (16.23).

Invariance. The formulation (16.23) is invariant to a rigid-body transformation of all the cameras.

16.3 Maximum Likelihood and Maximum a Posteriori estimation

The discussion in the previous section highlights a basic question: what is the “right” objective function to
minimize in order to estimate a variable of interest? Each minimization provides a different solution so is
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there a grounded way to pick an objective function?

This question finds a satisfactory answer in estimation theory, where there are two frameworks (Maximum
Likelihood and Maximum a Posteriori estimation, discussed below) that discuss how the assumption we
make on the measurement noise dictates a meaningful objective function to minimize.

16.3.1 Maximum Likelihood Estimation (MLE)

Assume we are given N measurements z1, . . . ,zN (e.g., pixel measurements) that are function of a variable we
want to estimate x (e.g., camera poses, points). Assume that we are also given the conditional distributions:

P (zj |x) (16.24)

Than the maximum likelihood estimator (MLE) is defined as:

xMLE = arg max
x

P (z1, . . . ,zN |x) (16.25)

where P (z1, . . . ,zN |x) is also called the measurement likelihood. Equivalently:

xMLE = arg min
x

− logP (z1, . . . ,zN |x) (16.26)

Assuming conditional independence between the measurements, the MLE estimator becomes:

xMLE = arg max

N∏
j=1

P (zj |x) (16.27)

or equivalently:

xMLE = arg min− log

N∏
j=1

P (zj |x) = arg min−
N∑
j=1

logP (zj |x) (16.28)

Example: Linear measurements with Gaussian noise. Assume we have N random measurements of
an unknown variable x we want to estimate:

zj = Ajx+ εj (16.29)

where Aj are known matrices of suitable dimensions and εj ∈ N (0,Σj).

Now we note that if εj ∈ N (0,Σj), then zj ∈ N (Ajx,Σj) or equivalently:

P (zi|x) =
1

κj
exp−1

2
(zj −Ajx)TΣ−1j (zj −Ajx) (16.30)

where κi is the normalization constant of the Normal distribution. Then the MLE is:

xMLE = arg min−
N∑
j=1

logP (zj |x) = arg min−
N∑
j=1

log
1

κj
exp−1

2
(zj −Ajx)TΣ−1j (zj −Ajx) = (16.31)

arg min−
N∑
j=1

log
1

κj
−

N∑
j=1

log exp−1

2
(zj −Ajx)TΣ−1j (zj −Ajx) = (16.32)

arg min
N∑
j=1

1

2
(zj −Ajx)TΣ−1j (zj −Ajx) (16.33)
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when Σj = I for all j, we obtain standard least squares:

xMLE = arg min
N∑
j=1

1

2
‖zj −Ajx‖2 (16.34)

Example: Nonlinear measurements with additive Gaussian noise. Assume we have N random
measurements of an unknown variable x we want to estimate:

zj = fj(x) + εj (16.35)

Repeating the same derivation of the linear case, we get that the MLE is:

xMLE = arg min
N∑
j=1

1

2
(zj − fj(x))TΣ−1j (zj − fj(x)) (16.36)

which is a nonlinear least squares problem.

Example: Translation averaging. Let us assume we are given N measurements of an unknown trans-
lation t. Assume that each measurement is affected by zero mean Gaussian noise with identity covariance:

t̄i = t+ εi, i = 1, . . . , N with εi ∼ N (0, I) (16.37)

Following the same derivation of the linear case with Gaussian noise in the previous example, we obtain the
MLE estimator:

tMLE = arg min
t

N∑
i=1

‖t− t̄i‖2 (16.38)

whose solution can be computed in closed form as:

tMLE =
1

N

N∑
i=1

t̄i (16.39)

Example: Rotation averaging. Let us assume we are given N measurements of an unknown rotation
R. Assume that each measurement R̄i is modeled as:

R̄i = RRε, i = 1, . . . , N with Rε ∼ L(I, κ) (16.40)

where L(I, κ) is the Langevin distribution (introduced in Section 16.1.2.2), with the identity mode and
concentration parameter κ. Let us assume κ = 1.

Applying Maximum Likelihood Estimation, we obtain the following estimator (you will prove this as part of
Lab 7):

RMLE = arg min
R∈SO(d)

N∑
i=1

‖R− R̄i‖2F (16.41)

One would be tempted to compute RMLE as the average of R̄i as we did in the previous examples, but
unfortunately, that would not be a valid rotation, and hence violate the constraint R ∈ SO(d).1 Therefore,
we need to compute the correct “average” rotation by solving (16.41) (including the constraint R ∈ SO(d)).

1Such approach would be incorrect even in the case of 2D rotations, where each rotation R̄i can be identified by a single
angle θ̄i. In this case, one would suggest θMLE = 1

N

∑N
i=1 θ̄i, but it is easy to see that this does not lead to a meaningful

average (e.g., pick θ̄1 = 3
4
π and θ̄2 = − 3

4
π: the arithmetic average is zero, while one would expect an average rotation of π).
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It turns out this optimization problem admits a closed-form solution:

arg min
R∈SO(d)

N∑
i=1

‖R− R̄i‖2F = arg min
R∈SO(d)

N∑
i=1

‖R‖2F + ‖R̄i‖2F − 2tr
(
R̄T
i R
)

= arg min
R∈SO(d)

N∑
i=1

2d− 2tr
(
R̄T
i R
)

(16.42)

Dropping constants (irrelevant for optimization) and calling N
.
=
∑N
i=1 R̄i:

arg min
R∈SO(d)

N∑
i=1

2d− 2tr
(
R̄T
i R
)

= arg min
R∈SO(d)

N∑
i=1

−tr
(
R̄T
i R
)

= arg min
R∈SO(d)

−tr

(
(
N∑
i=1

R̄i)
TR

)
= arg max

R∈SO(d)

tr
(
NTR

)
Now, once again note that:

tr
(
NTR

)
=

1

2

(
‖N‖2F + ‖R‖2F − ‖N −R‖2F

)
=

1

2

(
‖N‖2F + d− ‖N −R‖2F

)
. (16.43)

Since N is constant we have:

arg max
R∈SO(d)

tr
(
NTR

)
= arg min

R∈SO(d)

‖N −R‖F (16.44)

which is simply a projection of N onto SO(3). Such a projection can be computed as follows [4] (we also
saw this in Lecture 15):

arg min
R∈SO(d)

‖N −R‖F =


UV T if det(UV T) ≥ 0

U

 1 0 0
0 1 0
0 0 −1

V T otherwise
(16.45)

where N = UDV T is a singular value decomposition of the matrix N .

Therefore, the optimal solution to the rotation “averaging” problem (16.41) is to compute the Euclidean

average N
.
=
∑N
i=1 R̄i and then project this matrix to SO(3).

16.3.2 Maximum a Posteriori Estimation (MAP)

Assume we are given N measurements z1, . . . ,zN (e.g., pixel measurements) that are function of a variable we
want to estimate x (e.g., camera poses, points). Maximum a Posteriori Estimation (MAP) is a generalization
of MLE. The MAP estimator is:

xMAP = arg max
x

P (x|z1, . . . ,zN ) (16.46)

Using Bayes rule:

xMAP = arg max
x

P (x|z1, . . . ,zN ) = (16.47)

arg max
x

P (z1, . . . ,zN |x)P (x)

P (z1, . . . ,zN )
= (16.48)

arg max
x

P (z1, . . . ,zN |x)P (x) (16.49)

where again P (z1, . . . ,zN |x) is the likelihood of the measurements given x, and P (x) is a prior probability
over x. It is easy to see that MAP reduces to MLE when the prior is uniform (P (x) is constant).

Assuming independence between the measurements, and repeating the same derivation of the previous
section:

xMAP = arg min
x

−
N∑
j=1

logP (zj |x)− logP (x) (16.50)
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MLE Example: triangulation. Assume that a 3D point is observed by two known cameras and that
pixel measurements are affected by Gaussian noise:

x1 = π(Rw
c1 , t

w
c1 ,p

w) + ε1 (16.51)

x2 = π(Rw
c2 , t

w
c2 ,p

w) + ε2 (16.52)

with ε1, ε2 ∼ N (0, I2). Then the MLE is:

(pw)? = arg min
pw

‖x1 − π(Rw
c1 , t

w
c1 ,p

w)‖2 + ‖x2 − π(Rw
c2 , t

w
c2 ,p

w) (16.53)

MAP Example: bundle adjustment. Assume that N 3D points are observed by K cameras and that
pixel measurements are affected by Gaussian noise. Moreover, assume we have a prior on the first camera
being at the origin of the reference frame.

min
(Rw

ci
,twci

),i=1,...,K

N∑
k=1

K∑
i=1

‖uk,i − π(Rw
ci , t

w
ci ,pk)‖2 + ρ‖twc1‖

2 + ω‖Rw
c1 − I3‖2F (16.54)

where we assumed the prior:

P
(
twc1
)

= N (0,
1

ρ
I3) (16.55)

P
(
Rw

c1

)
= Langevin(I3, ω) (16.56)

References

[1] T. Barfoot. State Estimation for Robotics. Cambridge University Press, 2017.

[2] T. D. Barfoot and P. T. Furgale. Associating uncertainty with three-dimensional poses for use in esti-
mation problems. IEEE Trans. Robotics, 30(3):679–693, 2014.

[3] A. Chiuso, G. Picci, and S. Soatto. Wide-sense estimation on the special orthogonal group. Commun.
Inf. Syst, 8:185–200, 2008.

[4] R. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation averaging. IJCV, 103(3):267–305, 2013.



MIT OpenCourseWare 
https://ocw.mit.edu/ 
 
 
 
16.485 Visual Navigation for Autonomous Vehicles (VNAV) 
Fall 2020 
 
 
 
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.  
 


	Representing uncertainty on positions, rotations, and poses
	Representing uncertainty on positions
	Representing uncertainty on rotations
	Wrapped Gaussian distribution
	Isotropic Langevin distribution

	Representing uncertainty on poses

	Estimating unknown quantities via optimization
	Example 1: Point triangulation
	Example 2: Bundle Adjustment

	Maximum Likelihood and Maximum a Posteriori estimation
	Maximum Likelihood Estimation (MLE)
	Maximum a Posteriori Estimation (MAP)


