

© Umberto Castellani et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone

Lecture 15: RANSAC and 3D-3D correspondences

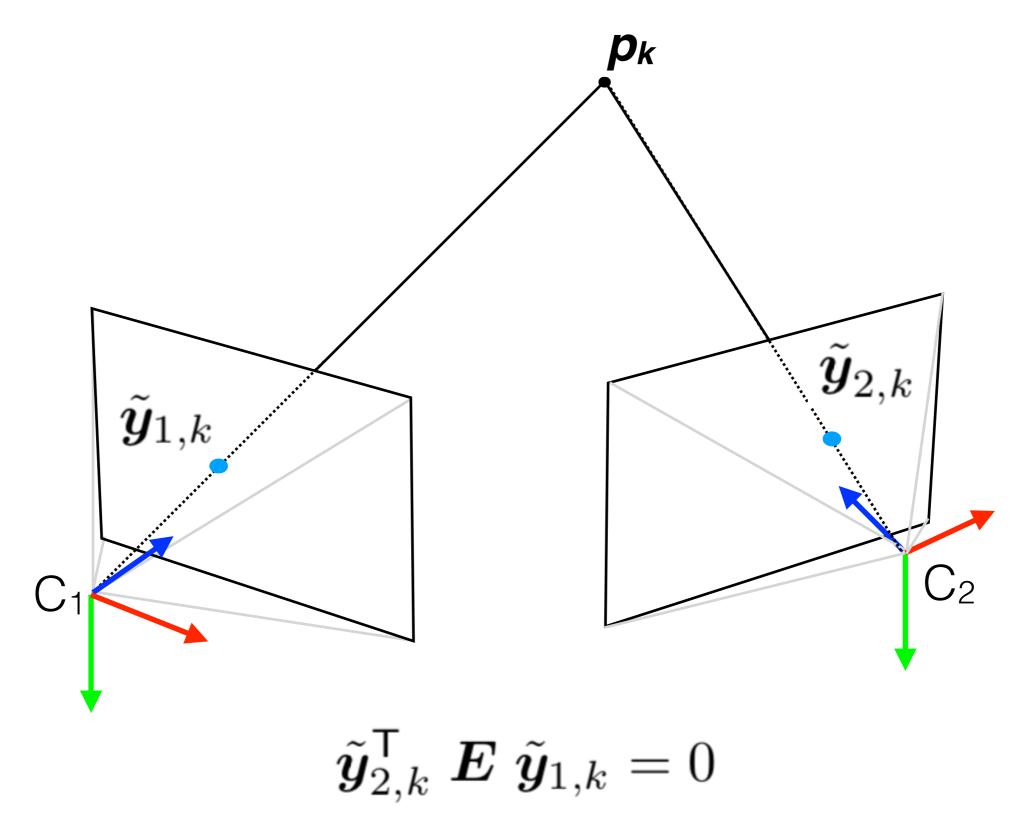
Today

- Recap on 2-view
- RANSAC
- 3D-3D correspondences

- [1] M .Fisher, R. Bollets, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography", SRI Technical Note, 1980.
- [2] K.S. Arun, T.S. Huang, S.D. Blostein, "Least-Squares Fitting of Two 3-D Point Sets", IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 9(5), 698-700, 1987.

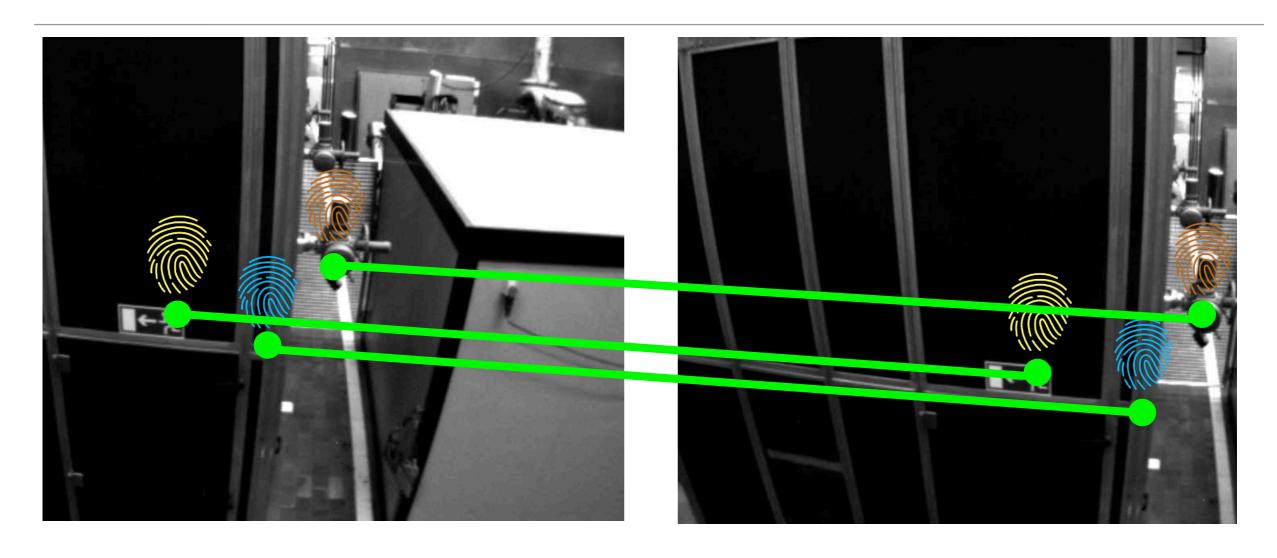
1]

[2



Essential matrix encodes relative pose (up to scale) between C₁ and C₂

2-view Geometry



Last week's assumptions:

- no wrong correspondences (outliers)
- 3D point is not moving
- camera calibration is known

Estimating Poses from Correspondences

Given N calibrated pixel correspondences:

$$(\tilde{\boldsymbol{y}}_{1,k}, \tilde{\boldsymbol{y}}_{2,k})$$
 for $k = 1, \dots, N$

1. leverage the epipolar constraints to estimate the essential matrix *E*

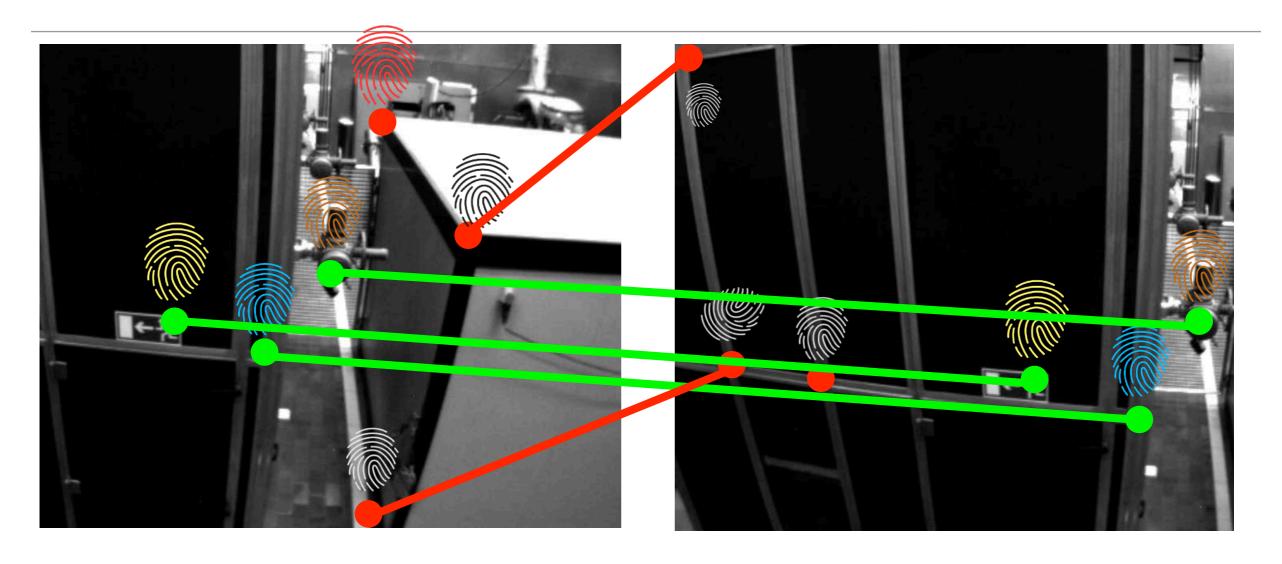
$$\tilde{\boldsymbol{y}}_{2,k}^{\mathsf{T}} \boldsymbol{E} \, \tilde{\boldsymbol{y}}_{1,k} = 0$$

For 8 points: Ae=0 N>8 points: $rg \min_{\|e\|=1} \|Ae\|^2$

2. Retrieve the rotation and translation (up to scale) from the *E*

$$oldsymbol{E} = [oldsymbol{t}]_ imes oldsymbol{R}$$

2-view Geometry



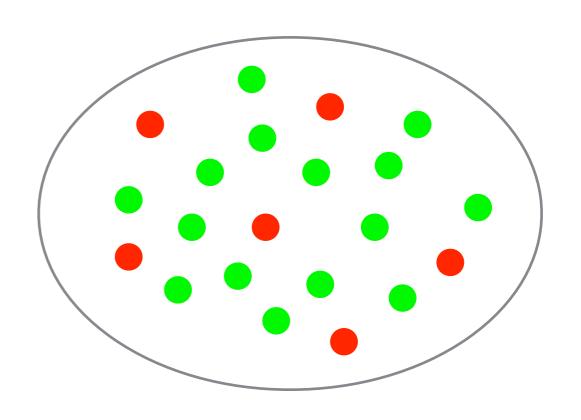
In practice:

- Many wrong correspondences (outliers)
- Some 3D points might be moving

RANdom SAmple Consensus

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



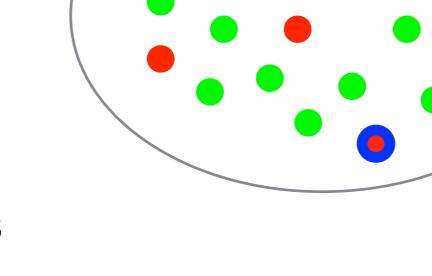
Basic idea:

- 1.sample *n* points
- 2.compute an estimate *P'* of *P*
- 3.count how many other points agree with P'
- 4.repeat until you get a P' that agrees with many points

RANdom SAmple Consensus

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



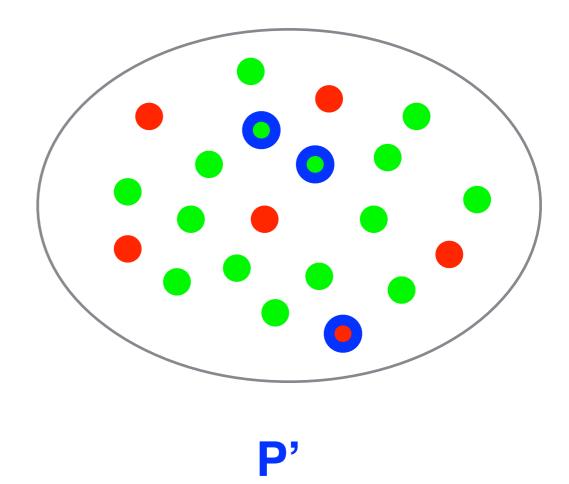
Basic idea:

- 1.sample *n* points
- 2.compute an estimate P' of P

RANdom SAmple Consensus

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



Basic idea:

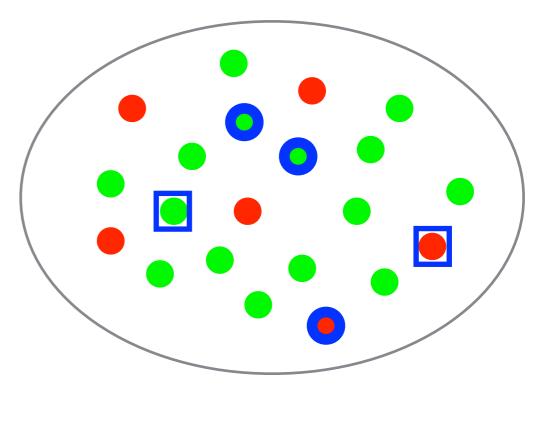
1.sample *n* points

2.compute an estimate P' of P

RANdom SAmple Consensus

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



P'

Basic idea:

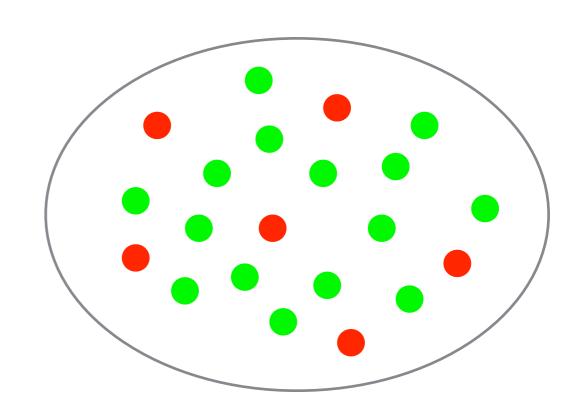
- 1.sample *n* points
- 2.compute an estimate *P'* of *P*

Consensus Set

RANdom SAmple Consensus

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



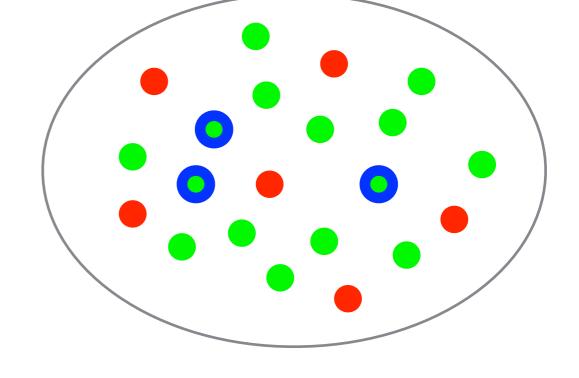
Basic idea:

- 1.sample *n* points
- 2.compute an estimate *P'* of *P*
- 3.count how many other points agree with P'
- 4.repeat until you get a P' that agrees with many points

RANdom SAmple Consensus

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



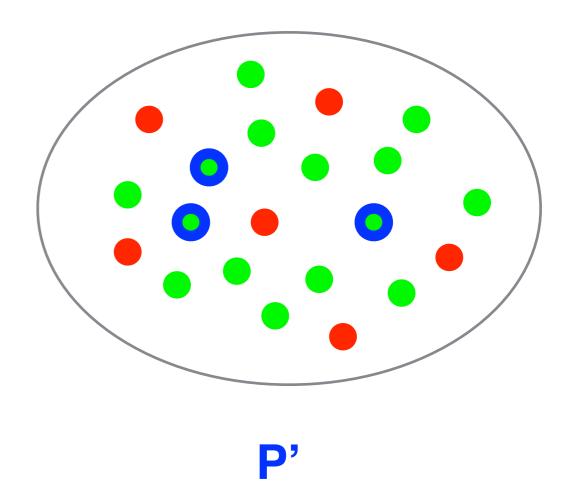
Basic idea:

- 1.sample *n* points
- 2.compute an estimate P' of P

RANdom SAmple Consensus

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



Basic idea:

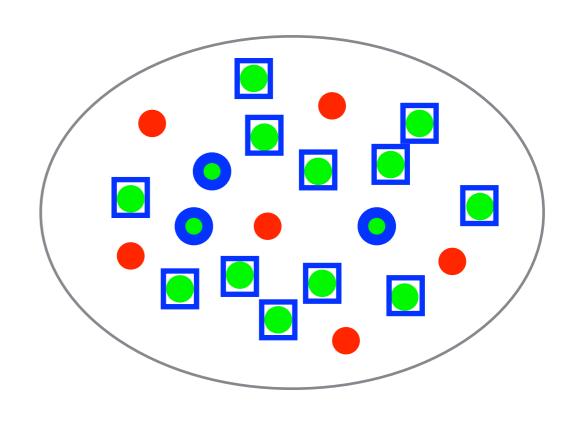
1.sample *n* points

2.compute an estimate P' of P

RANdom SAmple Consensus

Problem: estimate model *P* from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate *P* from *n* data points (n << N)



P'

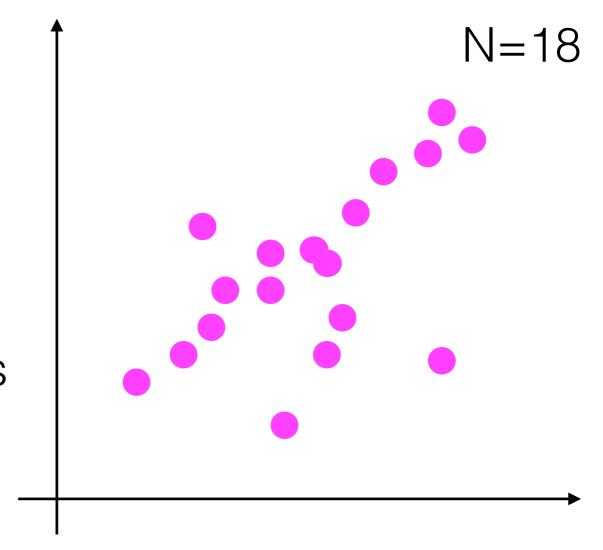
Basic idea:

- 1.sample *n* points
- 2.compute an estimate P' of P

Consensus Set

Fit a line through N 2D points, possibly corrupted with outliers.

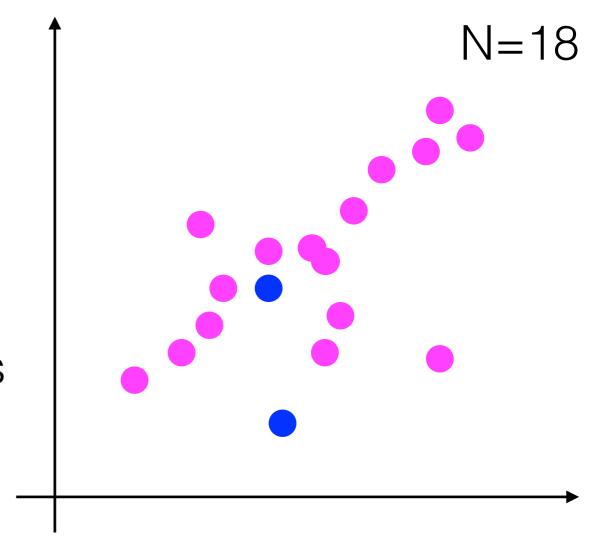
Note: we have an algorithm to estimate a line from n=2 points



- 1.sample 2 points
- 2.compute a line estimate *P'* of *P*
- 3.count how many points are within a **tolerance** from *P'*
- 4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

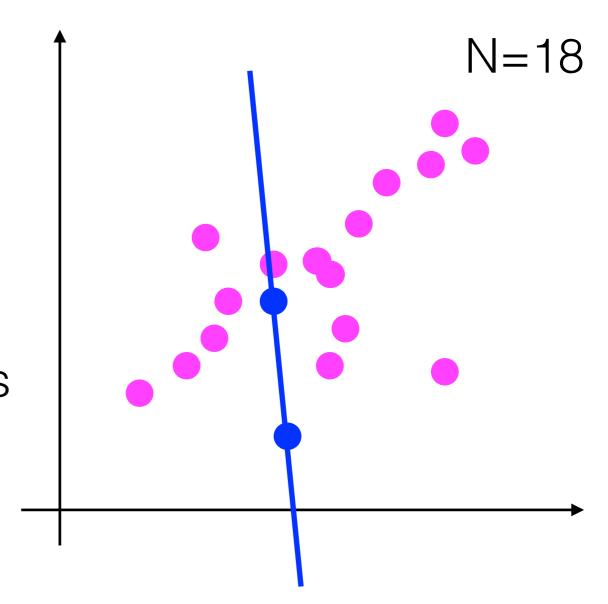
Note: we have an algorithm to estimate a line from n=2 points



- 1.sample 2 points
- 2.compute a line estimate *P'* of *P*
- 3.count how many points are within a **tolerance** from *P'*
- 4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

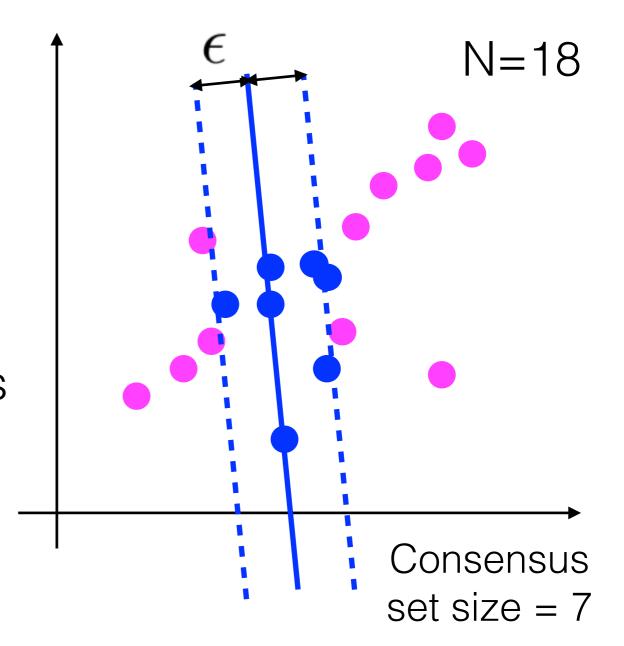
Note: we have an algorithm to estimate a line from n=2 points



- 1.sample 2 points
- 2.compute a line estimate P' of P
- 3.count how many points are within a **tolerance** from *P'* 4.repeat until you get a *P'* that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

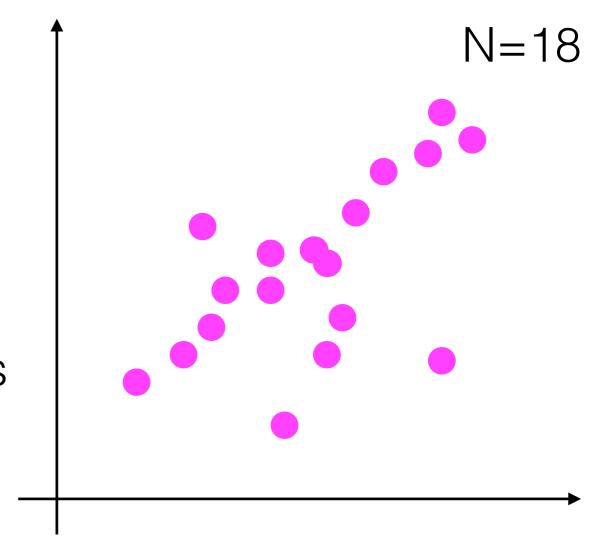
Note: we have an algorithm to estimate a line from n=2 points



- 1.sample 2 points
- 2.compute a line estimate P' of P
- 3.count how many points are within a **tolerance** from P'
- 4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

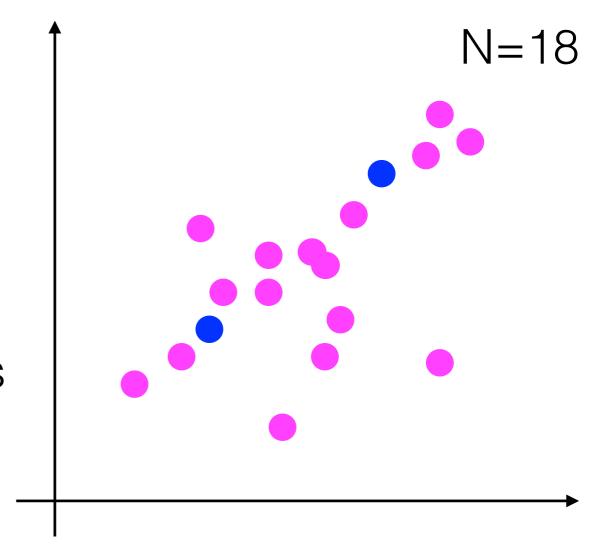
Note: we have an algorithm to estimate a line from n=2 points



- 1.sample 2 points
- 2.compute a line estimate *P'* of *P*
- 3.count how many points are within a **tolerance** from *P'*
- 4.repeat until you get a P'that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

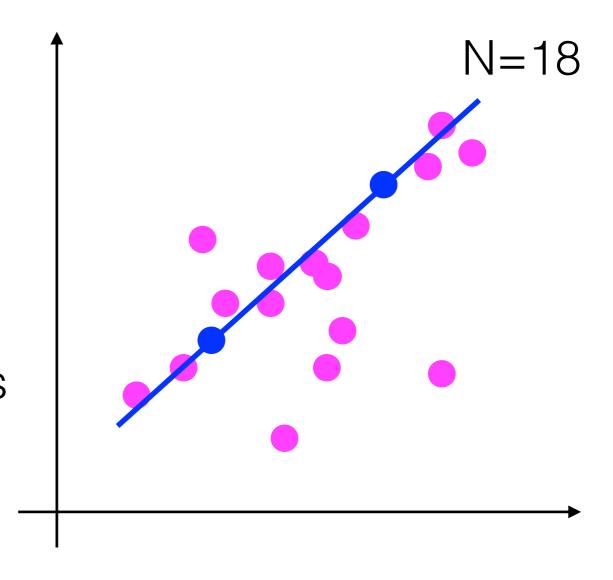
Note: we have an algorithm to estimate a line from n=2 points



- 1.sample 2 points
- 2.compute a line estimate *P'* of *P*
- 3.count how many points are within a **tolerance** from *P'*
- 4.repeat until you get a P' that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

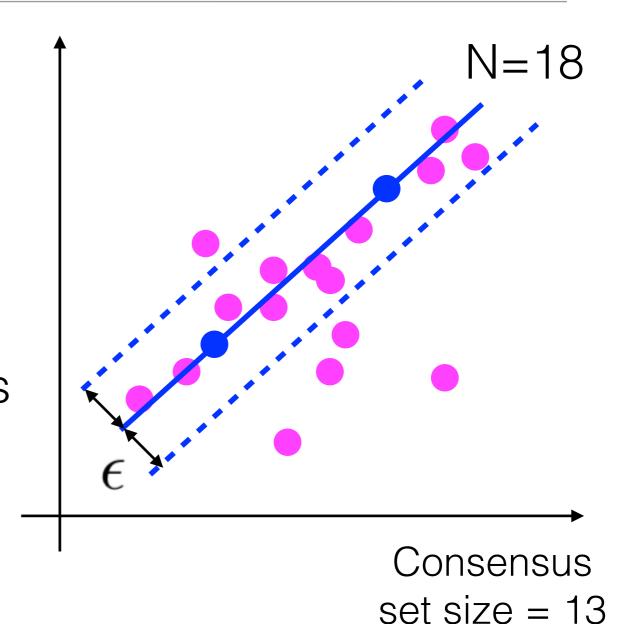
Note: we have an algorithm to estimate a line from n=2 points



- 1.sample 2 points
- 2.compute a line estimate P' of P
- 3.count how many points are within a **tolerance** from *P'* 4.repeat until you get a *P'* that agrees with many points

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points



- 1.sample 2 points
- 2.compute a line estimate *P'* of *P*
- 3.count how many points are within a **tolerance** from P'
- 4.repeat until you get a P' that agrees with many points

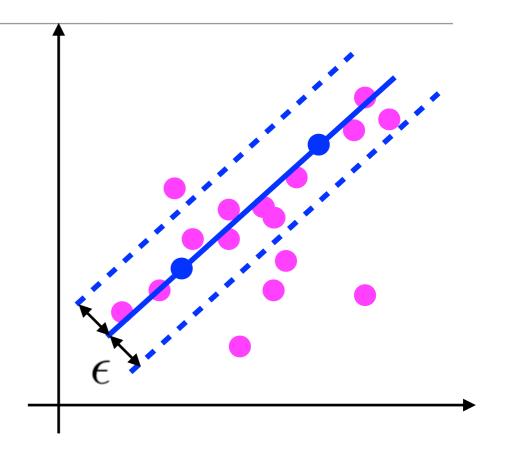
RANSAC: Parameter Tuning

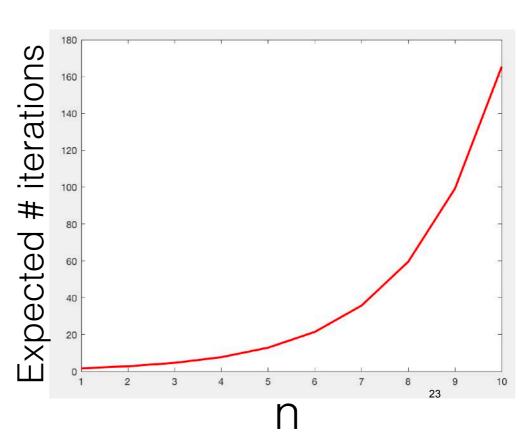
1. Error Tolerance ϵ : depends on the noise

2. Acceptable consensus set:

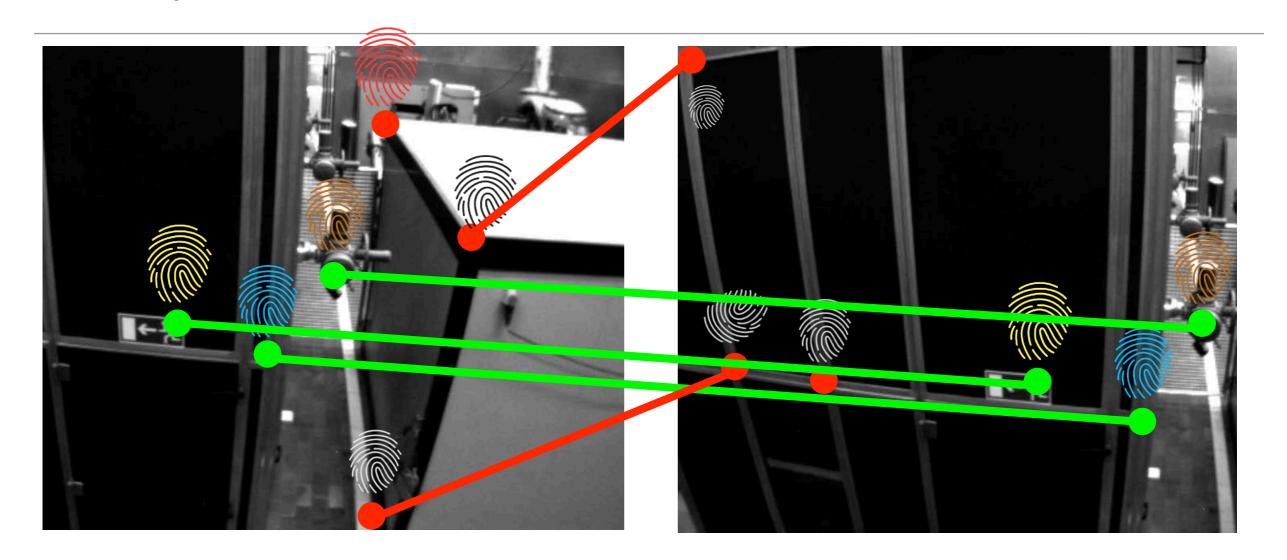
- from the paper: n+5
- rule of thumb: >50% of points

3. Maximum number of iterations



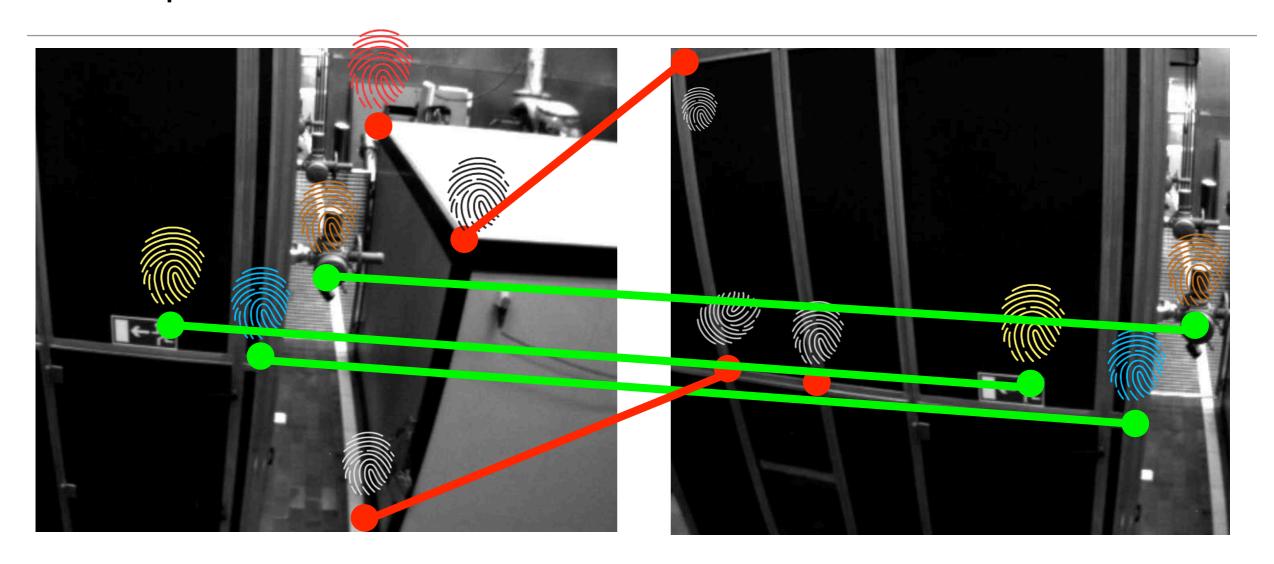


Example: RANSAC for Essential Matrix estimation



- 1.sample *n* point correspondences
- 2.compute an estimate E' of the essential matrix E
- 3.count how many points are within a **tolerance** from E'
- 4.repeat until you get a E' that agrees with many points

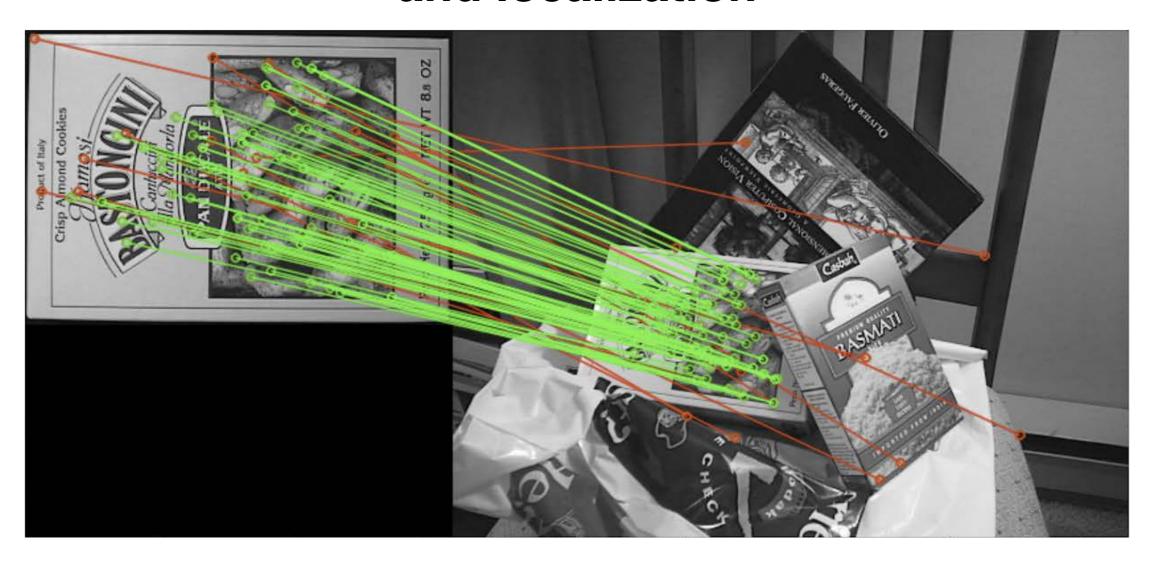
Example: RANSAC for Essential Matrix estimation



- essentially selects the set of inliers
- provides geometric verification for the correspondences

Beyond Motion Estimation

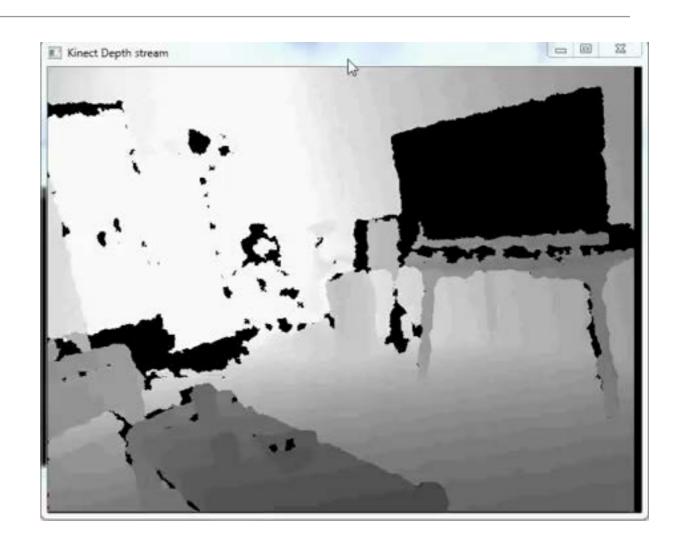
The tools we discussed (feature matching, essential matrix estimation, RANSAC) can be used also for **object detection** and localization



3D-3D Point Correspondences

Structured Light Cameras

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/



RGB-D cameras can measure depth (D) and image (RBG)

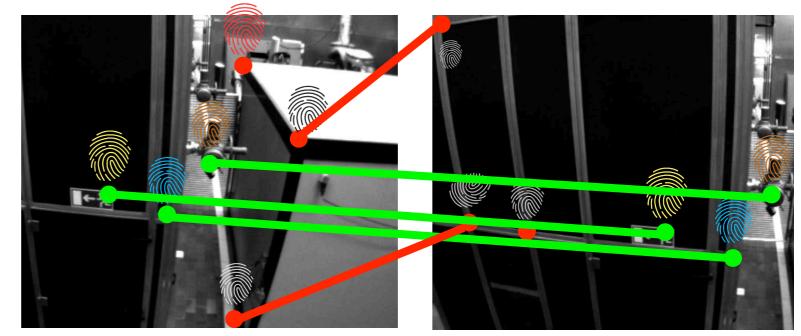
How can we use the depth information to estimate the relative pose between two RGB-D cameras observing the same scene?

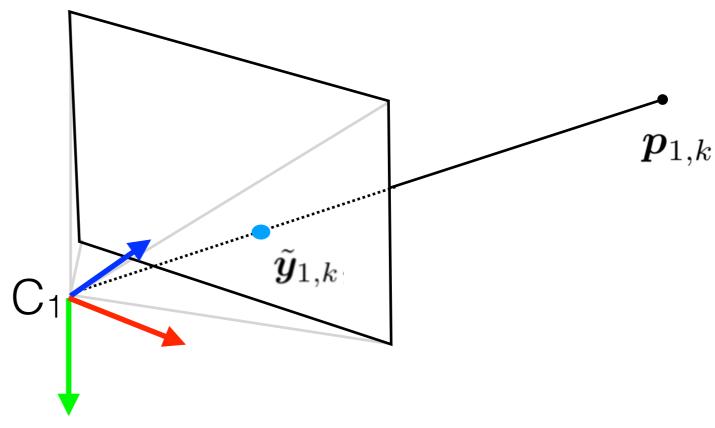
3D-3D Point Correspondences

1. We can use camera images to establish 2D-2D correspondences:

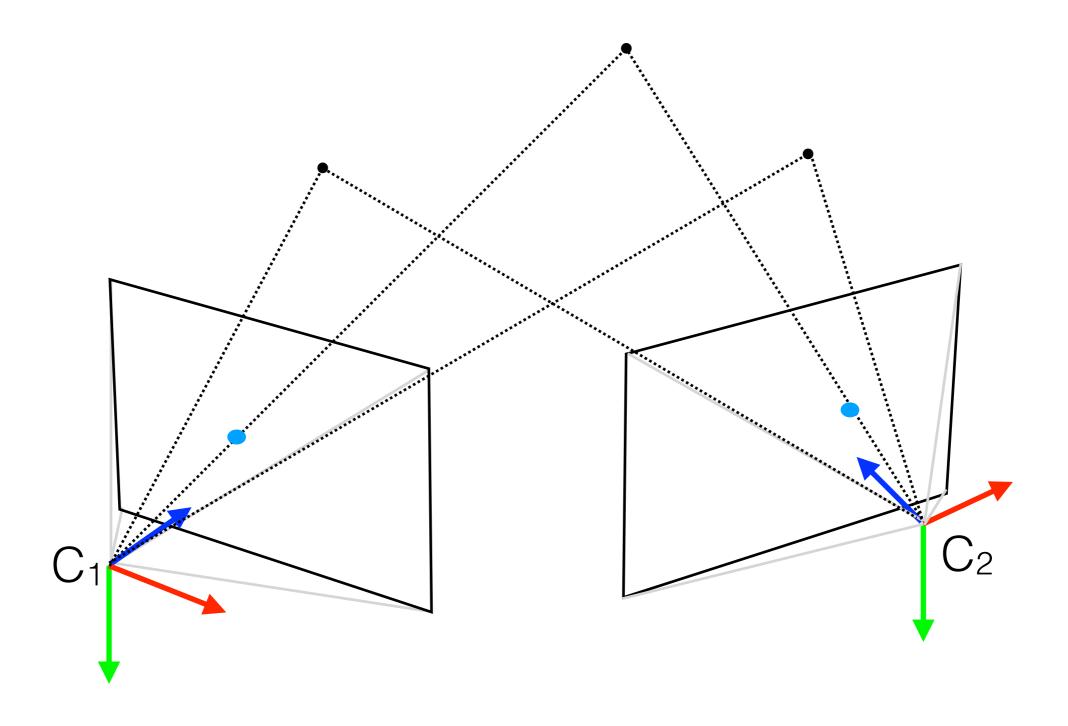
$$(\tilde{\boldsymbol{y}}_{1,k}, \tilde{\boldsymbol{y}}_{2,k})$$
 for $k = 1, \dots, N$

2. For each camera we can compute the set of 3D points corresponding to pixels





$$(\boldsymbol{p}_{1,k},\boldsymbol{p}_{2,k}) \ k = 1,...,N$$



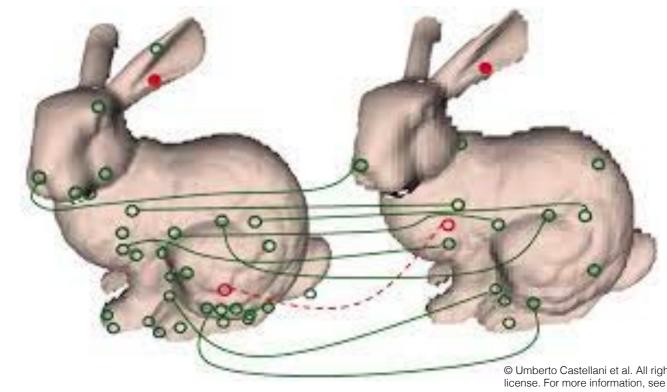
How to estimate the relative pose between the cameras from 3D-3D correspondences $(p_{1,k},p_{2,k})$ with $k=1,\ldots,N$?

Few More Comments:

3 points are sufficient to compute the relative pose from 3D-3D correspondences

We can use the solver seen today as a 3-point minimal solver within a **RANSAC** method

Also useful for 3D objects localization:



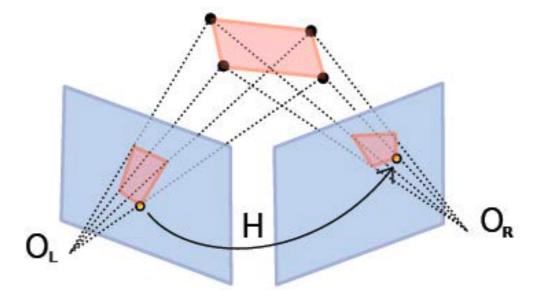
Other names: vector registration, point cloud alignment," ...

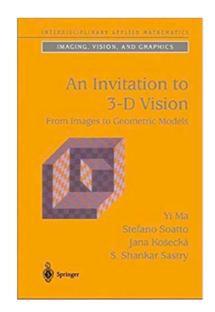
Backup

Other Matrices in 2-view Geometry

Homography matrix **H**

$$\lambda_2 \boldsymbol{x}_2 = H \lambda_1 \boldsymbol{x}_1$$

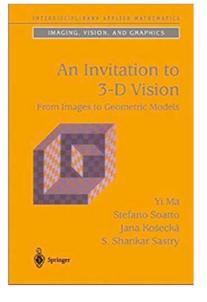




Section 5.3

Fundamental matrix **F**

$$m{F} = m{K}_2^{- op} \ [m{t}]_{ imes} m{R} \ m{K}_1^{-1}$$



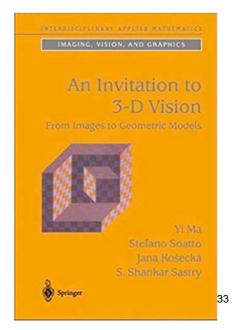
Chapter 6

• A matrix is an essential matrix if and only if it has singular values $\{\sigma, \sigma, 0\}$

• The space of the essential matrices is called the *Essential space* S_E (i.e., the space of 3×3 matrices that can be written as $[t]_{\times} R$ for some $R \in SO(3)$ and $t \in \mathbb{R}^3$). The projection of a matrix M onto the Essential space can be computed as prescribed in [1, Thm 5.9]:

$$\underset{\boldsymbol{E} \in \mathcal{S}_E}{\operatorname{arg\,min}} \|\boldsymbol{E} - \boldsymbol{M}\|_F^2 = \boldsymbol{U} \begin{bmatrix} \frac{\lambda_1 + \lambda_2}{2} & 0 & 0 \\ 0 & \frac{\lambda_1 + \lambda_2}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{V}^\mathsf{T}$$

where $M = U \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3) V^{\mathsf{T}}$ is a singular value decomposition of M.



MIT OpenCourseWare https://ocw.mit.edu/

16.485 Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.