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Today 

• Recap on 2-view 

• RANSAC 

• 3D-3D correspondences 
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(up to scale) between C1 and C2

C1 C2

pk

Essential matrix encodes relative pose   
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2-view Geometry

• no wrong correspondences (outliers)Last week’s • 3D point is not moving
assumptions: • camera calibration is known
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Estimating Poses from Correspondences 

Given N calibrated pixel correspondences:   

1. leverage the epipolar constraints to 
estimate the essential matrix E 

2. Retrieve the rotation and translation 
(up to scale) from the E 

For 8 points: N>8 points: 
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2-view Geometry

• Many wrong correspondences (outliers)In practice: • Some 3D points might be moving
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RANSAC 

RANdom SAmple Consensus 

Problem: estimate model   
P from N data points, possibly  

corrupted with outliers. 

Assume: we have an algorithm  
to estimate P from n data points  

(n << N) 

Basic idea: 
1.sample n points
2.compute an estimate P’ of P
3.count how many other points agree with P’
4.repeat until you get a P’ that agrees with many points 7
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RANSAC 

RANdom SAmple Consensus 

Problem: estimate model   
P from N data points, possibly  

corrupted with outliers. 

Assume: we have an algorithm  
to estimate P from n data points  

(n << N) P’ 

Basic idea: Consensus Set 
1.sample n points
2.compute an estimate P’ of P
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RANSAC 

RANdom SAmple Consensus 

Problem: estimate model   
P from N data points, possibly  

corrupted with outliers. 

Assume: we have an algorithm  
to estimate P from n data points  

(n << N) P’ 

Basic idea: Consensus Set 
1.sample n points
2.compute an estimate P’ of P 
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Example: Linear Regression 

N=18Fit a line through   
N 2D points, possibly  

corrupted with outliers. 

Note: we have an algorithm  
to estimate a line from n=2 points 

RANSAC: 
1.sample 2 points
2.compute a line estimate P’ of P
3.count how many points are within a tolerance from P’
4.repeat until you get a P’ that agrees with many points
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Example: Linear Regression 

Fit a line through   
N 2D points, possibly  

corrupted with outliers. 

Note: we have an algorithm  
to estimate a line from n=2 points 

RANSAC: 

N=18 

1.sample 2 points
2.compute a line estimate P’ of P
3.count how many points are within a tolerance from P’
4.repeat until you get a P’ that agrees with many points
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Example: Linear Regression 

Fit a line through   
N 2D points, possibly  

corrupted with outliers. 

Note: we have an algorithm  
to estimate a line from n=2 points 

RANSAC: 
1.sample 2 points
2.compute a line estimate P’ of P

N=18 

3.count how many points are within a tolerance from P’
4.repeat until you get a P’ that agrees with many points
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Example: Linear Regression 

Fit a line through   
N 2D points, possibly  

corrupted with outliers. 

Note: we have an algorithm  
to estimate a line from n=2 points 

RANSAC: 
1.sample 2 points
2.compute a line estimate P’ of P

N=18 

Consensus  
set size = 7 

3.count how many points are within a tolerance from P’
4.repeat until you get a P’ that agrees with many points
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Example: Linear Regression 

N=18Fit a line through   
N 2D points, possibly  

corrupted with outliers. 

Note: we have an algorithm  
to estimate a line from n=2 points 

RANSAC: 
1.sample 2 points
2.compute a line estimate P’ of P 
3.count how many points are within a tolerance from P’ 
4.repeat until you get a P’ that agrees with many points 
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Example: Linear Regression 

Fit a line through   
N 2D points, possibly  

corrupted with outliers. 

Note: we have an algorithm  
to estimate a line from n=2 points 

RANSAC: 

N=18 

1.sample 2 points
2.compute a line estimate P’ of P
3.count how many points are within a tolerance from P’
4.repeat until you get a P’ that agrees with many points
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Example: Linear Regression 

Fit a line through   
N 2D points, possibly  

corrupted with outliers. 

Note: we have an algorithm  
to estimate a line from n=2 points 

RANSAC: 
1.sample 2 points
2.compute a line estimate P’ of P 

N=18 

3.count how many points are within a tolerance from P’ 
4.repeat until you get a P’ that agrees with many points 
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Example: Linear Regression 

Fit a line through   
N 2D points, possibly  

corrupted with outliers. 

Note: we have an algorithm  
to estimate a line from n=2 points 

RANSAC: 
1.sample 2 points
2.compute a line estimate P’ of P

N=18 

Consensus  
set size = 13 

3.count how many points are within a tolerance from P’
4.repeat until you get a P’ that agrees with many points
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RANSAC: Parameter Tuning 

1.Error Tolerance ϵ :
depends on the noise 

2. Acceptable consensus set:
• from the paper: n+5
• rule of thumb: >50% of points

3. Maximum number of iterations
Ex
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Example: RANSAC for Essential Matrix estimation 

RANSAC: 
1.sample n point correspondences 
2.compute an estimate E’ of the essential matrix E 
3.count how many points are within a tolerance from E’ 
4.repeat until you get a E’ that agrees with many points 
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Example: RANSAC for Essential Matrix estimation 

RANSAC 
- essentially selects the set of inliers
- provides geometric verification for the correspondences
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Beyond Motion Estimation 

The tools we discussed (feature matching, essential matrix 
estimation, RANSAC) can be used also for object detection 

and localization 
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3D-3D Point Correspondences 

Structured Light Cameras 

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/

RGB-D cameras can measure depth (D) and image (RBG) 

How can we use the depth information to estimate  
the relative pose between two RGB-D cameras

observing the same scene? 27
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3D-3D Point Correspondences 

1. We can use camera
images to establish

2D-2D 
correspondences:  

2. For each camera
we can compute the  

set of 3D points
corresponding to pixels C1
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C1 C2 

from 3D-3D correspondences
How to estimate the relative pose between the cameras

with ? 
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Few More Comments: 
3 points are sufficient to compute the relative pose 

from 3D-3D correspondences 

We can use the solver seen today as a 3-point 
minimal solver within a RANSAC method 

Also useful for 3D objects localization: 
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Other names: vector registration, point cloud alignment, .. 30
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Backup 
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Other Matrices in 2-view Geometry 

Homography matrix H 

Section 5.3 

Fundamental matrix F Chapter 6 
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