

© brusspup on YouTube. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

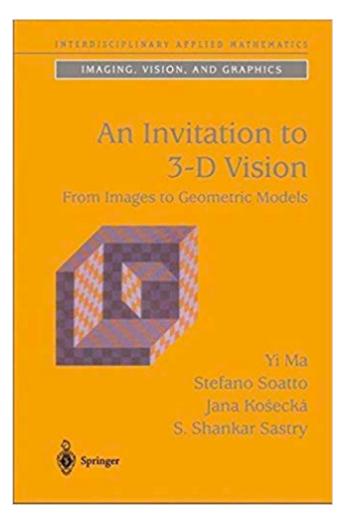
16.485: VNAV - Visual Navigation for Autonomous Vehicles

Luca Carlone

Lecture 14: 2-view Geometry

Today

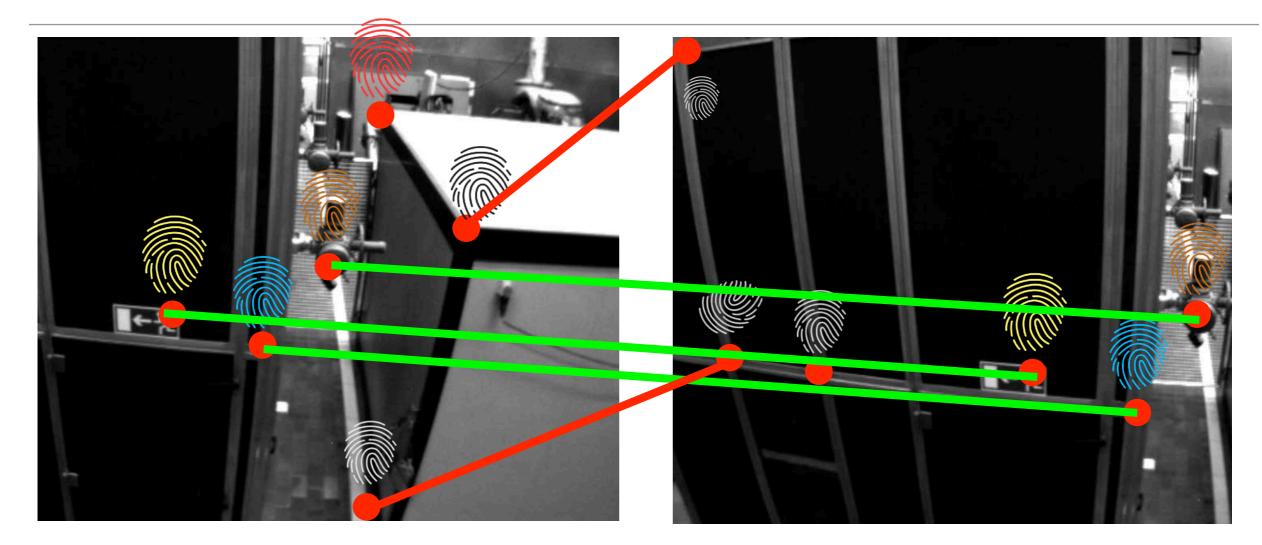
• 2-view geometry



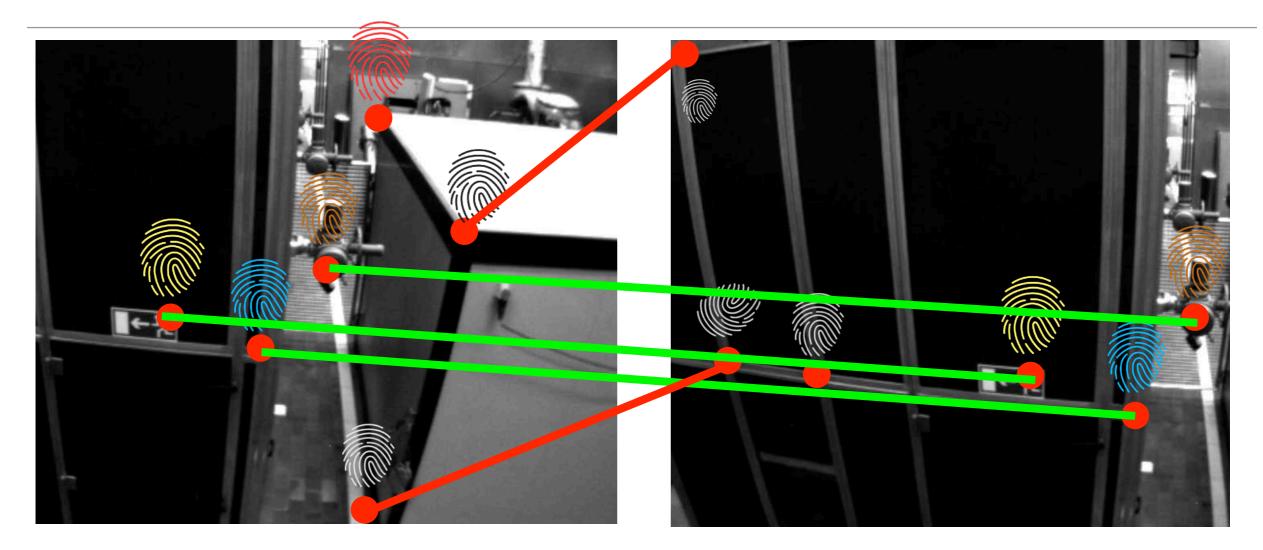
Chapter 5

Reconstruction from Two Calibrated Views

Recap: Point Correspondences

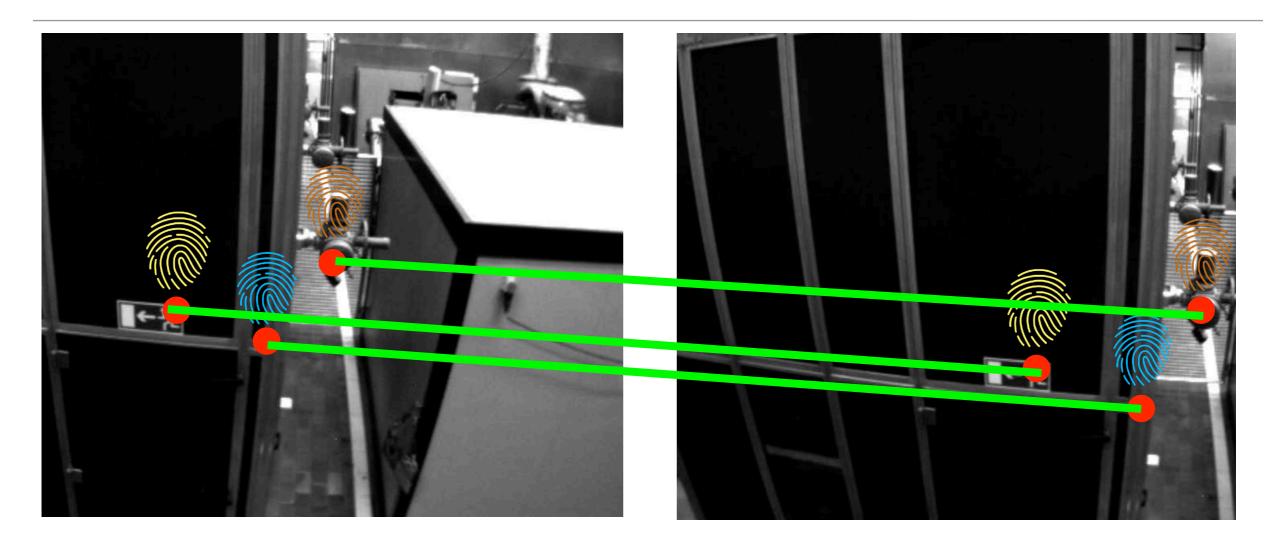


2-view Geometry



Question: can we estimate the motion of the camera between *I*₁ and *I*₂ using pixel correspondences?

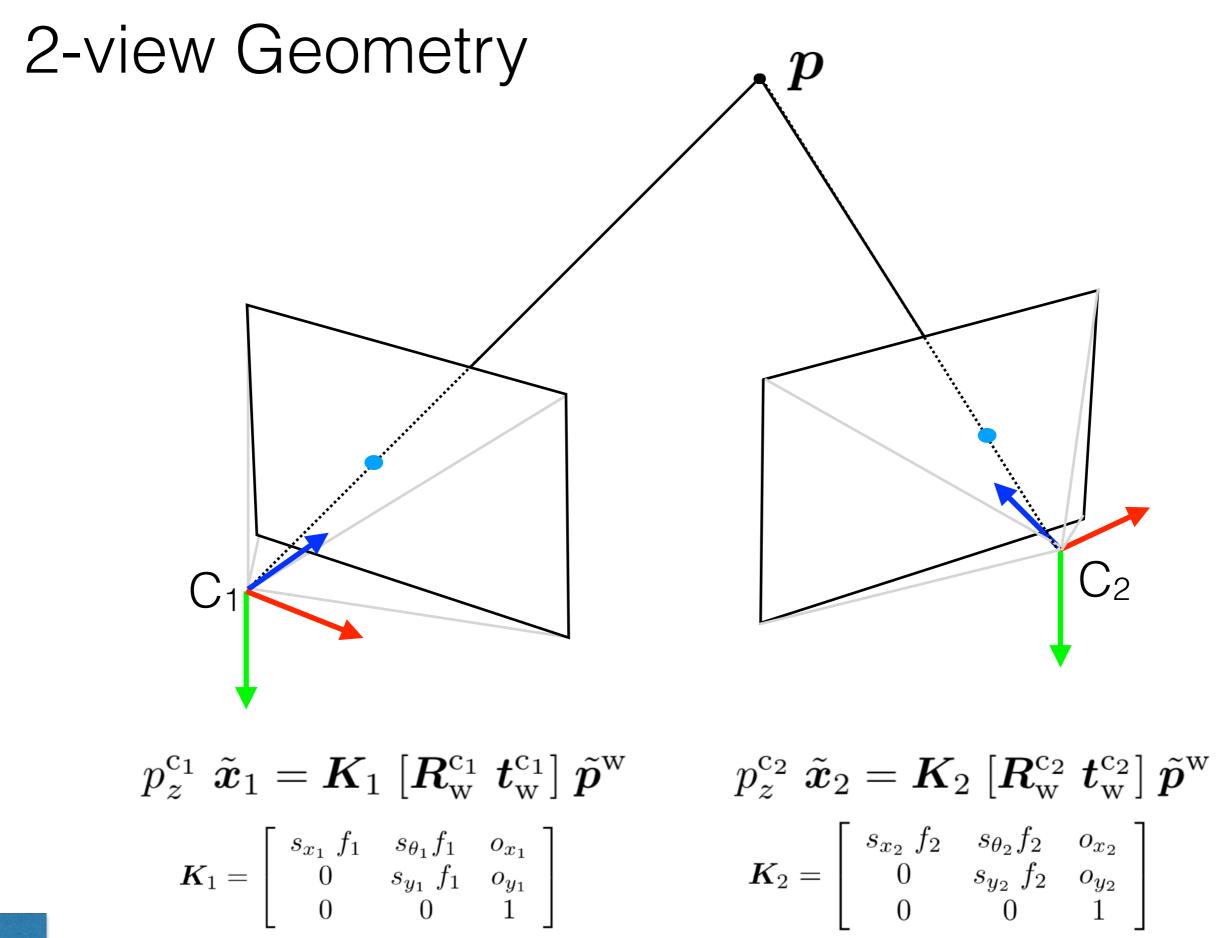
2-view Geometry

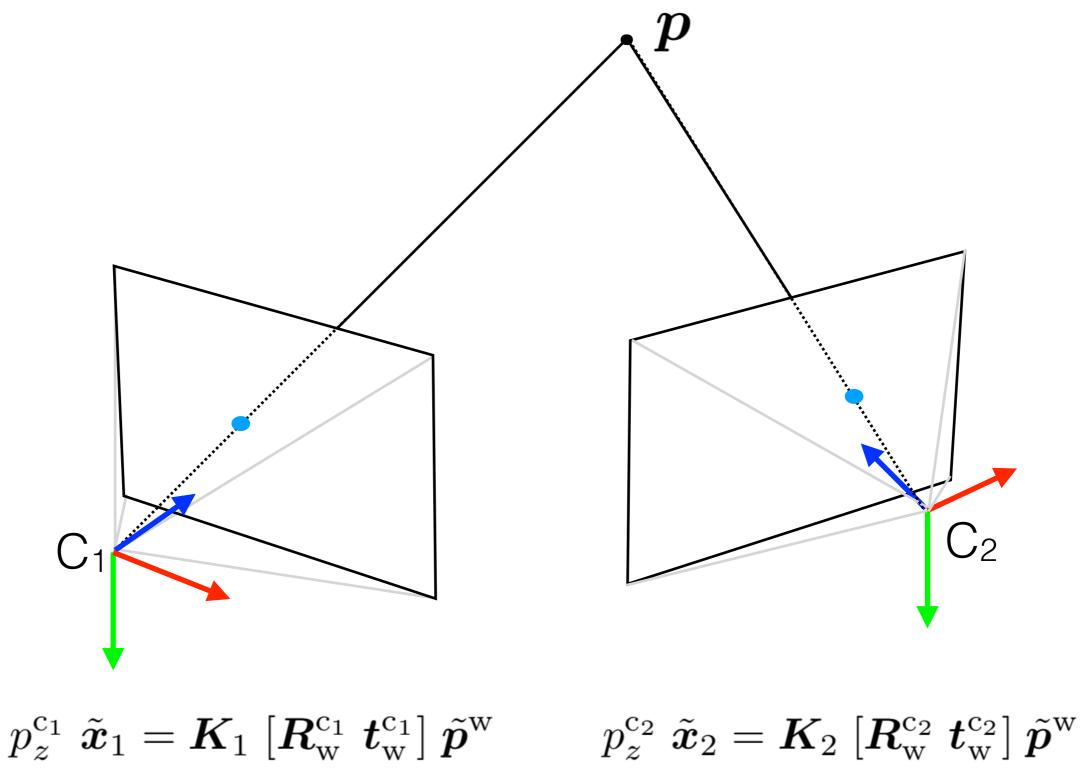


Question: can we estimate the motion of the camera between *I*₁ and *I*₂ using pixel correspondences?

Today's assumptions:

- no wrong correspondences (outliers)
- 3D point is not moving
 - camera calibration is known

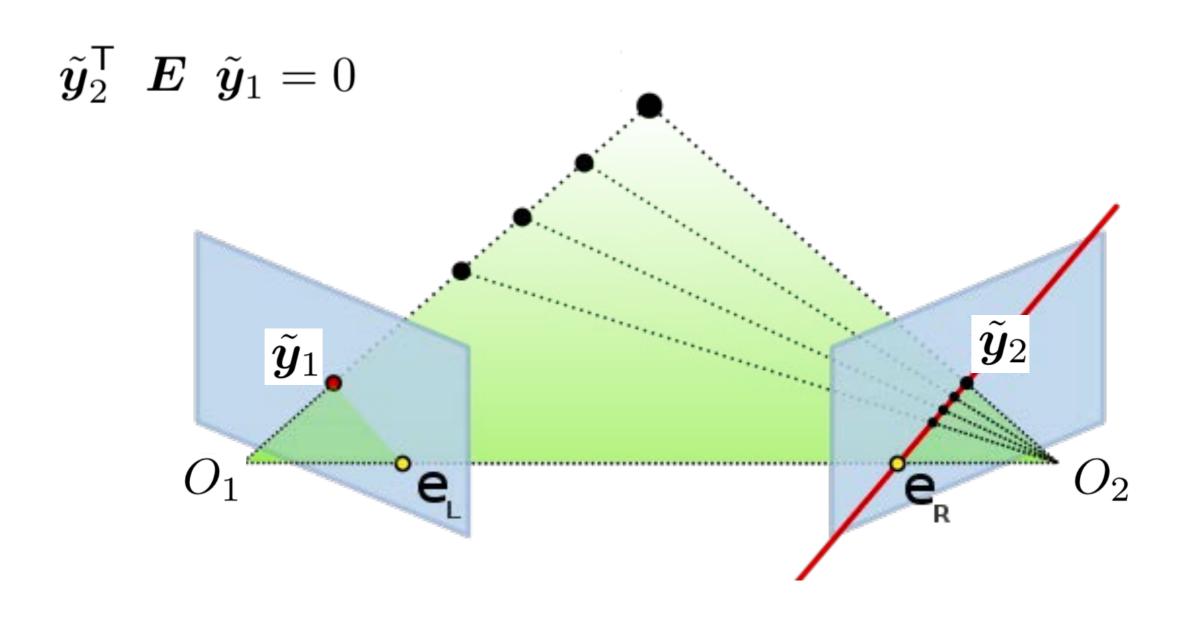




$$oldsymbol{K}_1 = \left[egin{array}{cccc} s_{x_1} & f_1 & s_{ heta_1} f_1 & o_{x_1} \ 0 & s_{y_1} f_1 & o_{y_1} \ 0 & 0 & 1 \end{array}
ight]$$

 $p_z^{c_2} \tilde{\boldsymbol{x}}_2 = \boldsymbol{K}_2 \begin{bmatrix} \boldsymbol{R}_{w}^{c_2} \ \boldsymbol{t}_{w}^{c_2} \end{bmatrix} \tilde{\boldsymbol{p}}^{w}$ $\boldsymbol{K}_2 = \begin{bmatrix} s_{x_2} f_2 & s_{\theta_2} f_2 & o_{x_2} \\ 0 & s_{y_2} f_2 & o_{y_2} \\ 0 & 0 & 1 \end{bmatrix}$

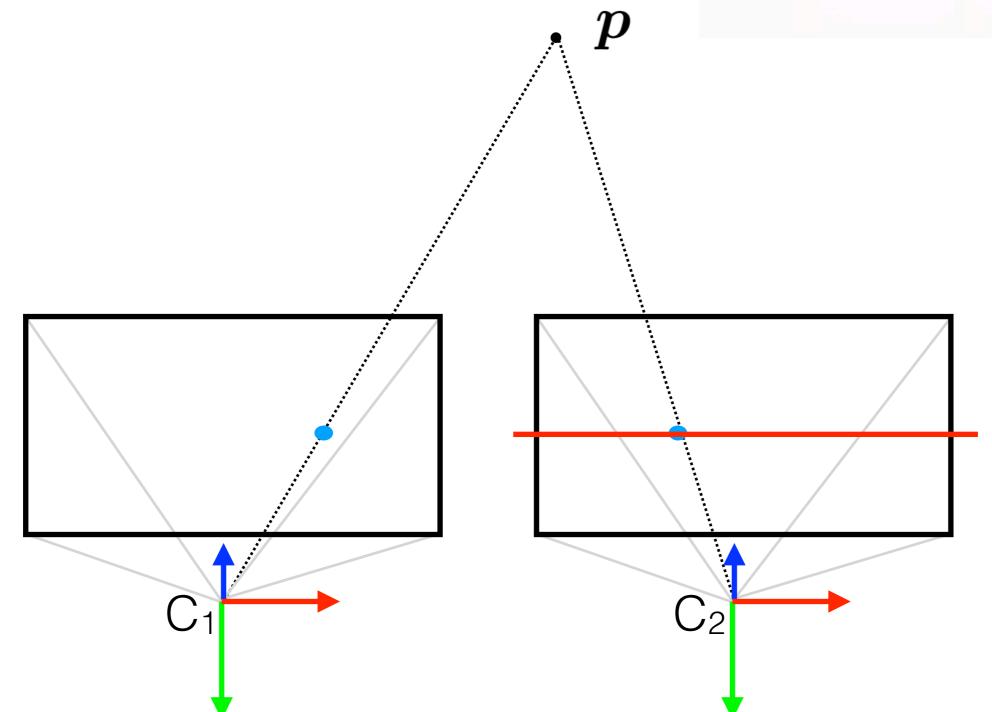
Epipolar Geometry



epipolar plane 🖊 epipolar line

eL, eR: epipoles

Example: Stereo Camera



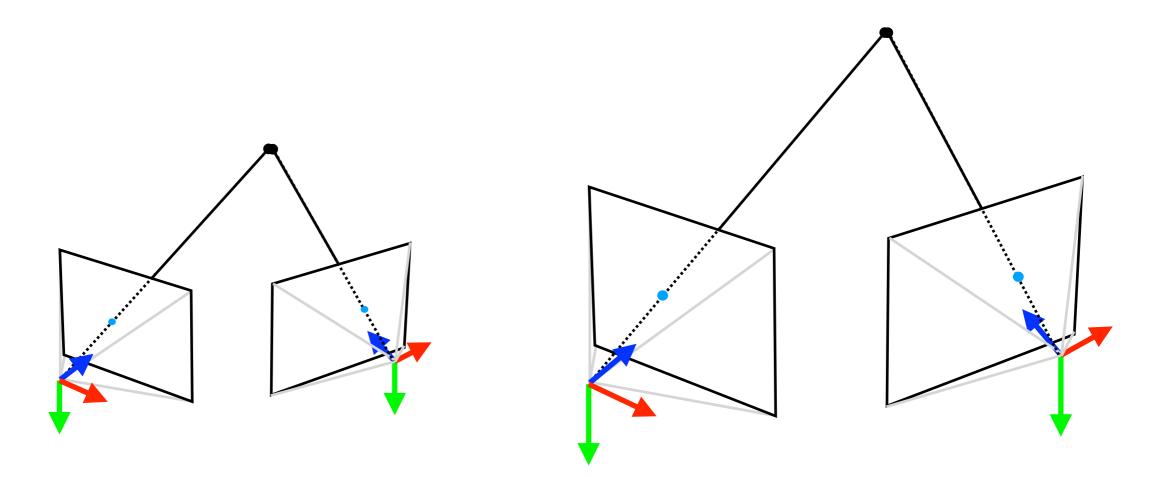
also: easy to triangulate points given geometry

Estimating Poses from Correspondences

Given N calibrated pixel correspondences:

$$(\tilde{y}_{1,k}, \tilde{y}_{2,k})$$
 for $k = 1, ..., N$

compute the relative pose between the cameras



Can we estimate the scale of the translation (baseline)?

Estimating Poses from Correspondences

Given N calibrated pixel correspondences:

$$(\tilde{y}_{1,k}, \tilde{y}_{2,k})$$
 for $k = 1, ..., N$

1. leverage the epipolar constraints to estimate the essential matrix *E*

 $\tilde{\boldsymbol{y}}_{2,k}^{\mathsf{T}} \boldsymbol{E} \; \tilde{\boldsymbol{y}}_{1,k} = 0$

 Retrieve the rotation and translation (up to scale) from the *E*

 $oldsymbol{E} = [oldsymbol{t}]_{ imes} oldsymbol{R}$

Retrieving Pose from Essential Matrix

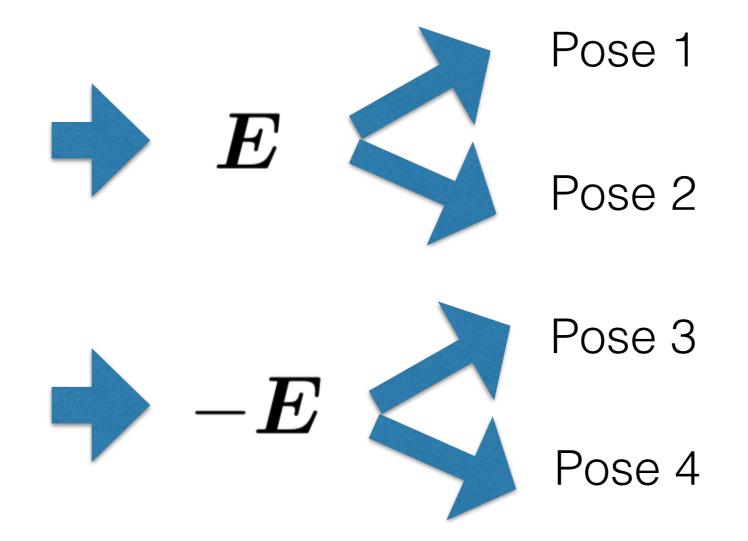
Theorem 1 (Pose recovery from essential matrix, Thm 5.7 in [1]). There exist exactly two relative poses (\mathbf{R}, \mathbf{t}) with $\mathbf{R} \in SO(3)$ and $\mathbf{t} \in \mathbb{R}^3$ corresponding to a nonzero essential matrix \mathbf{E} (i.e., such that $\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R}$):

$$t_1 = \boldsymbol{U}\boldsymbol{R}_z(+\pi/2)\boldsymbol{\Sigma}\boldsymbol{U}^{\mathsf{T}} \qquad \boldsymbol{R}_1 = \boldsymbol{U}\boldsymbol{R}_z(+\pi/2)\boldsymbol{V}^{\mathsf{T}} \qquad (13.19)$$

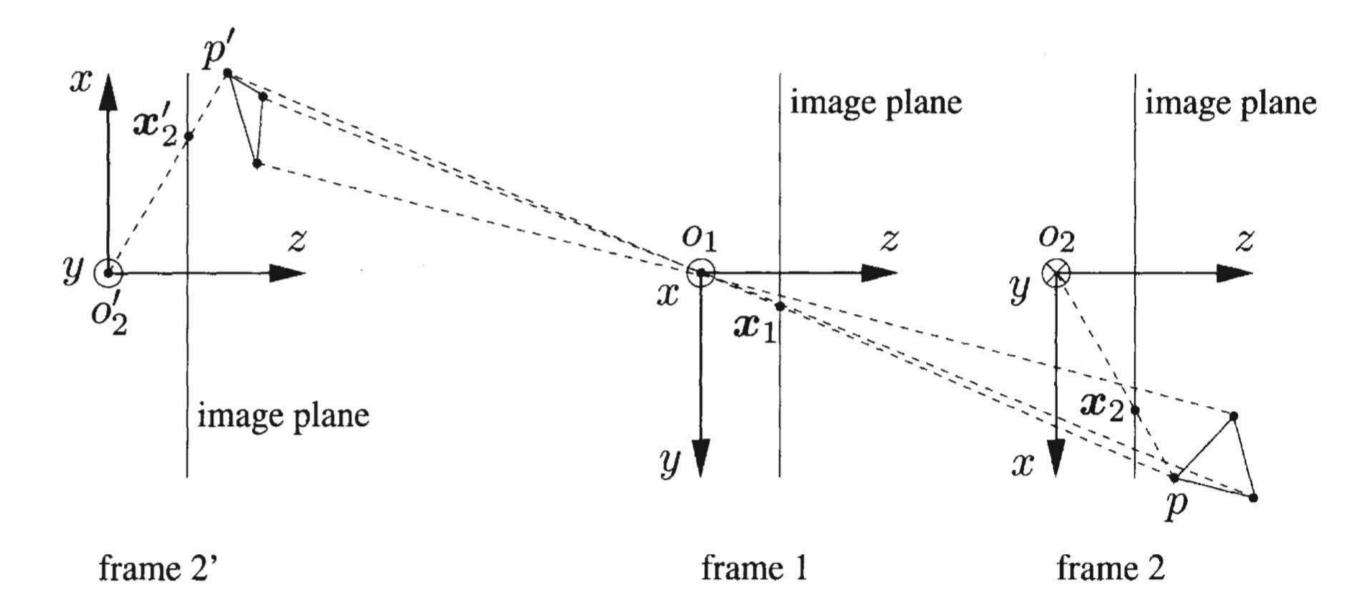
$$t_2 = \boldsymbol{U}\boldsymbol{R}_z(-\pi/2)\boldsymbol{\Sigma}\boldsymbol{U}^{\mathsf{T}} \qquad \boldsymbol{R}_2 = \boldsymbol{U}\boldsymbol{R}_z(-\pi/2)\boldsymbol{V}^{\mathsf{T}} \qquad (13.20)$$

$$\boldsymbol{U}\boldsymbol{R}_{z}(-\pi/2)\boldsymbol{\Sigma}\boldsymbol{U}^{\mathsf{T}} \qquad \boldsymbol{R}_{2} = \boldsymbol{U}\boldsymbol{R}_{z}(-\pi/2)\boldsymbol{V}^{\mathsf{T}} \qquad (13.20)$$

where $\mathbf{E} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ is the singular value decomposition of the matrix \mathbf{E} , and $\mathbf{R}_z(+\pi/2)$ is an elementary rotation around the z-axis of an angle $\pi/2$.



Cheirality constraints



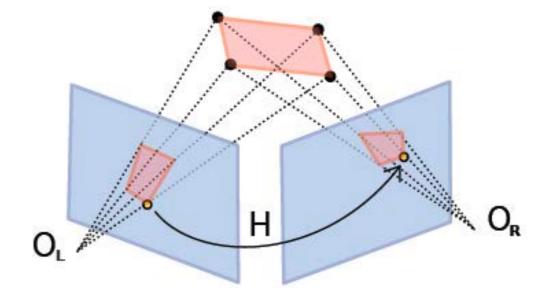
Points must be in front of the cameras!

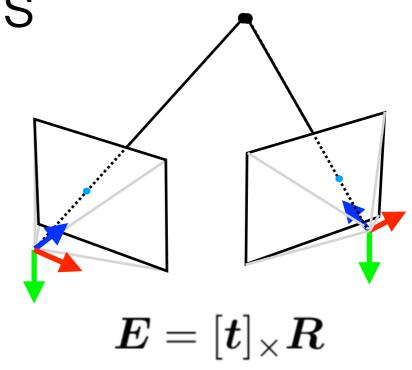
8-point method: Limitations

Number of correspondences: do we really need 8 points?

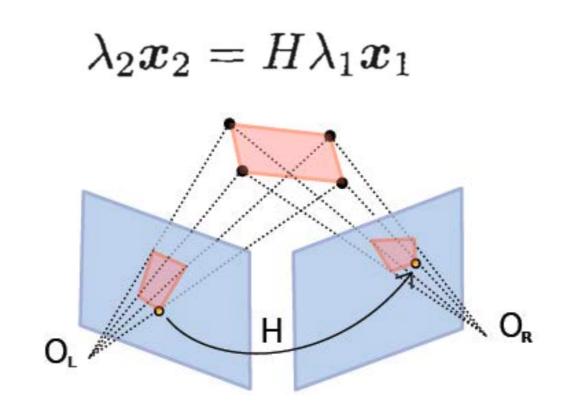
Scene structures: there are certain configurations of 3D points that make the algorithm fail

Parallax: what if *t* **= 0**?

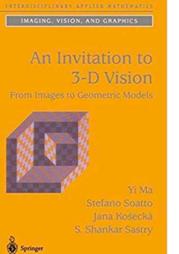




Other Matrices in 2-view Geometry



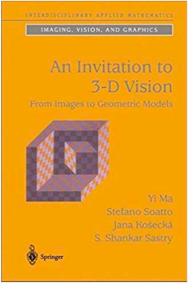
Homography matrix **H**



Section 5.3

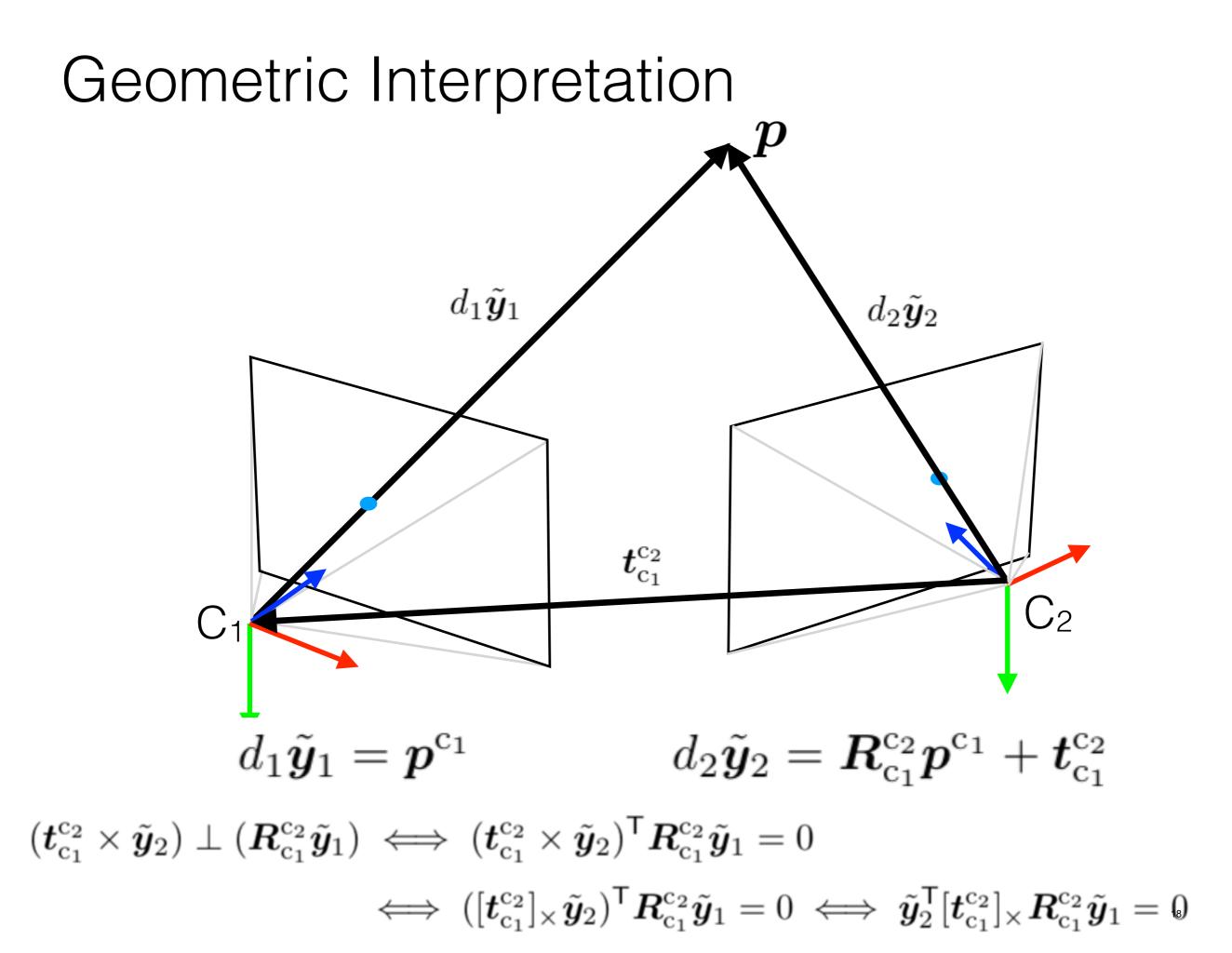
Fundamental matrix **F**

$$oldsymbol{F} = oldsymbol{K}_2^{- op} ~[oldsymbol{t}]_{ imes} oldsymbol{R} ~oldsymbol{K}_1^{-1}$$



© brusspup on YouTube. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Backup



MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

16.485 Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.