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Abstract—In this paper, we propose a quantitative model for
dialog systems that can be used for learning the dialog strategy.
We claim that the problem of dialog design can be formalized
as an optimization problem with an objective function reflecting
different dialog dimensions relevant for a given application. We
also show that any dialog system can be formally described as
a sequential decision process in terms of its state space, action
set, and strategy. With additional assumptions about the state
transition probabilities and cost assignment, a dialog system
can be mapped to a stochastic model known asMarkov decision
process(MDP). A variety of data driven algorithms for finding
the optimal strategy (i.e., the one that optimizes the criterion) is
available within the MDP framework, based on reinforcement
learning. For an effective use of the available training data we
propose a combination of supervised and reinforcement learning:
the supervised learning is used to estimate a model of the user,
i.e., the MDP parameters that quantify the user’s behavior.
Then a reinforcement learning algorithm is used to estimate the
optimal strategy while the system interacts with the simulated
user. This approach is tested for learning the strategy in an air
travel information system (ATIS) task. The experimental results
we present in this paper show that it is indeed possible to find a
simple criterion, a state space representation, and a simulated
user parameterization in order to automatically learn a relatively
complex dialog behavior, similar to one that was heuristically
designed by several research groups.

Index Terms—Dialog systems, Markov decision process, rein-
forcement learning, sequential decision process, speech, spoken
language systems.

I. INTRODUCTION

H UMAN-MACHINE interactions are ubiquitous in today’s
world. We are not surprised anymore when we interact

and struggle with menu-driven touch tone or voice telephone
systems, when we engage in an interaction with our PC through
dialog boxes, or make a transaction by interacting with ATM
machines or Web browsers. New applications such as those in
[7], and [32] approach the frontier of natural language dialog
to automate services that are currently performed by human op-
erators. In the natural language and artificial intelligence (AI)

Manuscript received December 23, 1998; revised August 3, 1999. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. James R. Glass.

E. Levin is with AT&T Laboratories-Research, Shannon Laboratories,
Florham Park, NJ 07932 USA (e-mail: esther@research.att.com).

R. Pieraccini was with AT&T Laboratories-Research, Shannon Laboratories,
Florham Park, NJ 07932 USA. He is now with SpeechWorks International, Inc.,
New York, NY 10004 USA (e-mail: roberto.pieraccini@speechworks.com).

W. Eckert was with AT&T Laboratories-Research, Shannon Laboratories,
Florham Park, NJ 07932 USA. He is now with Lucent Technologies, Nuern-
berg, Germany (e-mail: weckert@lucent.com).

Publisher Item Identifier S 1063-6676(00)00296-0.

research communities there are more complex examples of di-
alog systems that make use of natural ways of communica-
tion like speech and language [3]–[5], [12]–[14], [19], [23],
[24]. All these are examples of man-machine dialog systems
that notwithstanding their preferred way of interaction with the
human (touch tone, keyboard, natural language, etc.) share a
common principle: a strategy aimed at the satisfaction of the
goal that justifies their existence.

Since there are no commonly accepted methodologies for
building a dialog system, today dialog design is more art than
engineering or science. In general, a dialog system consists of a
more or less structured program, based on reasonable rules dic-
tated both by the knowledge of the application and by contin-
uous experimentation with real users. Sometimes the knowledge
of the application takes the form of a plan [19], [33] that decom-
poses the original goal of the dialog system into a hierarchy of
subgoals. However, the design principles are purely based on
heuristics and trial-and-error. The problem with such a proce-
dure is that generally it is hard to predict all the possible sit-
uations the system might encounter in real scenarios, hence a
system can reach good performance only at the expense of an
extended experimentation. Moreover, when a new application
is developed, often the whole design process has to be started
from scratch.

The research community in the field of spoken language sys-
tems is well aware of the benefits derived by the introduction
of well-founded mathematical problem formalization. For in-
stance, the tremendous progress made in speech recognition
during the last decade is mainly due to the introduction and use
of stochastic modeling of both acoustic [30] and linguistic phe-
nomena [16]. Also, recent advances in language understanding
for spontaneous speech are due to the introduction of different
stochastic models [11], [14], [15], [21], [26]. The strength of the
stochastic approach is in the fact that it naturally takes advantage
of large amounts of data. In fact no one doubts the importance of
data corpora in the spoken language community (“No data like
more data”1 has been the speech recognition motto in the past ten
years). Data is used for estimating model parameters in order to
optimize the performance of the system. Usually the more data
the system is trained with, the higher the resulting performance
on new data is. Moreover, since the training is done automati-
cally and requires little or no supervision, new applications can
be developed with the only cost of collecting new data, if at all
needed.

These advantages of the data driven approach motivated the
dialog community to start looking at them also for dialog design.

1This sentence has been attributed to Bob Mercer, former researcher of the
IBM speech group.
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However it is not clear yet how to use data for that purpose. Of
course, dialog designers do look at data in order to build the rules
that guide the dialog, and later to improve its performance. But
designers can analyze only a relatively small quantity of data,
and there is not a clear understanding of which measures can be
derived automatically from the corpus in order to automate the
design procedure.

The main problem of supervised learning of dialog from
corpus originates from the dynamic nature of dialog itself. Not
only is it not clear how to learn a dialog strategy, but also a
dialog system cannot be evaluated against a fixed corpus: if
at any point during the evaluation the system deviates from
the dialog in the corpus (for example because of an error or a
change in the dialog design), the dialog will take a different
course that cannot be predicted. In fact, even if we manage to
learn a dialog strategy that approximates the one in the corpus
with high accuracy and only few deviations, as a result of
these deviations the dialog system can get into an unexplored
portion of the state space that was not represented in the corpus.
Moreover, the dialog strategies adopted by humans are not
necessarily those best suited for automatic systems.

In this paper, we propose to use a combination of supervised
and reinforcement learning. The dialog system will learn an op-
timal strategy using reinforcement learning while interacting
with users. Reinforcement learning allows one to actively ex-
plore the state space of the system, while using delayed feedback
to update the values of all states traversed in the current interac-
tion. Although it is possible to use reinforcement learning with
real users, it is often impractical. Here we propose to use super-
vised learning from a corpus of dialogs in order to estimate the
parameters of a simulated user that is a stochastic model used
in a generative mode. The simulated user then interacts with the
dialog system while it uses reinforcement learning.

II. DIALOGUE DESIGN AS AN OPTIMIZATION PROBLEM

In general, a dialog system is a machine that tries to achieve
an application goal in an efficient way through a series of inter-
actions with the user. By quantifying the concepts of achieve-
ment of an application goal and efficiency, we can state the
problem of dialog design as optimization of an objective:

(1)

where the terms are the expected costs for different dialog
dimensions reflecting the distance to the achievement of the
application goal and the efficiency of the interaction, and the
weights determine the tradeoff among the costs. Some of
these dimensions can be measured directly by the system, like
dialog duration, cost of internal processing, cost of accessing
external databases or other resources and cost of ineffectiveness
(e.g., number of errors the system made due to poor speech
recognition); others quantify such abstract dimensions as user
satisfaction (e.g., a simple happy/not happy-with-the-system
feedback from the user at the end of dialog, number of users
hanging up before the completion of the dialog goal, etc.). The
work described in [9] relates user satisfaction to a linear com-
bination of directly measurable quantities. Using the optimality

criterion expressed by (1) we can evaluate system performance
simply by running several dialog sessions and computing the
average cost. Since the actions taken by the system may affect
some or all the terms of the objective function, the optimal
dialog strategy is a result of a correct trade off between them,
as illustrated by the examples in this paper. The problem of
dialog design that we address in this paper is that of finding the
optimal strategy automatically.

Recently, several data-driven optimization approaches were
attempted toward dialog design. For example, in [35], clarifica-
tion questions are generated based on task description, avoiding
the situation of asking the user a question that does not con-
tribute to current information exchange. In [36], the next clari-
fication attribute is computed from the retrieved data in order to
minimize the expected number of clarification interactions. In
both cases, a local optimization is performed in the particular
state of the dialog where clarification is needed. In the approach
proposed in this paper, the optimization is global over the whole
dialog session.

We will illustrate the concepts introduced in this paper with
a tutorial example of “Day-and-Month Dialog,” where the goal
of the system is to get thecorrect day and month values from
the user through theshortestpossible interaction.

From the definition of the application given above, it is
straightforward to describe the objective function as the sum
of three terms:

(2)

The first term is the expected duration of the dialog (being
the number of interactions). The second term corresponds to the
expected number of errors in the obtained values (ranging
from zero to two); and the third measures the expected distance

from achieving our application goal (this distance is zero for
a complete date, one if either day or month value is missing, and
two if both are incomplete).

We formalize a dialog system by describing it as a sequen-
tial decision process in terms of itsaction set, state space, and
strategy.

Theaction setof the dialog system includes all possible ac-
tions it can perform, such as interactions with the user (e.g.,
asking the user for input, providing a user some output, confir-
mations, etc.), interactions with other external resources (e.g.,
querying a database), and internal processing. For example, the
action set in our tutorial dialog system includes the following
four actions:

• a question asking for the value of the day ();
• a question asking for the value of the month ();
• A more open-ended question asking for the value of the

date (day and month) ( );
• A final action, closing the dialog and submitting the form

( ).

When executing actions , , and , the system first
asks the corresponding question, and then activates a speech
recognition system to obtain the user’s answer. Of course ac-
tions can be defined at different levels of granularity. For ex-
ample the actions , , and can be broken into separate
lower level actions, including asking the question, activating the
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Fig. 1. Description of a sequential decision process.

speech recognizer with the appropriate grammar, getting input
from the speech recognizer, and parsing it. In this example, we
choose to group these elemental actions into a single higher level
action because the order in which they have to be executed is
clear and fixed (i.e., first ask, then activate the recognizer, etc.).
It is up to the designer to choose the actions and their level of
granularity.

Thestate of a dialog system includes the values of all the
relevant internal variables that determine the next action that the
system executes. Given the same external conditions (i.e., user
responses, database results, etc.) the system future behavior is
uniquely determined by the current state. The state space can be
finite or infinite, and it includes special initial () and final ( )
states. For our simple tutorial example, the state description has
to include at least two integer variables that describe the day
( ) and the month ( ), whose values can be either zero (i.e., the
corresponding variable is unassigned), or assigned to the answer
provided by the user. For this state representation we have a
total of 411 possible states, including one initial state ( ,

), 12 states for which the month variable is assigned and
the day is not ( , ), 31 states in which
only the day variable is assigned ( , ),
366 states with complete dates, and a special final state (

, ). Again, it is up to the system designer to decide
which variables should be included in the state. For example, in
a more sophisticated system, we could have included in the state
some information about past values of day and month variables
obtained during the same interaction. As we will see in the next
section, sometimes it is necessary to expand the state description
with additional variables in order to be able to model the system
as a Markov decision process.

When an action is taken in state, the system state changes.
For the day-and-month example, when the system is in an initial
state and it asks the user for the month (action ) the next
state depends on the actual answer of the user as well as on the
speech recognition performance, and it can be any one among
the 12 states ( , ) in which only the month
is filled, assuming that the grammar of the speech recognizer is
constrained to recognize only months at this stage of the dialog.
We will discuss more about state transitions in the section about
Markov decision process (MDP).

A dialog sessioncorresponds to a path in the state space
starting at the initial state and ending at a final state.

Fig. 2. Three posible strategies for the day-month dialogue system.

A dialog strategyspecifies, for each state reached, what is the
next action to be invoked.

Fig. 1 summarizes the description of a dialog system as a se-
quential decision process. The dialog system starts a new inter-
action in the initial state. It chooses the current action from its set
of possible actions according to the strategy. As the result of the
performed action, the dialog makes a transition to the next state.
This process repeats until the final state is reached. Of course,
different strategies for the same system result in different values
of the objective function (1). Fig. 2 shows three different strate-
gies for the day-and-month system. For strategy 1, where the
system immediately ends the dialog, the value of the objective
function is since there is one interaction and
two unassigned variables in the submitted form. For strategy 2,
where the system opens with an open-ended question (Which
date?), sets the values of the day and month variables according
to the output of the speech recognizer, and ends the dialog, the
expected value of the objective function is . Here
we assume that the recognizer has a probabilityof making an
error in the recognition of the month or day value. For strategy
3, where the system asks separately for a day and a month, the
expected value of the objective function is ,
where is the error probability of the speech recognizer when
specific questions about month and day are asked. Usually,
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is smaller than because the speech recognizer can use a more
constrained grammar in the case of a more restricted question.

We define anoptimal strategyas the one that minimizes the
objective function. For example, strategy 1 (where the system
does not even engage in dialog, closing the dialog as the first
action) is optimal when the recognition error rate is too high,
i.e., . Strategy 3 is optimal when the dif-
ference in error rates justifies a longer interaction, i.e.,

. Note that if we would include other variables in the
state, like the value of day and month obtained during past in-
teractions in the same session, we would have to consider also
strategies in which the same question can be repeated more than
once.

III. D IALOGUE AS A MARKOV DECISION PROCESS

Until now, we have described a dialog system as a sequen-
tial decision process in terms of states, action set, and strategy.
We showed that with the objective function (1) it is possible
to evaluate the performance of each proposed strategy. This is
useful when a designer comes up with a few reasonable strate-
gies and is interested to know which one is the best among them.
However, we would like to address the more difficult problem
of finding the optimal strategy automatically. Since the number
of possible strategies is exponential (i.e., , where is the
number of actions and is the number of states), it is imprac-
tical to exhaustively rank all of them. Although the sequential
decision process framework introduced for dialog in the pre-
vious section is completely general, it does not allow to find the
optimal strategy automatically without making some additional
assumptions. In this section, we introduce the two assumptions
necessary to describe a dialog system as an MDP for which tech-
niques exist for finding the optimal strategy. The first assump-
tion concerns assigning a probabilistic model to state transitions.
When an action is taken at time while in state , the MDP
state changes to according to transition probabilities with
the following Markovian property:

(3)

For the day and month dialog, for instance, when the system is
in the initial state, and the actionWhich month?is selected, we
model the next state distribution as zero for all but the 12 states
in which the month value is given and the day is not. The prob-
ability for these states is determined by a prior over the month
(i.e., the probability that a specific month is picked by a user)
and the confusion matrix of the recognizer (i.e., the probability
that a month is recognized while month is spoken). The as-
sumption underlying this model is that the user always complies
with the system (i.e., always provides, as a response, only the
information he/she was asked for), and his answer does not de-
pend on any other information but the one described by the cur-
rent state and action pair [the Markovian property (3)]. This is
a reasonable assumption in our case. In other cases, in order to
satisfy the Markovian property (3), the state description has to
be padded with extra information (for example, the previously

recognized answers of the user to the same question, number of
turns in the dialog until the current one, etc.)2

The second assumption concerns stochastic modeling costs.
When action is executed while in state the system receives
a feedback cost distributed according to

(4)

If we define thesession costas a sum of all the costs experi-
enced by the system during a dialog session (a path in the state
space starting in the initial state, and ending in the final state),
the objective function for MDP is the expected session cost.3

Therefore, in order to describe a dialog system as an MDP, we
need to assign cost distributions such that the expected dialog
session cost will be the objective function (1), i.e

(5)

where is the time step at which the final state is reached,
i.e., . Sometimes, in order to satisfy (4) and (5), the
state space description has to be altered. In our example it is
impossible to come up with cost assignments that would satisfy
both (4) and (5)4, and the state description has to be extended in
order for the Markov property to apply. The reason for that is
that the probability of error (and hence the cost) in the value of
the assigned variable depends on the question that was used. Be-
sides, if during the dialog several actions were used that resulted
in reassigning the same variable, only the last one (the one that
assigned the value submitted upon the completion of the dialog)
should be taken into account. Since the cost cannot depend on
past information except the current state/action pair (4), the state
description should have an indication of what action was used to
assign the value of each variable. One simple way of doing that
is including 2 extra bits of information ( and ) in the state
description, one for each variable, indicating whether the corre-
sponding value was obtained with a simple (e.g.,Which day?–

, Which month?– ) or composite (e.g.,Which
date?– and ) question. If a variable is not as-
signed, the value of the describing bit is irrelevant. Although this
extension quadruples the number of states, the transition prob-
abilities do not change radically since and are assigned
deterministically in the next state depending on the type of the
current action. The cost assignment in this case can be then de-
scribed with the following cost distributions.

Any time a question is asked (actions , , and ) the
system incurs a constant cost with probability 1:

2Another related model, calledpartially observable MDP(or POMDP [6]),
provides a different way of handling non-Markovian state transitions by mod-
eling the fact that the state of the underlying MDP is not fully observed by the
dialog system.

3We are describing here the so-called undiscounted MDP.
4There is an error in the cost assignment in this example published in [20].
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When the dialog is closed (action ) the cost is
, where is the number of errors

and is the number of unassigned variables in the current
state. If we assume that the error rate for the recognition of
the month or day values is for simple questions and for
composite questions, with , then the cost distribution
for closing the dialog is as follows.

• For the initial state, i.e., both variables unassigned:
with probability 1.

• For all states with only one variable assigned with a
simple question (either or

)

with prob.
w.p. (6)

• For all states with both variables assigned by composite
questions (i.e., and )

w.p.
w.p.
w.p.

(7)

• For all states with both variable assigned by the simple
question (i.e., and )

w.p.
w.p.
w.p.

(8)

• For all states with both variables assigned, one by a
simple question and one by a composite question (i.e.,

or )

w.p.
w.p.
w.p.

(9)

This four-tuple composed of state space, action set, transition
probabilities, and cost distributions defines an MDP.

IV. FINDING THE OPTIMAL STRATEGY

With the assumptions of the previous section, the problem of
dialog design is reduced to that of finding the optimal strategy in
a MDP that represents the dialog system. MDP’s are well known
in computer science and machine learning communities, and are
used for diverse applications like games [18], telecommunica-
tions [28], scheduling [34] and control [22]. Moreover there ex-
ists a field known asreinforcement learningdevoted to research
on algorithms aimed at finding the optimal strategy for MDP’s.
Although we do not attempt here to give a comprehensive review
of the field, we will try to give some intuition concerning the re-
lated issues. The nature of our application (i.e., dialog system)
leads to a special case of MDP called finite horizon, or episodic

MDP, where there is an upper bound for the duration of a ses-
sion (in number of actions). This is based on the assumption that
even if the dialog system fails to complete its task in a reason-
able time, user’s’ patience will eventually limit the length of the
dialog. For simplicity, we will refer in this section to this case
only. For a good review of the field, see [6] and [31].

The first important result is that in MDP an optimal strategy
is apolicy,which is a mapping between states and actions. This
means that in MDP, in order to decide which is the optimal ac-
tion to take in a given state, there is no need to consider other
information except that included in the state itself (e.g., there is
no need to consider past states and actions).

Due to the Markov properties (3) and (4), several dynamic
programming techniques exist for computing the optimal
strategy given the correct model parameters. These tech-
niques rely on the following definition.

Theoptimal value of a state is the expected sum of
costs incurred from stateand following the optimal strategy

until the final state is reached:

(10)

where is a random vari-
able drawn from , and the expectation is with
respect to both and .

The optimal value function is unique and can be defined as
the solution to the simultaneous equations

(11)
Equation (11) states that the optimal value of stateis a sum of
expected instantaneous costs plus the expected value of the next
state, using the best available action. Given the optimal value
function, the optimal strategy can be computed simply as

(12)
Techniques like value iteration, policy iteration, and others (for
further references look at [31]) iteratively solve (11) and (12)
for computing the optimal strategy.

A. Learning the Optimal Strategy

It is not always possible to use the above methods for finding
the optimal strategy due to one or more of the following rea-
sons. Sometimes the state space is very large (or infinite). The
number of equations in (11) equals the number of states, and
in this case it is not only impossible to solve them, but even
to store in memory the optimal strategy. In addition, the MDP
parameters (i.e., transition probabilities and cost distributions)
may not be known in advance. As illustrated by the tutorial ex-
ample, some of the model parameters reflect the probability of
user’s response given the system question and the state of the
dialog. Other parameters can reflect the properties of external
resources, such as databases, that are also unknown in advance.
In this case, we need to resort to learning.
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It is impossible to use supervised learning with a given corpus
of interactions to estimate the parameters or the optimal strategy
of a dialog system. In fact, supervised learning techniques are
based on the assumption that both the training and the test ex-
amples are drawn independently from the same distribution. In
the case of MDP this assumption is incorrect if the training
data is composed of complete sessions produced using a fixed
strategy, like in the case of dialog, since the strategy itself de-
termines the distribution of states in the corpus. Therefore, even
though we could in principle use supervised learning to estimate
the strategy in the corpus very accurately, a small deviation in
the learned strategy might produce a distribution over the state
space completely different from the one observed in the training
set, for which we do not have accurate prediction of strategy. In
reinforcement learning, the optimal strategy (or the model pa-
rameters) is learned not from a static corpus but through inter-
action.

The major features of reinforcement learning algorithms are
as follows.

• Exploration: Since learning is performed while inter-
acting, the exploration of the state-action space can be
dynamically controlled by the learning algorithm.

• Delayed reinforcement:since the costs incurred in any
stage of the dialog are propagated back to all preceding
state-action pairs, reinforcement learning can deal with
delayed feedback. This is especially important in dialog
applications since in many cases the success of a dialog
can be measured only at the end of the transaction.

• Adaptation:Since the system learns from interaction, it
can keep adapting for slowly changing external condi-
tions.

The main problem in using reinforcement learning for
human-machine dialog applications is that it requires a large
number of dialog sessions for a successful learning. Moreover,
for proper exploration of the state-action space the system
should sometimes take actions that may not be reasonable for
the current situation, making it a cruel and expensive procedure
for the users experimenting with the system. To overcome
this limitation, we propose the use of a simulated user. The
simulated user is a stochastic generative model that produces
speech acts as a response to a dialog action. The parameters
of the simulated user should be estimated from an annotated
dialog corpus. A detailed example of a simulated user for the
air travel information system (ATIS) task will be described in
the next section. Once a simulated user is available, it can be
used in a generative mode for interacting with the dialog system
while the reinforcement learning algorithm is estimating the
optimal strategy. Then when a reasonable estimate of the
optimal strategy is obtained, the system can be used with real
users and the learning process can continue. The simulated user
is also very valuable for extensive and inexpensive testing of a
dialog system looking for bugs and strategy errors [8].

Fig. 3 summarizes the suggested learning paradigm. The di-
alog corpus is used for estimating the parameters of a stochastic
simulated user. The simulated user is used in generative mode
for running as many dialog sessions as needed for the reinforce-
ment learning algorithm to estimate the optimal strategy.

Fig. 3. Procedural description of the learning paradigm.

B. Reinforcement Learning

The reinforcement learning discipline includes many algo-
rithms for finding the optimal strategy. In this paper, we will
describe only the one used in the reported experiment, namely
Monte Carlo with exploring starts. For a review of other algo-
rithms, see [6] and [31]. The goal of the algorithm is to estimate
the optimal state-action value function defined as the
expected cost of a session starting in state, taking action
and thereafter proceeding according to the optimal strategy until
a final state is reached. Therefore

(13)

(14)

and

(15)

This algorithm (like many other reinforcement algorithms)
is an iterative procedure beginning with an initial guess of

and successively improving it at each iteration.
Denoting by the estimate at iteration step, the
successive improved estimation is obtained with the algorithm
described in Fig. 4.

V. REINFORCEMENTLEARNING IN THE ATIS TASK

The ATIS dialog task is based on the DARPA ATIS project
[1], [10]. It consists of a spoken language interface to an air-
line database that includes information such as flight schedules,
fare, ground transportation, etc. The original ATIS task involves
building a user initiated dialog system where the user speci-
fies a database query in spoken natural language and the system
displays the data corresponding to the interpreted query. The
strategy of a user initiated system is very simple: get the user’s
input, interpret it in the context of the past inputs, build a data-
base query according to that interpretation, and finally present
the result of the query. Although this simple strategy was easy
to evaluate objectively (i.e., comparing each retrieved data with
referencecorrectdata), in many cases the system was not effi-
cient. For instance when a user asked, “I’d like to have informa-
tion about flights,” the correct response was to retrieve all the
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Fig. 4. Description of the learning algorithm used for the ATIS task.

flights from the database and to present them to the (exasper-
ated) user. On the other hand, if the user’s query was over-con-
strained (e.g., “Show me the flights from Newark to San Fran-
cisco with American at 9 in the morning”), the system would
just present an empty data set that would be of no help to the
user, rather than proposing a perhaps acceptable alternate solu-
tion (e.g., there is no flight at 9:00 with American, but there is
a flight at 9:30 with Delta).

In addition to the common task of building a user-initiated
system for the ATIS project, several research groups built so-
phisticated mixed initiative dialog systems [2], [3], [5], [12],
[25] that incorporated heuristics and common sense in order to
overcome the limitations of a user initiated system, as illustrated
by the previous examples.

The goal of the experiment described in this paper is to show
that a sophisticated strategy (like one designed by hand [2], [3],
[5], [12], [25] ) can be learned automatically with a simple ob-
jective function, state and action representation.

In the following experiment, we do not deal with the language
understanding component; we consider the input to the dialog
model to be a semantic representation of the user utterances. For
simplicity, we assume that there are no errors in the semantic
transcription (this assumption can be relaxed by estimating error
probabilities and confusion matrices like in the day and month
example).

A. Objective Function

The goal of the flight information system is to provide the
user with information about the flights in an efficient way. The
efficiency here involves not only the duration of the dialog (in
turns) but also the cost of external resources (database retrieval)
and the effectiveness of the system output to the user. We will
measure those by the following terms of the objective function:

(16)

where is the expected length of the whole interaction in
number of turns; , the expected number of tuples retrieved

from the database during the session, which reflects the cost of
retrieving information; and is the data presentation cost
function with being the number of records that are presented
to the user. Generally, is zero for smaller than a
reasonable value , and increases rapidly thereafter, where
depends on the medium used to output information to the user
(it is generally small for voice based communication, and higher
for display). Finally, is an overall task success measure that
we set to be zero, if some data was ever presented to the user
during the session, and one, otherwise. Here, we assumed that
the data presented to the user matches the user request, i.e. there
are not recognition or understanding errors. In a real system such
errors should be taken into account by being zero only if
correct data is presented, or including an additional term that
takes into account wrong outputs like in the tutorial day/month
example.

B. Actions

The choice of the level of granularity of the actions for di-
alog systems is left to the designer. On one hand, we could use
very elemental actions, like the execution of primitive compu-
tational statements (e.g., add, shift, etc.). On the other extreme
the whole execution of a subdialog with its fixed strategy can
be considered as a single action. The guidelines we followed
in choosing the set of actions were dictated by the following
consideration: a dialog action has to have an impact outside the
system, which includes all the interactions with the resources
outside the system (e.g., user, databases, etc.). Moreover, if sev-
eral actions are known to be executed always in a predeter-
mined sequence, there is no need to consider them separately,
but they constitute a single action. In our case, all the actions
involving user interaction consists of the following sequence:
playing a prompt possibly switching the grammar in the speech
recognizer, collecting speech, getting the recognized string from
the recognizer, employing the understanding system, and finally
getting its output. This sequence is fixed and it is considered to
be a single action parameterized by the prompt.
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For the ATIS task we considered the following actions.

• Interactions with the user:
Greeting:it is an open ended question likeHow may I help
you?
Constraining:this includes a set of actions each requesting
a particular attribute from the user, as follows

Constrain airline:e.g., Please specify your favorite air-
line.
Constrain origin:e.g., Where are you leaving from?
Constrain destination:e.g., Where do you want to go?
Constrain departure time:e.g., When do you want to
leave?

Relaxing: this includes a set of actions each requesting
the user to relax a particular constraint that was specified
earlier.

Relax airline:e.g., Do you mind considering other air-
lines?
Relax origin: e.g., Do you mind leaving from some-
where else?
Relax destination:e.g. Do you mind going somewhere
else?
Relax departure time:e.g., Do you mind leaving at a
different time?

Output: e.g., Here are the 25 flights that match your re-
quest .
Closing:closing the dialog, e.g.,Thanks, good bye.

• Interaction with the database:
Retrieval:forming a database query from the information
included in the current state and getting the corresponding
data.

C. State Representation

The choice in defining a state representation for a given appli-
cation is determined by the following considerations. The state
space should be kept as small as possible. Most of the tabular re-
inforcement learning algorithms converge in linear time with the
number of states in the underlying MDP [31] . Recently there
have been successful applications with extremely large or infi-
nite state space [18], but theoretical bounds on convergence in
such cases are not available yet. On the other hand the state rep-
resentation should contain enough information so that the un-
derlying process is Markovian as specified by (2) and (3).

The tradeoff implied by these considerations led to the fol-
lowing representation for the state of the ATIS dialog system.

The state included threetemplates(a template is a set of key-
word-value pairs, called tokens, that was used in our ATIS un-
derstanding system [17] as the semantic representation). The
user template represents the meaning of the user request in-
terpreted in context; thedata template describes the data re-
trieved from the database according to the query based on the
user template; and thesystemtemplate represents some history
of system actions during the interaction. The possible keywords
in the user template correspond to the attributes of the database.
Since we restrict the task to flight information only, the relevant
attributes include:

• ORIGINof the flight;
• DESTINATIONof the flight;

• AIRLINE;
• DEPARTURE TIME;
• ARRIVAL TIME.

A typical user template looks like:

ORIGIN: EWR
DESTINATION:SFO
AIRLINE: DL

corresponding to the user query,Show me the flights from
Newark to San Francisco with Delta Airlines.The user tem-
plate is updated each time an action involving interaction with
the user is performed. In addition the user template is used to
build the database query when the retrieval action is taken.

In order to keep the number of states finite and small, we
further simplified the state representation by removing the value
information of each token, therefore taking into consideration
only the attributes that are present in the query and not their
actual value. This in effect groups the states into a finite number
of classes of states with the same value function. The values
of the attributes are preserved only for the purpose of database
query.

A data template represents the data retrieved from the data-
base. A typical data template looks like:

NDATA:3
DATA: flight: DL102 departure time:1000arrival time:
1800
DATA: flight: DL68 departure time:1035 arrival time:
1903
DATA: flight: DL99 departure time:1305 arrival time:
2015

and includes a token representing the number of data tuples re-
trieved (NDATA) and one token for each tuple. Again for lim-
iting the number of states, we ignore the actual retrieved tuples
(they are used only for user’s output), and keep only the NDATA
token. Moreover, the value of NDATA is quantized into a finite
number of intervals (LOW–MEDIUM–HIGH–VERY HIGH).

The system template is needed for recording a partial history
of actions in order to maintain the Markovian properties. In our
case it will contain the keyword OUTPUT only if an output
action in a state with nonzero tuples (NDATA ) was taken
in the course of the current interaction.

D. Costs

The cost distributions that correspond to the objective func-
tion (16) are as follows.

• for all , and when is an action involving
interaction with the user, except the data output and
closing actions (i.e. constraining questions, greeting,
relaxation).

• for all and when is the retrieval
action with the number of tuples retrieved. Since the
state representation does not contain the actual value of the
user specified constraints, is not a deterministic func-
tion of . For example two user requests such asflights
from Boston to San Francisco with Unitedandflights from
Denver to Atlanta with Deltamap to the same state since
the values of the attributes ORIGIN, DESTINATION, and
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AIRLINE are omitted in the state representation. In effect
we trade off a larger state space for nondeterministic costs.
This nondeterminism in costs can be represented by a dis-
tribution that depends solely on the database statistics and
the prior on user choices for the value of constraints. In
principle, if the state representation would include values
of constraints as well (therefore resulting in a very large or
infinite state space), the optimal dialog strategy would de-
pend upon specific users’ choices. For instance, the system
could learn that if the user asks about flightsfrom New
York to San Francisco,more information needs to be re-
quested prior to database access for reducing the database
access and presentation costs; that information will not be
necessary, for instance, for flightsbetween Cape Cod and
Boston.

• for all and when is the data output
action, where is the number of tuples being presented
to the user and is represented in the stateby the token
with keyword NDATA. If NDATA is not present in , the
value of is 0. The function is defined as

(17)

• for all states and action being
the closing action. is zero for all states that include
the keyword OUTPUT in the system template, and one,
otherwise.

E. State Transitions and the Simulated User

The state transitions that involve user interaction are not de-
terministic, since they depend on the actual input of the user.
The only deterministic transition is the one out of the final ac-
tion (closing) that always leads to the final state. The set of
probabilities that describe the state transitions that result from
the user response is called thesimulated user.For this experi-
ment, the simulated user is a generative stochastic model that
given the system’s current state and the current actions (i.e., the
prompt) produces the semantic representation of an utterance
in a template form similarly to the user’s template described in
Section V-C. This template is then merged with the user tem-
plate of the current state to produce the user template of the next
state. The merge follows two simple rules:

• new values of the same keyword override old ones, other-
wise they are added;

• if in the current interaction the user agrees to relax an at-
tribute, that attribute is deleted from the merged template.

We chose the model of the simulated user in such a way that
the parameters could be easily and reliably estimated from a
corpus of dialogs. This involved the assumption that the user
response depends only on the current system action (i.e., the
prompt) and not the state. The only dependency on the current
state results from the following consistency assumption: if the
current user response includes a repetition of previously spec-
ified attribute (hence already included in the current state), its
value is consistent with the one in the state. Although it would
be possible to model the user’schange of mind,we did not in-
clude that in the current implementation.

We parameterized the simulated user in the following way.
1) Response to Greeting:Includes the probability

where is the number of attributes
specified by the user in a single utterance corresponding to
the number of tokens in the user template; the probability
distribution (e.g., ORIGIN, DESTINATION,
AIRLINE, ), and the probability distribution on the value
of each attribute [e.g.,P(BostonORIGIN), P(DeltaAIRLINE)]
We assume that the attributes are chosen independently while
each new attribute and its value are merged with the previous
ones according the merge rules.

2) Response to Cnstraining Questions:Parameterized by
, i.e., the probability of the user specifying a value

for attribute when asked for the value of attribute . For
instanceP(airline departure time) is the probability of the user
specifying a preferred airline when asked for desired departure
time. Additional parameters are , i.e., the probability
of providing additional unsolicited attributes in the same
response. We assume that he additional attributes are generated
independently using the same distribution as in the response to
greeting.

3) Response to a Relaxation Prompt:Parameterized by
, i.e., the probability of accepting

(or rejecting) the proposed relaxation of attribute.
As mentioned before, in this experiment we assume that

recognition and understanding make no errors. For a real
system, such errors can be simulated with parameters repre-
senting error probabilities and confusion matrices.

The only available data we had on flight domain was the ATIS
original user initiated dialog corpus [9], and therefore we could
estimate only the parameters that characterize the response to
greeting. Since in this corpus the system never takes initiative,
and does not ask constraining or relaxing questions, we set the
other parameters arbitrarily. For example, the matrix
had a high valued diagonal (indication that the user is likely to
comply with the syste request), but nonzero off-diagonal terms,
especially for attributes that are likely to be of equal importance
(like departure time versus arrival time). In addition we assumed
that the user is less likely to agree to relax primary attributes
such asorigin anddestination,than secondary ones likeairline
anddeparture time.

In principle, all these parameters could have been estimated
using a mixed initiative dialog corpus. The estimation of user
parameter does not need to be precise. Recent theoretical results
[27] show that a very low accuracy in the estimation of transition
probabilities is required in order to find a good approximation
to the optimal strategy.

F. Experimental Results

The goal of our experiment is to show that a nontrivial
strategy can be automatically learned given the simple
objective function (16). The system was initialized with no
knowledge of the task, i.e., each action had the same probability
of being selected by the system at any step. A typical dialog
with an untrained system will look like the one in Fig. 5 (in this
and in the following example the English responses of the user
and the system are included only for illustration purpose—the
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Fig. 5. Example of dialogue with an untrained system (S = system, U = user).

Fig. 6. Schematic representation of the optimal strategy for ATIS.

user and the system communicate through semantic templates).
Of course, the total cost for this dialog is quite high, especially
due to the high cost of retrieval (all the database was retrieved
here) and data output (23 457 flights).

We used a Monte Carlo training algorithm with exploring
starts described in Fig. 4 and ran it for 100 epochs (one epoch
includes dialogs starting in all possible states explored so far
with all possible actions). By the end of the training the system
explored 111 states5, and converged to the optimal strategy
schematically described by Fig. 6. In the optimal strategy the
system always starts the dialog bygreeting.Depending on the
system state after getting the user response to greeting, the
system, if needed, proceeds by askingconstrainingquestions
until the origin, destination, and airline are specified. Then
it retrievesdata from the database. After the retrieval, if the
resulting data set is empty (because the query was over-con-
strained) the system, depending on the current state,relaxes
the airline or the departure time, and thenretrievesagain. If
there are too many flights in the data set, it asks for additional
constraints(e.g., the departure time) and thenretrievesagain.
If at any point during the dialog the retrieved data set has a
reasonable number of flights, the data isoutputand the dialog

5As explained in Section V-C, a state in this experiment represents the cluster
of all the original states that have the same keywords in the user template and
the same range of the number of tuples in the data template.

Fig. 7. Example of dialogue with a trained system.

is closed.An example of a dialog performed with a trained
system is shown in Fig. 7.

The strategy we just described reflects the objective function
in the following way. The system learned to start every dialog
with a greeting because by doing so it maximizes the number of
constraints provided with a single exchange (the simulated user
has a higher probability of giving more constraints after greeting
than after any other prompt), thus minimizing the duration term.
The constraining behavior after the greeting is induced by the
minimization of the retrieval cost: the system does not query the
database until enough constraints are gathered. The constraining
behavior after the retrieval minimizes the data presentation cost
by not allowing the output of too many tuples. The relaxation re-
sults from the minimization of the task success cost by forcing
the system to output data. Since the different costs are interde-
pendent, it is incorrect to minimize them independently, and the
optimal strategy trades them off in order to optimize the com-
bined objective function (16). For example, minimizing only the
cost of retrieval would result in dialogs where no retrieval is
done and no information is provided to the user as a result.

Fig. 8 shows the value of the objective function (16) as a func-
tion the epoch number. While learning and before reaching the
optimal strategy described above, the system went through the
four strategies schematically shown in Fig. 9.

Strategy 1 was learned after only a few dialogs during the
first epoch. In this strategy, the system immediately closes the
dialog, and its cost is quite high due to the user dissatisfaction
cost, but it is much lower than the cost of a random strategy
as shown in the first dialog above. The second strategy that the
system learns corresponds to the user initiated strategy, as in the
original ATIS system: it opens the dialog by greeting the user,
retrieves data from a database according to the user’s request,
outputs the data to the user, and closes the dialog. In the third
strategy, the system learned that if too much data is retrieved,
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Fig. 8. Convergence of the learning algorithm for the ATIS dialogue.

Fig. 9. Schematic representation of incrementally more complex strategies
obtained during the training.

then it should ask the user constraining questions about airline
and departure time. It takes ten epochs (about 1000 dialogs)
to learn strategy 4. Here the system learns to relax constrains
(departure time, airline) if the retrieval resulted in an empty data
set. The optimal strategy of Fig. 5 is learned after 23 epochs. The
last thing the system learns is to gather enough information from
the userbeforethe data retrieval. The rate of convergence (i.e.,
the number of dialogs needed for the system to learn) and the
actual sequence of strategies the system goes through depend on
the flavor and the parameters of the learning algorithm used.

G. Summary and Discussion

The main thesis of this work is the formalization of dialog as
an optimization problem. The objective function is a weighted
sum of costs representing different dimensions of the dialog
quality: distance from task achievement, efficiency in terms of
dialog turns, quantity of information exchanged, cost of external
resources, effectiveness of presentation, etc. Even costs related
to abstract measures such as user satisfaction can be modeled
in the same form [9]. The result of the ATIS experiment (Sec-
tion V-F) shows that a complex strategy similar to one that was
developed independently under heuristic considerations by dif-
ferent groups [2], [3], [5], [12], [25] results from the optimiza-
tion of a relatively simple objective function.6 We believe that
we can model thecommon sensethat dialog designers are using

while building a system by an explicit criterion. The bulk of the
dialog design process involves performing implicit optimization
by writing common sense rules. Instead we propose that the di-
alog design process should involve the design of the criterion,
while the optimization can be done automatically (computers
are generally better optimizer than humans and are able to find
better solutions).

We also show that any dialog system can be formally
described as a sequential decision process in terms of its state
space, action set, and strategy. With additional assumptions
about the state transition probabilities and cost assignment, a
dialog system can be mapped to a stochastic model known as
Markov decision process (MDP). A variety of algorithms for
finding the optimal strategy (i.e., the one that optimizes the
criterion) is available within the MDP framework. We are inter-
ested in data-driven algorithms that learn the optimal strategy
from examples. The known problem of using supervised
learning from a corpus of dialogs results from the dynamic
nature of dialog itself. Once the system deviates from the
dialog in the corpus, there is no way of evaluating and finding
the correct supervision for the rest of the transaction. Learning
is not supervised but rather by reinforcement in the MDP
framework: the system actively interacts with users, exploring
different portions of the state space, and learns by attributing
values to the different actions/state pairs according the final
cost of each dialog. However, the exploration of the state space
can be rather costly, involving many dialogs until the system
learns a reasonable, or close to optimal, behavior. Moreover,
in the exploration phase of learning, some of the actions the
system tries might make no sense to normal users. To overcome
these problems we propose to use a simulated user: a stochastic
generative model parameterized in such a way that it can be
reliably estimated using supervised learning on a dialog corpus.
Such a simulated user is useful also for debugging a dialog
system in the early stages of design and finding bugs in the
strategy. The actual parameterization of the user model should
influence the way we collect corpora of dialogs.

The experimental results we present in this paper show that
it is indeed possible to find a simple criterion, a state space rep-
resentation, and a simulated user parameterization in order to
automatically learn a relatively complex dialog behavior, sim-
ilar to one that was designed by intuition.

The important open questions in the dialog learning and eval-
uation within the MDP paradigm are as follows.

• A principled way of finding a good objective function for a
given task. In many applications the dimensions that mea-
sure dialog performance are clear, but the weights spec-
ifying the desired tradeoff among them is not known. In
principle, for a commercial application, the weighted cost
terms should equal their value measured in currency (e.g.,
U.S. dollars). As discussed earlier, some of the cost terms
represent abstract and not directly measurable dimensions,
such as user satisfaction. These abstract dimensions can
be in turn represented as a linear combination of directly
measurable quantities as in [9]. Although it was shown in

6This is a qualitative statement. A quantitative comparison is not possible
since the handcrafted systems were not based on an objective function for eval-
uation.
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[9] that is possible to learn the weights of the terms repre-
senting the user satisfaction through the user’s feedback,
often the user satisfaction will represent only one of the
terms of the criterion (1), and an open question remains
on what is a principled way of estimating the weights.

• In the examples shown in this paper, the dialog state space
was carefully handcrafted in order to satisfy the Markov
properties (2) and (3) required within the MDP paradigm.
The chosen state representation imposes certain restric-
tions on the structure of the simulated user. In fact, due to
the Markov property, the simulated user’s output is inde-
pendent of anything except current state and current dialog
action. Since the resulting optimal strategy reflects simu-
lated user structure and parameters, the choice of state rep-
resentation plays a crucial role in dialog strategy learning.
In order to automatize dialog design, it is important to look
at data-driven techniques for state estimation.

• The learning algorithm used here required a large number
of interactions; a more efficient learning is desirable.
Starting from tabula rasa,as we did in the described
experiment, is often not necessary. Knowledge about the
task can be incorporated in the initial strategy, limiting
significantly the necessary exploration of the state space.
There is a bulk of research in the machine learning com-
munity dealing with the issue of more efficient learning,
using macro actions [29] (representing subgoals) to speed
up learning, etc. Many of the issues under investigation
apply naturally to the specific problem of dialog design.

• The stochastic paradigm is common in automatic speech
recognition, and it is gaining popularity in the language
understanding community. With the introduction of a sto-
chastic model for dialog, an open question remains of how
to integrate these different levels of knowledge and learn
the corresponding models in an integrated way.
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