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Abstract—In this paper, we propose a quantitative model for research communities there are more complex examples of di-
dialog systems that can be used for learning the dialog strategy. alog systems that make use of natural ways of communica-
We clalm.th.at t.he problem of dialog (jes[gn can pe formalllzed tion like speech and language [3]-[5], [12]-[14], [19], [23],
as an optimization problem with an objective function reflecting 241 Al th | f hine dial
different dialog dimensions relevant for a given application. We [24]. t. ese ar.e examp €s of man-mac .lne 'a.OQ S_yStemS
also show that any dialog system can be formally described as that nOtWIthStandlng their prefel’red way of interaction with the
a sequential decision process in terms of its state space, actionhuman (touch tone, keyboard, natural language, etc.) share a

set, and strategy. With additional assumptions about the state common principle: a strategy aimed at the satisfaction of the
transition probabilities and cost assignment, a dialog system goal that justifies their existence

can be mapped to a stochastic model known alarkov decision Si th | ted thodologies f
process(MDP). A variety of data driven algorithms for finding Ince theére are no commonly accepted methodologies tor

the optimal strategy (i.e., the one that optimizes the criterion) is Puilding a dialog system, today dialog design is more art than
available within the MDP framework, based on reinforcement engineering or science. In general, a dialog system consists of a
learning. For an effective use of the available training data we more or less structured program, based on reasonable rules dic-
propose a combination of supervised and reinforcement learning: tated both by the knowledge of the application and by contin-

the supervised learning is used to estimate a model of the user, - . . .
ie., the MDP parameters that quantify the user's behavior. UYOUS experimentation with real users. Sometimes the knowledge

Then a reinforcement learning algorithm is used to estimate the Of the application takes the form of a plan [19], [33] that decom-
optimal strategy while the system interacts with the simulated poses the original goal of the dialog system into a hierarchy of
user. This approach is tested for learning the strategy in an air subgoals. However, the design principles are purely based on
travel information system (ATIS) task. The experimental results — peristics and trial-and-error. The problem with such a proce-
we present in this paper show that it is indeed possible to find dure is that generally it is hard to predict all the possible sit-
simple criterion, a state space representation, and a simulated . . - :
user parameterization in order to automatically learn a relatively ~Uations the system might encounter in real scenarios, hence a
complex dialog behavior, similar to one that was heuristically system can reach good performance only at the expense of an
designed by several research groups. extended experimentation. Moreover, when a new application
Index Terms—Dialog systems, Markov decision process, rein- IS developed, often the whole design process has to be started
forcement learning, sequential decision process, speech, spokerfrom scratch.
language systems. The research community in the field of spoken language sys-
tems is well aware of the benefits derived by the introduction
of well-founded mathematical problem formalization. For in-
) ] o ) stance, the tremendous progress made in speech recognition
H UMAN-MACHINE interactions are ubiquitous intoday’s qyring the last decade is mainly due to the introduction and use
world. We are not surprised anymore when we interagf stochastic modeling of both acoustic [30] and linguistic phe-
and struggle with menu-driven touch tone or voice telephop@mena [16]. Also, recent advances in language understanding
systems, when we engage in an interaction with our PC througlh spontaneous speech are due to the introduction of different
d|alog boxes, or make a transaction by interacting with ATMt_ochastic models [11], [14], [15], [21], [26]. The strength of the
machines or Web browsers. New applications such as thos&ipchastic approach is in the fact that it naturally takes advantage
[7], and [32] approach the frontier of natural language dialqgf |arge amounts of data. In fact no one doubts the importance of
to automate services that are currently performed by human g4 corpora in the spoken language community (“No data like
erators. In the natural language and artificial intelligence (Ahyore datathas been the speech recognition motto in the pastten
years). Data is used for estimating model parameters in order to
optimize the performance of the system. Usually the more data
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However it is not clear yet how to use data for that purpose. ©fiterion expressed by (1) we can evaluate system performance
course, dialog designers do look at datain order to build the ruEmply by running several dialog sessions and computing the
that guide the dialog, and later to improve its performance. Bawerage cost. Since the actions taken by the system may affect
designers can analyze only a relatively small quantity of datgme or all the terms of the objective function, the optimal
and there is not a clear understanding of which measures canllzdog strategy is a result of a correct trade off between them,
derived automatically from the corpus in order to automate tlas illustrated by the examples in this paper. The problem of
design procedure. dialog design that we address in this paper is that of finding the
The main problem of supervised learning of dialog froroptimal strategy automatically.
corpus originates from the dynamic nature of dialog itself. Not Recently, several data-driven optimization approaches were
only is it not clear how to learn a dialog strategy, but also @tempted toward dialog design. For example, in [35], clarifica-
dialog system cannot be evaluated against a fixed corpustién questions are generated based on task description, avoiding
at any point during the evaluation the system deviates fratme situation of asking the user a question that does not con-
the dialog in the corpus (for example because of an error otrébute to current information exchange. In [36], the next clari-
change in the dialog design), the dialog will take a differeffication attribute is computed from the retrieved data in order to
course that cannot be predicted. In fact, even if we managentinimize the expected number of clarification interactions. In
learn a dialog strategy that approximates the one in the corfasth cases, a local optimization is performed in the particular
with high accuracy and only few deviations, as a result sfate of the dialog where clarification is needed. In the approach
these deviations the dialog system can get into an unexplopgdposed in this paper, the optimization is global over the whole
portion of the state space that was not represented in the corplislog session.
Moreover, the dialog strategies adopted by humans are notWe will illustrate the concepts introduced in this paper with
necessarily those best suited for automatic systems. a tutorial example of “Day-and-Month Dialog,” where the goal
In this paper, we propose to use a combination of superviseiithe system is to get theorrectday and month values from
and reinforcement learning. The dialog system will learn an otie user through thehortestpossible interaction.
timal strategy using reinforcement learning while interacting From the definition of the application given above, it is
with users. Reinforcement learning allows one to actively estraightforward to describe the objective function as the sum
plore the state space of the system, while using delayed feedbatthree terms:
to update the values of all states traversed in the current interac-
tion. Although it is possible to use reinforcement learning with C = WilNi) + WeNe) + Wy(Ny). @)

real users, it is often impractical. Here we propose to use SUP®fe first term is the expected duration of the dialdg being
vised learning from a corpus of dialogs in order to estimate thg, n mber of interactions). The second term corresponds to the
parameters of a simulated user that is a stochastic model “éﬁﬂected number of errot, in the obtained values (ranging
in a generative mode. The simulated user then interacts with {36, ;erq to two): and the third measures the expected distance
dialog system while it uses reinforcement learning. N from achieving our application goal (this distance is zero for
a complete date, one if either day or month value is missing, and
two if both are incomplete).

We formalize a dialog system by describing it as a sequen-

In general, a dialog system is a machine that tries to achiet@ decision process in terms of égtion sef state spaceand
an application goal in an efficient way through a series of inte?r&t€9y- , . .
actions with the user. By quantifying the concepts of achieve_-The action setof the dialog system includes all possible ac-

ment of an application goal and efficiency, we can state tﬁ'@n_‘c’ It can perform, such as_mteractlons with the user (e.g.,
problem of dialog design as optimization of an objectie askl_ng the user for |an_Jt, proyldlng a user some output, confir-
mations, etc.), interactions with other external resources (e.g.,

C= Z Wi {C;) (1) querying a database), and internal processing. For example, the

action set in our tutorial dialog system includes the following
where the termgC;) are the expected costs for different dialogour actions:

dimensions reflecting the distance to the achievement of the
application goal and the efficiency of the interaction, and the
weights W, determine the tradeoff among the costs. Some of
these dimensions can be measured directly by the system, like
dialog duration, cost of internal processing, cost of accessing : . . : -~
external databases or other resources and cost of ineffectiveness A final action, closing the dialog and submitting the form
(e.g., number of errors the system made due to poor speech (A4y)-

recognition); others quantify such abstract dimensions as use¥When executing actiond, 4,,, and Ag,,, the system first
satisfaction (e.g., a simple happy/not happy-with-the-systeasks the corresponding question, and then activates a speech
feedback from the user at the end of dialog, number of useecognition system to obtain the user’'s answer. Of course ac-
hanging up before the completion of the dialog goal, etc.). Thiens can be defined at different levels of granularity. For ex-
work described in [9] relates user satisfaction to a linear corample the actiond,, A,,, andA,,, can be broken into separate
bination of directly measurable quantities. Using the optimalitpwer level actions, including asking the question, activating the

Il. DIALOGUE DESIGN AS AN OPTIMIZATION PROBLEM

 a question asking for the value of the da,j;

* a question asking for the value of the month,{();

» A more open-ended question asking for the value of the
date (day and month)A(;,,.);
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Initialization: §,_, =5,

For Each Iteration t: {
if(s, #5;) |

compute current action 4g,according to the strategy

execute 4a,
update current state
t=t+1

}

else
END

Fig. 1. Description of a sequential decision process.

speech recognizer with the appropriate grammar, getting in Strategy 1:
from the speech recognizer, and parsing it. In this example, Good Bye.
choose to group these elemental actions into a single higher Ie
action because the order in which they have to be executec
clear and fixed (i.e., first ask, then activate the recognizer, etc C=1W,+2-W;
It is up to the designer to choose the actions and their level
. Strategy 2:
granularity. , , Which date 2——_Good Bye.
The states of a dialog system includes the values of all th:
relevant internal variables that determine the next action that 1
system executes. Given the same external conditions (i.e., L C.=2.-W +2.P-W
responses, database results, etc.) the system future behavi
uniquely determined by the current state. The state space cal sgrategy 3:
finite or infinite, and itincludes special initiak¢) and final ) Which day ? Which month?___ Good Bye.
states. For our simple tutorial example, the state description |
to include at least two integer variables that describe the d
(d) and the monthv(:), whose values can be either zero (i.e., th ~ —
corresponding variable is unassigned), or assigned to the ansﬁé: 3W+2-h W,
provided by the user. For this state representation we have arig. 2. Three posible strategies for the day-month dialogue system.
total of 411 possible states, including one initial state<( 0,
m = 0), 12 states for which the month variable is assigned andA dialog strategyspecifies, for each state reached, what is the
the day is notd = 0, m = 1, ---, 12), 31 states in which next action to be invoked.
only the day variable is assigned & 1, ---, 31, m = 0), Fig. 1 summarizes the description of a dialog system as a se-
366 states with complete dates, and a special final state ( quential decision process. The dialog system starts a new inter-
—1, m = —1). Again, it is up to the system designer to decidgction in the initial state. It chooses the current action from its set
which variables should be included in the state. For example,dfipossible actions according to the strategy. As the result of the
amore sophisticated system, we could have included in the stgégformed action, the dialog makes a transition to the next state.
some information about past values of day and month variabfgisis process repeats until the final state is reached. Of course,
obtained during the same interaction. As we will see in the negifferent strategies for the same system result in different values
section, sometimes itis necessary to expand the state descripgipthe objective function (1). Fig. 2 shows three different strate-
with additional variables in order to be able to model the systegiies for the day-and-month system. For strategy 1, where the
as a Markov decision process. system immediately ends the dialog, the value of the objective
When an actiom is taken in state, the system state changesfunction is1 - W; + 2 - W} since there is one interaction and
For the day-and-month example, when the system is in an initiglo unassigned variables in the submitted form. For strategy 2,
state and it asks the user for the month (actigp ) the next where the system opens with an open-ended questitiich
state depends on the actual answer of the user as well as orgéie?, sets the values of the day and month variables according
speech recognition performance, and it can be any one am@#ghe output of the speech recognizer, and ends the dialog, the
the 12 statesd = 0, m = 1, -- -, 12) in which only the month expected value of the objective functioridV; +2-p,-W.. Here
is filled, assuming that the grammar of the speech recognizenie assume that the recognizer has a probabilityf making an
constrained to recognize only months at this stage of the dialegror in the recognition of the month or day value. For strategy
We will discuss more about state transitions in the section ab@Jtwhere the system asks separately for a day and a month, the
Markov decision process (MDP). expected value of the objective functiorBisW; + 2 - po - WL,
A dialog sessiorcorresponds to a path in the state spaagherep, is the error probability of the speech recognizer when
starting at the initial state and ending at a final state. specific questions about month and day are asked. Uspally,
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is smaller tham; because the speech recognizer can use a moeeognized answers of the user to the same question, number of
constrained grammar in the case of a more restricted questidarns in the dialog until the current one, etc.)

We define aroptimal strategyas the one that minimizes the The second assumption concerns stochastic modeling costs.
objective function. For example, strategy 1 (where the systéithen action, is executed while in statg the system receives
does not even engage in dialog, closing the dialog as the fissteedback cost; distributed according to
action) is optimal when the recognition error rate is too high,
i.e.,p2 > (Wy — W,;)/W.. Strategy 3 is optimal when the dif- P(¢,|s;, si_1, -+, S0, @1, Gr—1, -+, a0) = Poley|st, ay).
ference in error rates justifies a longer interaction, pe- p2 > 4)
W;/2W.. Note that if we would include other variables in the
state, like the value of day and month obtained during past in-If we define thesession cosis a sum of all the costs experi-
teractions in the same session, we would have to consider a$@ed by the system during a dialog session (a path in the state
strategies in which the same question can be repeated more #gaice starting in the initial state, and ending in the final state),
once. the objective function for MDP is the expected session €ost.

Therefore, in order to describe a dialog system as an MDP, we
need to assign cost distributions such that the expected dialog

Ill. DIALOGUE AsS A MARKOV DECISION PROCESS session cost will be the objective function (1), i.e
Until now, we have described a dialog system as a sequen- Tr
tial decision process in terms of states, action set, and strategy. <Z ct> =C (5)
We showed that with the objective function (1) it is possible t=0

to evaluate the performance of each proposed strategy. This is , . . , .
useful when a designer comes up with a few reasonable striff€reZ’ is the time step at which the final stag is reached,
= sp. Sometimes, in order to satisfy (4) and (5), the

gies and is interested to know which one is the best among thérh. 57 i =
However, we would like to address the more difficult problerﬁtate space description has to be altered. In our example it is

of finding the optimal strategy automatically. Since the numb&pPOssible to come up with cost assignments that would satisfy
of possible strategies is exponential (I8 , whereN, is the both (4) and (5) and the state description has to be extended in

number of actions ani¥s is the number of states), it is imprac-Order for the Markov property to apply. The reason for that is
tical to exhaustively rank all of them. Although the sequentidfi@t the probability of error (and hence the cost) in the value of
decision process framework introduced for dialog in the pr&1€ assigned variable depends on the question that was used. Be-

vious section is completely general, it does not allow to find t@des, if _dur_ing the dialog seyeral actions were used that resulted
optimal strategy automatically without making some addition4f] €2Ssigning the same variable, only the last one (the one that
assumptions. In this section, we introduce the two assumptidiys'gned the value submitted upon the completion of the dialog)

necessary to describe a dialog system as an MDP for which tegfiould e taken into account. Since the cost cannot depend on
niques exist for finding the optimal strategy. The first assumB—aSt information except the current state/action pair (4), the state
scription should have an indication of what action was used to

tion concerns assigning a probabilistic model to state transitioﬁ?. _ A _ .
When an action, is taken at time while in states, , the MDP  @SSign the value of each variable. One simple way of doing that

state changes ta., according to transition probabilities with IS Including 2 extra bits of informationy¢ andgy,) in the state
the following Markovian property: description, one for each variable, indicating whether the corre-

sponding value was obtained with a simple (é/ghich day?-
g4 = 0, Which month?- ¢,, = 0) or composite (e.g\Which
date?— ¢4, = 1 andg,, = 1) question. If a variable is not as-
= Pr(seilse, ar). @) signed, the value of the describing bit is irrelevant. Although this
. . extension quadruples the number of states, the transition prob-
For the day and month dialog, for instance, when the systemiSiiities do not change radically singg andg,, are assigned

in the initial state, and the actiathich month?s selected, we jeerministically in the next state depending on the type of the
model the next state distribution as zero for all but the 12 statg$ant action. The cost assignment in this case can be then de-

in which the month value is given and the day is not. The proQz iped with the following cost distributions.

ability for these states is determined by a prior over the monthAny time a question is asked (actiods ,A4,,, andAy,,,) the

(i.e., the probability that a specific month is picked by a use stem incurs a constant ca&t with probability 1:
and the confusion matrix of the recognizer (i.e., the probability

that a month is refcognllzed whll_e monthi is spoken). The as- A Ag) = o(An) = e Ag) = Wi
sumption underlying this model is that the user always complies

with the system (i.e., always provides, as a response, only the

information he/she was asked for), and his answer does not de-

pend on any other information but the one described by the cur?Another related model, callguartially observable MDRor POMDP [6]),

; ; ; ; ovides a different way of handling non-Markovian state transitions by mod-
rent state and action pair [the Markovian property (3)] This S the fact that the state of the underlying MDP is not fully observed by the

s ) elin
a r(_aasonable assu_mptlon in our case. In other cases, in ordecﬁatég system.
satisfy the Markovian property (3), the state description has t@®we are describing here the so-called undiscounted MDP.
be padded with extra information (for example, the previously4There is an error in the cost assignment in this example published in [20].

P(sty1]se, s¢—1, *++ 80, Ggy Gg—1, *+, ao)
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When the dialog is closed (actiomiy) the cost is MDP, where there is an upper bound for the duration of a ses-
Wi + N.W. + N;W;, where N, is the number of errors sion (in number of actions). This is based on the assumption that
and N, is the number of unassigned variables in the curreaven if the dialog system fails to complete its task in a reason-
state. If we assume that the error rate for the recognition able time, user’s’ patience will eventually limit the length of the
the month or day values s for simple questions ang; for dialog. For simplicity, we will refer in this section to this case
composite questions, withy > p» , then the cost distribution only. For a good review of the field, see [6] and [31].

for closing the dialog is as follows. The first important result is that in MDP an optimal strategy
« For the initial state, i.e., both variables unassigne!f. apolicy,which is a mapping between states and actions. This
c(s1, Ay) = W; + 2W; with probability 1. means that in MDP, in order to decide which is the optimal ac-

- For all statess with only one variable assigned with alion to take in a given state, there is no need to consider other

simple question (eithed # 0, m = 0, ¢ = 0 ord = information except that included in the state itself (e.g., there is

0,m #0, gm =0) no need to consider past states and actions).
Due to the Markov properties (3) and (4), several dynamic
A W, + W; 4+ W,, with prob.ps : programming techniques exist for computing the optimal
(s, Af) = Wi + Wy, wp.l—ps ° (6) strategyn* given the correct model parameters. These tech-

niques rely on the following definition.
] ) ] . Theoptimal valueV*(s) of a states is the expected sum of
* For all states; with both variables assigned by composit@gts incurred from state and following the optimal strategy

questions (i.e.qu = 1 andg,, = 1) 7* until the final statesy is reached:
W; 4+ 2W,, pr% Tr
c(s, Apy =< W, + W, w.p.2pi(1—p1). @) V*(s) = <Z (s8¢, at)> (10)
W, w.p.(1—p)? t=0

For all states with both variable assigned by the simple\’\/heres0 = 8,87 = $F, ¢y = W'(8), Se41 IS @ random vari-
o able drawn fromPr(s:+1]s:, a+), and the expectation is with

question (i.e.gs = 0 andg,, = 0) respect to bottP; and P

The optimal value function is unique and can be defined as

the solution to the simultaneous equations

W + 2W., w.p.p}
c(s, Apy =< W; +W,,  w.p.2pa(1 —pa) . (8)

Wi w.p. (1 — P 2 " i "
P-( 2) V*(st) = m;n[(c(st, a)) + ZPT(SH—I = s|s¢, a)V*(s)].

» For all statess with both variables assigned, one by a ’ (11)

simple question and one by a composite question (i.&guation (11) states that the optimal value of stais a sum of
G =0,¢gn=10rqu =1, ¢, =0) expected instantaneous costs plus the expected value of the next

state, using the best available action. Given the optimal value
Wi +2W,, W.p.p1p2 function, the optimal strategy can be computed simply as
C(S, Af): Wi+We, W.p.pl(l—p2)+p2(1—p1) .
Wi w.p. (1 = pi)(1—p2) © 7*(se) = argmin [(c(se, a))+ > Prser1 = s|s, a)V*(s)].
! (12)

This four-tuple composed of state space, action set, transitiggchniques like value iteration, policy_ iteration, and others (for
probabilities, and cost distributions defines an MDP. further references look at [31]) iteratively solve (11) and (12)
for computing the optimal strategy.

A. Learning the Optimal Strategy

It is not always possible to use the above methods for finding

With the assumptions of the previous section, the problemtbfe optimal strategy due to one or more of the following rea-
dialog design is reduced to that of finding the optimal strategy sons. Sometimes the state space is very large (or infinite). The
a MDP that represents the dialog system. MDP’s are well knowmnmber of equations in (11) equals the number of states, and
in computer science and machine learning communities, and arehis case it is not only impossible to solve them, but even
used for diverse applications like games [18], telecommunica- store in memory the optimal strategy. In addition, the MDP
tions [28], scheduling [34] and control [22]. Moreover there exparameters (i.e., transition probabilities and cost distributions)
ists a field known aseinforcement learningevoted to research may not be known in advance. As illustrated by the tutorial ex-
on algorithms aimed at finding the optimal strategy for MDP’sample, some of the model parameters reflect the probability of
Although we do not attempt here to give a comprehensive revieiser’'s response given the system question and the state of the
of the field, we will try to give some intuition concerning the redialog. Other parameters can reflect the properties of external
lated issues. The nature of our application (i.e., dialog systemfources, such as databases, that are also unknown in advance.
leads to a special case of MDP called finite horizon, or episodit this case, we need to resort to learning.

IV. FINDING THE OPTIMAL STRATEGY
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Itis impossible to use supervised learning with a given corp| sIMULATED .| DIALOGUE
of interactions to estimate the parameters or the optimal strate USER » |  SYSTEM
of a dialog system. In fact, supervised learning techniques i X .
based on the assumption that both the training and the test REINFORCEMENT
amples are drawn independently from the same distribution.[ gyperviseD LEARNING
the case of MDP this assumption is incorrect if the trainin| LEARNING ——
data is composed of complete sessions produced using a fi STRATEGY
strategy, like in the case of dialog, since the strategy itself ¢
termines the distribution of states in the corpus. Therefore, ey

though we could in principle use supervised learning to estimé | DIALOGUE
the strategy in the corpus very accurately, a small deviation | CORPUS
the learned strategy might produce a distribution over the sti..>
space completely different from the one observed in the training
set, for which we do not have accurate prediction of strategy. In
reinforcement learning, the optimal strategy (or the model pa-
rameters) is learned not from a static corpus but through intgy- Reinforcement Learning

Fig. 3. Procedural description of the learning paradigm.

action. . . T
The major features of reinforcement learning algorithms are '€ reinforcement learning discipline includes many algo-
as follows. rithms for finding the optimal strategy. In this paper, we will

describe only the one used in the reported experiment, namely
+ Exploration: Since learning is performed while inter-Monte Carlo with exploring starts. For a review of other algo-
acting, the exploration of the state-action space can kithms, see [6] and [31]. The goal of the algorithm is to estimate
dynamically controlled by the learning algorithm. the optimal state-action value functi@ff(s;, a;) defined as the
+ Delayed reinforcementsince the costs incurred in anyexpected cost of a session starting in statgaking actiona;
stage of the dialog are propagated back to all precediagd thereafter proceeding according to the optimal strategy until
state-action pairs, reinforcement learning can deal withfinal state is reached. Therefore
delayed_ feedpack..Thls is especially important in dlqlog O (50, ar) = (c(51, ar))
applications since in many cases the success of a dialog
can be measured only at the end of the transaction. + Z Pr(si = sls, a)V7(s),  (13)
« Adaptation: Since the system learns from interaction, it s

can keep adapting for slowly changing external condi- Vils) = max Q" (s, a) (14)
tions. and
The main problem in using reinforcement learning for = arg ax Q*(s, a). (15)

human-machine dialog applications is that it requires a large
number of dialog sessions for a successful learning. MoreoverThis algorithm (like many other reinforcement algorithms)
for proper exploration of the state-action space the systésnan iterative procedure beginning with an initial guess of
should sometimes take actions that may not be reasonabledd(s, ) and successively improving it at each iteration.
the current situation, making it a cruel and expensive procedienoting by Q. (s, a) the estimate at iteration stef, the
for the users experimenting with the system. To overcons@iccessive improved estimation is obtained with the algorithm
this limitation, we propose the use of a simulated user. Thiescribed in Fig. 4.
simulated user is a stochastic generative model that produces
speech acts as a response to a dialog action. The parameters
of the simulated user should be estimated from an annotated
dialog corpus. A detailed example of a simulated user for theThe ATIS dialog task is based on the DARPA ATIS project
air travel information system (ATIS) task will be described 1], [10]. It consists of a spoken language interface to an air-
the next section. Once a simulated user is available, it can Ie database that includes information such as flight schedules,
used in a generative mode for interacting with the dialog systdare, ground transportation, etc. The original ATIS task involves
while the reinforcement learning algorithm is estimating thieuilding a user initiated dialog system where the user speci-
optimal strategy. Then when a reasonable estimate of tiies a database query in spoken natural language and the system
optimal strategy is obtained, the system can be used with rd&plays the data corresponding to the interpreted query. The
users and the learning process can continue. The simulated ssettegy of a user initiated system is very simple: get the user’s
is also very valuable for extensive and inexpensive testing ofrgout, interpret it in the context of the past inputs, build a data-
dialog system looking for bugs and strategy errors [8]. base query according to that interpretation, and finally present
Fig. 3 summarizes the suggested learning paradigm. The tilie result of the query. Although this simple strategy was easy
alog corpus is used for estimating the parameters of a stochagiievaluate objectively (i.e., comparing each retrieved data with
simulated user. The simulated user is used in generative modierencecorrectdata), in many cases the system was not effi-
for running as many dialog sessions as needed for the reinforcient. For instance when a user asked, “I'd like to have informa-
ment learning algorithm to estimate the optimal strategy.  tion about flights,” the correct response was to retrieve all the

V. REINFORCEMENTLEARNING IN THE ATIS TASK
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Initialization:
For all s and a

QJ (s,a) = arbitrary,
7;(s) = argmax 0} (5,) ,
n(s,a)=0.

For each iteration k:

For every s and a:
generate a session starting at s with action a and proceeding

according to ﬂ',:_l(s) until a final state is reached.

For each pair s’, a’ in the session compute the sum of the costs
C(s' ,a')following s until the final state and update #n(s',a')=n(s',a')+],

0i(+,a) = C(s', ') ——+ 0] (s', ) - X80

n(s',a') n(s',a')
Update the strategy ﬂ'k* (s) = arg max Qk* (s,a) .
a

Fig. 4. Description of the learning algorithm used for the ATIS task.

flights from the database and to present them to the (exasgenm the database during the session, which reflects the cost of
ated) user. On the other hand, if the user’s query was over-coetrieving information; and’,( N, ) is the data presentation cost
strained (e.g., “Show me the flights from Newark to San Frafiinction with V,, being the number of records that are presented
cisco with American at 9 in the morning”), the system woultb the user. Generallyf,(N,) is zero for N, smaller than a
just present an empty data set that would be of no help to tfeasonable valu®*, and increases rapidly thereafter, whate
user, rather than proposing a perhaps acceptable alternate stdpends on the medium used to output information to the user
tion (e.g., there is no flight at 9:00 with American, but there it is generally small for voice based communication, and higher
a flight at 9:30 with Delta). for display). Finally, I, is an overall task success measure that
In addition to the common task of building a user-initiatedve set to be zero, if some data was ever presented to the user
system for the ATIS project, several research groups built sturing the session, and one, otherwise. Here, we assumed that
phisticated mixed initiative dialog systems [2], [3], [5], [12]the data presented to the user matches the user request, i.e. there
[25] that incorporated heuristics and common sense in orderaie not recognition or understanding errors. In areal system such
overcome the limitations of a user initiated system, as illustratedrors should be taken into account By being zero only if
by the previous examples. correctdata is presented, or including an additional term that
The goal of the experiment described in this paper is to shdakes into account wrong outputs like in the tutorial day/month
that a sophisticated strategy (like one designed by hand [2], [Bkample.
[5], [12], [25] ) can be learned automatically with a simple ob- )
jective function, state and action representation. B. Actions
In the following experiment, we do not deal with the language The choice of the level of granularity of the actions for di-
understanding component; we consider the input to the dialapg systems is left to the designer. On one hand, we could use
model to be a semantic representation of the user utterances Jedy elemental actions, like the execution of primitive compu-
simplicity, we assume that there are no errors in the semarntgional statements (e.g., add, shift, etc.). On the other extreme
transcription (this assumption can be relaxed by estimating erthe whole execution of a subdialog with its fixed strategy can
probabilities and confusion matrices like in the day and monBe considered as a single action. The guidelines we followed

example). in choosing the set of actions were dictated by the following
consideration: a dialog action has to have an impact outside the
A. Objective Function system, which includes all the interactions with the resources

The goal of the flight information system is to provide th@utside Fhe system (e.g., user, databases, etc.). Moreover, if sev-
user with information about the flights in an efficient way. Th&rl actions are known to be executed always in a predeter-
efficiency here involves not only the duration of the dialog (if"in€d sequence, there is no need to consider them separately,
turns) but also the cost of external resources (database retrie@df)they constitute a single action. In our case, all the actions
and the effectiveness of the system output to the user. We WiY0!Ving user interaction consists of the following sequence:
measure those by the following terms of the objective functioR'aYing & prompt possibly switching the grammar in the speech

recognizer, collecting speech, getting the recognized string from

C = WiNi) + WiNp) + Wo(fo(No)) + Wi(E;)  (16)  he recognizer, employing the understanding system, and finally

where(V,) is the expected length of the whole interaction igetting its output. This sequence is fixed and it is considered to
number of turns{N,.), the expected number of tuples retrievethe a single action parameterized by the prompt.



18 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 1, JANUARY 2000

* AIRLINE
 DEPARTURE TIME;

For the ATIS task we considered the following actions.

* Interactions with the user:
Greeting:itis an open ended question liklow may | help * ARRIVAL TIME
you? A typical user template looks like:
Constrainingthis includes a set of actions eachrequesting oR|GIN: EWR
a particular attribute from the user, as follows DESTINATION:SFO
Constrain airline:e.g., Please specify your favorite air- ~ A|RLINE: DL

line. . .
Constrain origin:e.g., Where are you leaving from? corresponding to the_ user que@how me the flights from
. L Newark to San Francisco with Delta AirlineShe user tem-
Constrain destinatione.g., Where do you want to go? . . o A . .
. . plate is updated each time an action involving interaction with
Constrain departure timee.g., When do you want to . - .
the user is performed. In addition the user template is used to

?
Iea\{e U . . build the database query when the retrieval action is taken.
Relaxing:this includes a set of actions each requesting L
In order to keep the number of states finite and small, we

the user to relax a particular constraint that was Spec'f"ﬁ(ﬂrther simplified the state representation by removing the value

earlier. . : L . :
I . S . information of each token, therefore taking into consideration
Relax airline:e.g., Do you mind considering other air- . . .
lines? only the attributes that are present in the query and not their
. : : actual value. This in effect groups the states into a finite number
Relax origin: e.g., Do you mind leaving from some- ; .
of classes of states with the same value function. The values
where else? .
o : . of the attributes are preserved only for the purpose of database
Relax destinatione.g. Do you mind going somewherequery
else?

A data template represents the data retrieved from the data-

Relax departure timee.g., Do you mind leaving at 8pase A typical data template looks like:

different time?

Output: e.g., Here are the 25 flights that match your re- NDATA:_?’ ) _ )
quest - -. DATA: flight: DL102 departure time:1000arrival time:
Closing:closing the dialog, e.gThanks, good bye. 1800 ) _ _ )

« Interaction with the database: DATA: flight: DL68 departure time:1035 arrival time:
Retrieval:forming a database query from the information 1903 ) . . .
included in the current state and getting the corresponding gng? flight: DL99 departure time:1305 arrival time:

data.
and includes a token representing the number of data tuples re-
trieved (NDATA) and one token for each tuple. Again for lim-
iting the number of states, we ignore the actual retrieved tuples
The choice in defining a state representation for a given appliney are used only for user’s output), and keep only the NDATA
cation is determined by the following considerations. The staigken. Moreover, the value of NDATA is quantized into a finite
space should be kept as small as possible. Most of the tabularfgmper of intervals (LOW—MEDIUM—HIGH-VERY HIGH).
inforcement learning algorithms converge in linear time with the e system template is needed for recording a partial history
number of states/ in the underlying MDP [31]. Recently there of actions in order to maintain the Markovian properties. In our
have been successful applications with extremely large or infiase it will contain the keyword OUTPUT only if an output

nite state space [18], but theoretical bounds on convergencgion in a state with nonzero tuples (NDATAO) was taken
such cases are not available yet. On the other hand the state igie course of the current interaction.

resentation should contain enough information so that the un-
derlying process is Markovian as specified by (2) and (3).
The tradeoff implied by these considerations led to the fol-
lowing representation for the state of the ATIS dialog system. The cost distributions that correspond to the objective func-
The state included threemplatega template is a set of key- tion (16) are as follows.
word-value pairs, called tokens, that was used in our ATIS un- « (s 4) = W; for all s, and when is an action involving

derstanding system [17] as the semantic representation). The nteraction with the user, except the data output and

C. State Representation

. Costs

user template represents the meaning of the user request in-
terpreted in context; theata template describes the data re-
trieved from the database according to the query based on the,
user template; and thsystemtemplate represents some history

of system actions during the interaction. The possible keywords
in the user template correspond to the attributes of the database.
Since we restrict the task to flight information only, the relevant
attributes include:

* ORIGIN of the flight;
» DESTINATIONof the flight;

closing actions (i.e. constraining questions, greeting,
relaxation).

c(s,a) = W,.N, for all s and whena is the retrieval
action with N,. the number of tuples retrieved. Since the
state representation does not contain the actual value of the
user specified constraintd,. is not a deterministic func-
tion of s. For example two user requests sucHflaghts

from Boston to San Francisco with Unitaddflights from
Denver to Atlanta with Deltanap to the same state since
the values of the attributes ORIGIN, DESTINATION, and
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AIRLINE are omitted in the state representation. In effect We parameterized the simulated user in the following way.
we trade off a larger state space for nondeterministic costsl) Response to Greetingncludes the probability
This nondeterminism in costs can be represented by a di¥n), » = 0, 1, 2, ---, wheren is the number of attributes
tribution that depends solely on the database statistics ambcified by the user in a single utterance corresponding to
the prior on user choices for the value of constraints. the number of tokens in the user template; the probability
principle, if the state representation would include valuefistribution P(attribute) (e.g., ORIGIN, DESTINATION,
of constraints as well (therefore resulting in a very large &IRLINE, --.-), and the probability distribution on the value
infinite state space), the optimal dialog strategy would def each attribute [e.gR(BostonORIGIN), P(DeltaAIRLINE)
pend upon specific users’ choices. For instance, the systévia assume that the attributes are chosen independently while
could learn that if the user asks about fligiftsm New each new attribute and its value are merged with the previous
York to San Franciscanore information needs to be re-ones according the merge rules.
guested prior to database access for reducing the databas®) Response to Cnstraining QuestiorBarameterized by
access and presentation costs; that information will not B& k| k¢ ), i.e., the probability of the user specifying a value
necessary, for instance, for flightetween Cape Cod andfor attributekr when asked for the value of attributg;. For
Boston. instanceP(airline|departure timgis the probability of the user

* ¢(s,a) =W, f,(N,)forall sand wheru is the data output specifying a preferred airline when asked for desired departure
action, whereV, is the number of tuples being presentetime. Additional parameters até(N |kg), i.e., the probability
to the user and is represented in the staby the token of providing ;N additional unsolicited attributes in the same
with keyword NDATA. If NDATA is not present irs, the response. We assume that he additional attributes are generated

value of N, is 0. The functionf, is defined as independently using the same distribution as in the response to
0, n < N* greeting.
Jo(n) = {w (n—N*), n>N*" 1) 3) Response to a Relaxation Promf@arameterized by

Plyes|ka) = 1 — P(nolkg), i.e., the probability of accepting
» ¢(s,a) = W, F,(s)+W, for all statess and actioru being  (or rejecting) the proposed relaxation of attribéite:
the closing action#;(s) is zero for all states that include As mentioned before, in this experiment we assume that
the keyword OUTPUT in the system template, and onegcognition and understanding make no errors. For a real

otherwise. system, such errors can be simulated with parameters repre-
senting error probabilities and confusion matrices.
E. State Transitions and the Simulated User The only available data we had on flight domain was the ATIS

N ) ) ] original user initiated dialog corpus [9], and therefore we could
The state transitions that involve user interaction are not dgstimate only the parameters that characterize the response to
terministic, since they depend on the actual input of the USgfeeting. Since in this corpus the system never takes initiative,
The only deterministic transition is the one out of the final acynq qoes not ask constraining or relaxing questions, we set the
tion (closing) that always leads to the final state. The set gf,er parameters arbitrarily. For example, f@  [kic; ) matrix
probabilities that describe the state transitions that result frgygq 4 high valued diagonal (indication that the user is likely to
the user response is called thienulated useror this experi- comply with the syste request), but nonzero off-diagonal terms,
ment, the simulated user is a generative stochastic model Bgbecially for attributes that are likely to be of equal importance
given the system’s current state and the current actions (i.e., ff¥ departure time versus arrival time). In addition we assumed
prompt) produces the semantic representation of an utterafeg the user is less likely to agree to relax primary attributes
in a template form similarly to the user’s template described §,h agrigin anddestinationthan secondary ones likerline
Section V-C. This template is then merged with the user te@nddeparture time.
plate of the current state to produce the user template of the nex, principle, all these parameters could have been estimated
state. The merge follows two simple rules: using a mixed initiative dialog corpus. The estimation of user
* new values of the same keyword override old ones, othgrarameter does not need to be precise. Recent theoretical results
wise they are added; [27] show that a very low accuracy in the estimation of transition
« if in the current interaction the user agrees to relax an airobabilities is required in order to find a good approximation
tribute, that attribute is deleted from the merged templat® the optimal strategy.
We chose the model of the simulated user in such a way that
the parameters could be easily and reliably estimated fro"?:.aExperimental Results
corpus of dialogs. This involved the assumption that the user
response depends only on the current system action (i.e., th&he goal of our experiment is to show that a nontrivial
prompt) and not the state. The only dependency on the curretrategy can be automatically learned given the simple
state results from the following consistency assumption: if thtabjective function (16). The system was initialized with no
current user response includes a repetition of previously sp&nowledge of the task, i.e., each action had the same probability
ified attribute (hence already included in the current state), it§ being selected by the system at any step. A typical dialog
value is consistent with the one in the state. Although it wouldith an untrained system will look like the one in Fig. 5 (in this
be possible to model the usechange of mindwe did not in- and in the following example the English responses of the user
clude that in the current implementation. and the system are included only for illustration purpose—the
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S: RELEASE | Do you want to choose another airline? S: This is the AT&T flight information. How
AIRLINE GREETING may I help you?
uU: What? uU: I want to go to Boston.
S: S: . Where do you want to leave from?
RETRIEVAL CONSTRAIN
S: When do you want to leave? ORIGIN
CONSTRAIN U: San Francisco
DEPART. S: Which airline?
TIME CONSTRAIN
U: UH? I want to go to Boston AIRLINE
S: OQUTPUT | There are 23,457 flights... uU: Delta
DATA S:
uU: 1 don’t understand, can you please show me the RETRIEVAL
flights from San Francisco to Boston? (30 flights)
S: CLOSE Thank you for using AT&T. S: When do you want to leave?
DIALOGUE CONSTRAIN
DEPART.
Fig.5. Example of dialogue with an untrained system (S = system, U = user). TIME
U: In the late afternoon.
S:
RETRIEVAL
(3 flights)
S: QUTPUT | Flight ... leaves at ..., flight ... leaves at
. DATA
‘ Greeting ’_,‘ Constrain Retrieval u: Thanks.
S: CLOSE Thank you for using AT&T.
DIALOGUE

no data

too much
data

Fig. 7. Example of dialogue with a trained system.

is closed.An example of a dialog performed with a trained
system is shown in Fig. 7.

The strategy we just described reflects the objective function
in the following way. The system learned to start every dialog
with a greeting because by doing so it maximizes the number of
constraints provided with a single exchange (the simulated user
has a higher probability of giving more constraints after greeting
than after any other prompt), thus minimizing the duration term.

) ] The constraining behavior after the greeting is induced by the
user and the system communicate through semantic templatgghimization of the retrieval cost: the system does not query the
Of course, the total cost for this dialog is quite high, especially;tapase until enough constraints are gathered. The constraining
due to the high cost of retrieval (all the database was retrievgghavior after the retrieval minimizes the data presentation cost
here) and data output (23457 flights). _ by notallowing the output of too many tuples. The relaxation re-

We used a Monte Carlo training algorithm with exploringjts from the minimization of the task success cost by forcing
starts described in Fig. 4 and ran it for 100 epochs (one epag system to output data. Since the different costs are interde-
includes dialogs starting in all possible states explored so {gndent, it is incorrect to minimize them independently, and the
with all possible actions). By the end of the traini_ng the SYSteEIbtimaI strategy trades them off in order to optimize the com-
explored 111 statésand converged to the optimal strategy,ined objective function (16). For example, minimizing only the
schematically described by Fig. 6. In the optimal strategy ths; of retrieval would result in dialogs where no retrieval is
system always starts the dialog gseeting.Depending on the yone and no information is provided to the user as a result.
system state after getting the user response to greeting, thgjy g shows the value of the objective function (16) as a func-
system, if needed, proceeds by askowpstrainingquestions g the epoch number. While learning and before reaching the
_untll t_he origin, destination, and airline are spe<_:|f|ed. _Theé‘ptimal strategy described above, the system went through the
it retrievesdata from the database. After the retrieval, if the strategies schematically shown in Fig. 9.
resulting data set is empty (because the query was over-congyrateqy 1 was learned after only a few dialogs during the
strained) the system, depending on the current statexes first epoch. In this strategy, the system immediately closes the
the airline or the departure time, and thestrievesagain. If  giglog, and its cost is quite high due to the user dissatisfaction
there are too many flights in the_data set, it asl_<s for ado_hnorl‘aést’ but it is much lower than the cost of a random strategy
constraints(e.g., the departure time) and thegirievesagain. 55 shown in the first dialog above. The second strategy that the
If at any point during the dialog the retrieved data set hasggsiem learns corresponds to the user initiated strategy, as in the
reasonable number of flights, the dataigputand the dialog original ATIS system: it opens the dialog by greeting the user,

- _ o _ retrieves data from a database according to the user’s request,
5As explained in Section V-C, a state in this experiment represents the cluster

of all the original states that have the same keywords in the user template Qigiputs the data to the user, and 9'0583 the diaIOg'. In th(_':' third
the same range of the number of tuples in the data template. strategy, the system learned that if too much data is retrieved,

Constrain

A 4

Output

Fig. 6. Schematic representation of the optimal strategy for ATIS.
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1600
1400

while building a system by an explicit criterion. The bulk of the
dialog design process involves performing implicit optimization
by writing common sense rules. Instead we propose that the di-
alog design process should involve the design of the criterion,
while the optimization can be done automatically (computers
are generally better optimizer than humans and are able to find
better solutions).
We also show that any dialog system can be formally
! described as a sequential decision process in terms of its state
space, action set, and strategy. With additional assumptions
Number of epochs about the state transition probabilities and cost assignment, a
dialog system can be mapped to a stochastic model known as
Fig. 8. Convergence of the learning algorithm for the ATIS dialogue.  Markov decision process (MDP). A variety of algorithms for
finding the optimal strategy (i.e., the one that optimizes the
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: criterion) is available within the MDP framework. We are inter-
ested in data-driven algorithms that learn the optimal strategy

) {GreetingHRetrieval Output Closing} from _examples. The knowr? problem of using supervise_d
L learning from a corpus of dialogs results from the dynamic
nature of dialog itself. Once the system deviates from the

3 [GreetingJ—r[RetrievalH Output H Closing] dialog in the corpus, there is no way of evaluating and finding
to0 much data Fhe correct supervision for the rest of the transact!on. Learning

is not supervised but rather by reinforcement in the MDP

framework: the system actively interacts with users, exploring

different portions of the state space, and learns by attributing

4 GfeetingHRetrieval]—b[ Output H Closing] values to the different actions/state pairs according the final
cost of each dialog. However, the exploration of the state space

too much data \ no data can be rather costly, involving many dialogs until the system
M learns a reasonable, or close to optimal, behavior. Moreover,

in the exploration phase of learning, some of the actions the

) ) ) ) system tries might make no sense to normal users. To overcome
Eﬁaﬁeﬁﬁm?ﬂg {;ﬁ’;ﬁfgmaﬂon of incrementally more complex strategigy, <o problems we propose to use a simulated user: a stochastic
generative model parameterized in such a way that it can be
reliably estimated using supervised learning on a dialog corpus.
then it should ask the user constraining questions about airli§gch a simulated user is useful also for debugging a dialog
and departure time. It takes ten epochs (about 1000 dialoggstem in the early stages of design and finding bugs in the
to learn strategy 4. Here the system learns to relax constraiigtegy. The actual parameterization of the user model should
(departure time, airline) if the retrieval resulted in an empty dajgfluence the way we collect corpora of dialogs.
set. The optimal strategy of Fig. 5is learned after 23 epochs. Therhe experimental results we present in this paper show that
last thing the system learns is to gather enough information frqpjs indeed possible to find a simple criterion, a state space rep-
the useibeforethe data retrieval. The rate of convergence (i.esentation, and a simulated user parameterization in order to
the number of dialogs needed for the system to learn) and Hlgomatically learn a relatively complex dialog behavior, sim-
actual sequence of strategies the system goes through depengefo one that was designed by intuition.
the flavor and the parameters of the learning algorithm used. The important open questions in the dialog learning and eval-

uation within the MDP paradigm are as follows.

« Aprincipled way of finding a good objective function for a
The main thesis of this work is the formalization of dialogas  given task. In many applications the dimensions that mea-
an optimization problem. The objective function is a weighted  sure dialog performance are clear, but the weights spec-
sum of costs representing different dimensions of the dialog ifying the desired tradeoff among them is not known. In
quality: distance from task achievement, efficiency in terms of  principle, for a commercial application, the weighted cost
dialog turns, quantity of information exchanged, cost of external  terms should equal their value measured in currency (e.g.,
resources, effectiveness of presentation, etc. Even costs related U.S. dollars). As discussed earlier, some of the cost terms
to abstract measures such as user satisfaction can be modeled represent abstract and not directly measurable dimensions,
in the same form [9]. The result of the ATIS experiment (Sec-  such as user satisfaction. These abstract dimensions can
tion V-F) shows that a complex strategy similar to one that was  be in turn represented as a linear combination of directly
developed independently under heuristic considerations by dif- measurable quantities as in [9]. Although it was shown in
ferent groups [2], [3], [S], [12], [25] results from the optimiza- . o . . _
This is a qualitative statement. A quantitative comparison is not possible

tion of a relatively simple objective Tuncndﬂ‘/\_/e believe tha_t since the handcrafted systems were not based on an objective function for eval-
we can model theommon sendbhat dialog designers are usinguation.

G. Summary and Discussion



22

The authors wish to thank S. S. Baveja, M. Kearns, and R2e]

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 1, JANUARY 2000

[9] that is possible to learn the weights of the terms repre-[8] W. Eckert, E. Levin, and R. Pieraccini, “User modeling for spoken dialog

senting the user satisfaction through the user’s feedback
often the user satisfaction will represent only one of the
terms of the criterion (1), and an open question remains
on what is a principled way of estimating the weights.
In the examples shown in this paper, the dialog state space

was carefully handcrafted in order to satisfy the Markov[11]

properties (2) and (3) required within the MDP paradigm.

The chosen state representation imposes certain restriﬁ-z]

tions on the structure of the simulated user. In fact, due to
the Markov property, the simulated user’s output is inde-

pendent of anything except current state and current dialobm
action. Since the resulting optimal strategy reflects simu{14]
lated user structure and parameters, the choice of state rep-

resentation plays a crucial role in dialog strategy learningy; s

In order to automatize dialog design, itis important to look
at data-driven techniques for state estimation.

The learning algorithm used here required a large numbeﬁ6

of interactions; a more efficient learning is desirable.

Starting fromtabula rasa,as we did in the described [17]

experiment, is often not necessary. Knowledge about the

task can be incorporated in the initial strategy, limiting [18]

significantly the necessary exploration of the state space.

There is a bulk of research in the machine learning comy, g

munity dealing with the issue of more efficient learning,
using macro actions [29] (representing subgoals) to speed

up learning, etc. Many of the issues under investigatior{zo]

apply naturally to the specific problem of dialog design.

The stochastic paradigm is common in automatic speecl#!l

recognition, and it is gaining popularity in the language

understanding community. With the introduction of a sto-[22]

chastic model for dialog, an open question remains of how

to integrate these different levels of knowledge and learr, 3

the corresponding models in an integrated way.

[24]
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