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1. Motivation and Introduction

During the last five decades, economists have made considerable progress in under-

standing the theoretical structure of strategic behaviour in markets with small num-

bers of participants, such as auction markets; see Krishna (2002) for a comprehensive

book-length survey of progress.

During the last two decades, several researchers have brought these theoretical

models to data. Most structural econometric research has been devoted to investi-

gating equilibrium behaviour at single-object auctions (SOAs) within the symmetric

independent private-values paradigm (IPVP) where each potential bidder gets an in-

dependent and identically distributed valuation draw for the object on sale. Examples

include Paarsch (1992,1997); Donald and Paarsch (1993,1996,2002); Laffont, Ossard,

and Vuong (1995); Guerre, Perrigne, and Vuong (2000); Haile and Tamer (2003); and

Li (2005). Paarsch and Hong (2006) provide an introduction to this literature.

In reality, however, most auctions involve the sale of several units of the same

good or of several different goods. Economic theorists often make a distinction

between multi-object and multi-unit auctions. At multi-unit auctions (MUAs), the

objects for sale are identical, so each bidder only cares about how many units he wins.

At multi-object auctions (MOAs), on the other hand, the objects for sale are different

and it matters to a bidder which specific objects he wins. Thus, an example of a MOA

would involve the sale of an apple, an orange, and a pear, while an example of a MUA

would involve the sale of three identical apples. Examples of structural econometric

research involving MUAs include Donald, Paarsch, and Robert (forthcoming); Jofre-

Bonet and Pesendorfer (2004); Wolak (2003); Hortaçsu (2002a,b); Brendstrup (2002);

and Brendstrup and Paarsch (2004a,2006). Brendstrup and Paarsch (2004b) have

investigated MOAs, considering bundling, while Cantillon and Pesendorfer (2006a,b)

have investigated combinatorial auctions in procurement.

Empirical researchers studying auctions have chosen to investigate a variety of

different questions using data collected in laboratory experiments or gathered in the

field. For the structural econometric approach to be valid, however, each bidder must
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be playing a strategy that is a best response to the strategies of others. Do bidders

play best responses? When the true valuations are observed at SOAs, as is the case

with data from laboratory experiments, a researcher can test for best response in

a straightforward way by examining whether the observed bid strategy, conditional

on the valuation generated under the experiment, is in fact a best response to the

strategies of others; see, for example, Paarsch and Robert (2003). When the true costs

are observed, Hortaçsu and Puller (2004) have generalized the approach of Guerre,

Perrigne, and Vuong (2000) to test for a best response at MUAs under the uniform-

pricing rule. To implement their procedure, Hortaçsu and Puller gathered accurate

estimates of producer costs to use as proxies for the true costs.

When field data are used and the true valuations are unobserved, as is more typ-

ically the case, testing for a best response may be impossible. For example, consider

a single-object, first-price, sealed-bid auction. When the monotone likelihood-ratio

property (MLRP) holds for observed bids, there always exists a latent distribution

of values that can rationalize actual bidding behaviour. Thus, in this case, one can-

not possibly reject the hypothesis that each bidder always plays a best response; see

Guerre et al. as well as Athey and Haile (forthcoming) for thoughtful discussions.

One might suspect the same to be true at MUAs. Indeed, if the true values (or

costs) are unobserved and a condition that generalizes the MLRP holds, then there

always exists a latent distribution of values that can rationalize observed bidding

behaviour. When values are unobserved, it would seem that rejecting the best-

response hypothesis is equally hopeless in MUAs. Even when values are unobserved,

however, a researcher may be willing to impose restrictions on the space of possible

values. For example, in some applications, it may be reasonable to assume that

bidders have non-increasing marginal values; i.e., each bidder’s value for a first unit

is weakly greater than his value for a second unit, and so forth.

In this paper, we describe a strategy to bound the extent of best-response

violations when bidders’ private values are unobserved and when one is willing to

assume non-increasing marginal values. That is, on a bid-by-bid basis, we establish
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a lower bound on each bidder’s lost expected profit relative to a best response. No

matter what values the bidder has, he must be able to increase his expected profit by

at least this much with another bid.

We implement our strategy using data from auctions of Receiver General term

deposits (hereafter RG auctions) conducted by the central bank in Canada, the Bank

of Canada. The RG auctions we investigate are multi-unit, simultaneous, sealed-

bid auctions where bidding financial institutions pay what they have tendered for

each unit sold, a pricing rule often referred to as discriminatory. The format of

these auctions was designed by the Bank of Canada to manage Canadian federal

government cash balances by lending them out to the highest bidders from a small

number of financial institutions who are members of the Large Value Transfer System.

When modelling the behaviour of the financial institutions who bid at these auctions,

we impose the (natural) assumption that each has non-increasing marginal values for

cash.

Why would members of the Large Value Transfer System have different private

values for cash? Imagine a financial institution that has inflows and outflows of cash

as well as a variety of different instruments of different maturities in its portfolio. In

each period, the financial institution solves a large programming problem concerning

how to manage its investments. The solution to this programming problem will have

Lagrange multipliers associated with constraints involving the various instruments

of different maturities. These indicate to managers the “value” of instruments of

different maturities. For example, an institution may need a lot of cash tomorrow,

but have a portfolio in which very few of its assets are maturing tomorrow. Thus, it

has an individual-specific need for one-day cash. It is in this sense that we imagine

that cash has different private values for different quantities at different financial

institutions.

We confront the observable implications of our model with data from a sample

of auctions held between 1 October 2001 and 31 December 2003. We find that best-

response violations are frequent. However, for most bidders, depending on our method
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of estimation, the median lower bound on the economic distance (in terms of expected

profit lost) between the estimated best-response and the bid data is small, often less

than the price of a cup of coffee when the implicit values at risk are in the tens of

thousands of dollars.

Our paper is in six more parts. In the next section, we outline a theoretical

model, while in section 3 we present a summary of some relevant implications of the

theory. In section 4, we describe our application, cash-management auctions held on

behalf of the Canadian federal government by the Bank of Canada, while in section

5 we present our empirical results. We conclude the paper in section 6 and, in an

appendix to the paper, we present a detailed description concerning the construction

of the data set used.

2. Model

Below, we develop a theoretical model that respects the institutional features common

to many multi-unit auctions. We divide this section into five parts: 1) the informa-

tional environment; 2) the auction rules; 3) a discussion of beliefs; 4) assumptions

concerning valuations; and 5) an example.

2.1. Informational Environment

We consider behaviour within the private values paradigm where each bidder has an

individual-specific valuation of every unit for sale. Thus, the unobserved heterogeneity

across bidders is multi-dimensional.

2.2. Auction Rules

We begin by making the following assumptions: First, supply is known to all bidders;

next, bids are discrete and must be chosen from a finite set of alternatives; third,

quantities are discrete and must be chosen from a finite set of alternatives; fourth,

only a small number of (quantity,bid) pairs can be chosen; and, finally, we focus on

discriminatory auctions where each winning bidder pays what he has bid for the units

he has won.
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We adopt the following notation: At any auction, the total supply is denoted S,

while the set of bidders is N = {1, 2, . . . , N}. Permissible prices lie on a grid P which

equals (pout, p, p2, . . . , p̄), while permissible quantities lie on a grid Q which equals

(q, q2, . . . , q̄). Here, pout denotes unwillingness to buy that unit at any price. Note

that, in principle, q̄ can vary from participant to participant, but we suppress this

dependence for notational parsimony.

We denote by bi,q bidder i’s unit-bid on quantity q where bi,q ∈ P for each q ∈ Q.

Bidder i’s unit-bids are collected in the vector bi, while the profile of bids for all of i’s

opponents is denoted b−i, and the profile of bids for all participants is b. The same

pattern of subscripts applies to marginal values, bidder strategies, and residual supply.

To wit, the first subscript denotes a bidder or set of bidders, the second subscript

denotes a quantity or set of quantities, while the absence of subscripts denotes all

of the participants or quantities. Hence, vi,q denotes bidder i’s marginal value for

quantity q, while bi,q(·) denotes the projection of bidder i’s pure strategy bi(·) onto

quantity q.1 Also, bi,q(vi) denotes bidder i’s unit-bid on quantity q given his values

vi and strategy bi(·). Here, si,q(b−i) denotes bidder i’s residual supply of quantity q.

In words, when opponents tender bids b−i, bidder i wins less than q units whenever

his unit-bid on the qth unit is less than si,q(b−i), or wins at least q units whenever

this unit-bid is greater than si,q(b−i). Under this notation, si,q [b−i(v−i)] denotes

bidder i’s residual supply when his opponents have values v−i. Let qi(bi, si) denote

the quantity that bidder i wins. We introduce the following definition:

Definition. A step in bid bi is a maximal interval [q, q′] of quantities having the

property that

bi,q = · · · = bi,q′ .

For any step Q ⊂ Q, let bi,Q denote bidder i’s step-bid on those quantities. We

denote by Q(bi) the partition of Q into steps induced by the bid vector bi. Each bid

1 McAdams (2003) has proven that a monotone pure-strategy equilibrium exists, while McAdams
(forthcoming) proves that every mixed-strategy equilibrium is outcome equivalent to a mono-
tone pure-strategy equilibrium. Thus, it is without loss of generality that we restrict attention
to equilibria in pure strategies.
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Figure 2.1

Example of Bids Inducing Steps
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induces a step-partitition of {q, . . . , q̄}. We illustrate the partition induced by a bid

vector having three steps in Figure 2.1, when q is one and q̄ is eight.

2.3. Beliefs

We ignore any dynamic features of the game and focus, instead, on short-run best-

responses. If all bidders are following a best response, then they are in a static

Bayes–Nash equilibrium.

We denote by Bi the (correct) beliefs of bidder i concerning the distribution of

si(b−i), given the strategies of others and the distribution of V−i. We denote by

Πi(bi,vi,Bi) bidder i’s expected payoff, given his own values vi, his bid vector bi,

and his beliefs Bi about the distribution of others’ bids.

2.4. Assumptions concerning Valuations

We make the following assumptions concerning the valuations of bidders:

A1. (V1, . . . ,VN ) are independent.
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A2. For every bidder i ∈ N , (Vi,q, . . . , Vi,q̄) are drawn from the same joint

distribution at each auction.

A3. Each bidder has non-increasing marginal values,

Vi,q ≥ Vi,2 ≥ . . . ≥ Vi,q̄ ≥ 0.

Other than non-increasing marginal values, we have not made any other restrictive

assumptions concerning the joint distribution of Vi.

In equilibrium, each bidder i tenders a bid that maximizes his expected payoff

given his values vi and correct beliefs Bi concerning the distribution of his residual

supply. Computing an equilibrium is difficult, even if we know the distribution of

bidder values. However, inferring possible bidder values from observed bids is much

less difficult than calculating an equilibrium, provided we assume that observed bids

are consistent with equilibrium.

An observed bid can only be a best response if the bidder does not prefer to

perturb that bid in any way. (Global deviations provide additional restrictions.)

This provides us with a (huge) system of equalities and inequalities involving vi that

must be satisfied, corresponding to all the perturbations that must be unprofitable.

2.5. An Example

To see this, consider the following example: Suppose there are three units for sale

and we observe bidder i making the bid ($100, $100, $50). For this bid to be a best

response, given a minimum price increment of $1, bidder i must at least weakly prefer
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it to all of the following bids:

($101, $101, $50), ($101, $100, $50), ($100, $99, $50),

($101, $99, $50), ($99, $99, $50), ($101, $101, $51),

($101, $100, $51), ($100, $100, $51), ($100, $99, $51),

($101, $99, $51), ($99, $99, $51), ($101, $101, $49),

($101, $100, $49), ($100, $100, $49), ($100, $99, $49),

($101, $99, $49), ($99, $99, $49).

(2.1)

Fortunately, others have shown that each bidder’s expected payoff is additively-

separable in his unit-bid on the first unit, the second unit, and so on; see Hortaçsu

(2002b). In particular, expected payoffs can be expressed as

Πi(bi,vi;Bi) =
∑

q∈Q

Πi,q(bi,q, vi,q;Bi) (2.2)

where

Πi,q(bi,q, vi,q;Bi) = Pr(bi,q > si,q|Bi)(vi,q − bi,q). (2.3)

Note that bidder i’s expected unit-payoff for quantity q does not depend on his

marginal value or unit-bid for other units. Furthermore, it only depends on the

marginal distribution of bidder i’s residual supply on the qth unit si,q, rather than

the joint distribution of si.
2

Thus, all perturbations of (2.1) are unprofitable as soon as we show that all

perturbations in a smaller set

($101, $101, $50), ($101, $100, $50), ($100, $99, $50),

($99, $99, $50), ($100, $100, $51), ($100, $100, $49)

2 Ties may be important theoretically, but in our application below they are unimportant
empirically, so for parsimony we omit discussing them here.
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are unprofitable. For example, if ($101, $99, $51) is a profitable deviation, then either

($101, $100, $50), or ($100, $99, $50), or ($100, $100, $51) must also be a profitable

deviation.

If P were a continuum, so we could take derivatives, then these requirements

would reduce to

dΠi,1(bi,1, vi,1;Bi)

dbi,1
≤ 0

dΠi,1(bi,1, vi,1;Bi)

dbi,1
+

dΠi,2(bi,2, vi,2;Bi)

dbi,2
= 0

dΠi,2(bi,2, vi,2;Bi)

dbi,2
≥ 0

dΠi,3(bi,3, vi,3;Bi)

dbi,3
= 0.

Notice that the first three conditions do not depend on vi,3, while the fourth condition

does not depend on (vi,1, vi,2). When identifying the values vi for which the observed

bid is a best response, it suffices to consider the two step-bids separately. The pair

(vi,1, vi,2) is identified by the step-bid (bi,1, bi,2), which equals ($100, $100), while vi,3

is identified by the step-bid bi,3 equal $50. The identification problem for vi,3 is

much like at a single-object, first-price, sealed-bid auction: We find the vi,3 that

rationalizes bi,3 by inverting the fourth condition above. The identification problem

for (vi,1, vi,2) can be broken into two parts. First, replace the first three conditions

with the following two equalities:

dΠi,1(bi,1, vi,1;Bi)

dbi,1
= 0 (2.4)

and
dΠi,2(bi,2, vi,2;Bi)

dbi,2
= 0. (2.5)

For now, use the notation (ṽi,1, ṽi,2) for values that solve the system of equalities

defined by equations (2.4) and (2.5). Second, identify all other (vi,1, vi,2) pairs that

satisfy
dΠi,1(bi,1, vi,1;Bi)

dbi,1
< 0, (2.6)
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dΠi,2(bi,2, vi,2;Bi)

dbi,2
> 0, (2.7)

and
dΠi,1(bi,1, vi,1;Bi)

dbi,1
+

dΠi,2(bi,2, vi,2;Bi)

dbi,2
= 0. (2.8)

Overall, there will typically be a set of values that can rationalize the observed step-

bid. We depict this set graphically as the line segment between A and B in Figure

2.2.3 In that figure, the element marked A satisfies equations (2.4) and (2.5), while all

others between A and B satisfy conditions (2.6)–(2.8). Note that, in this example, all

points on the line segment between A and B correspond to increasing marginal values.

For instance, point B corresponds to the extreme case in which the bidder requires

two units to get any value from winning. Given this bid, we conclude that either

bidder i has increasing marginal values or ($100, $100, $50) is not a best response.

Now, under the assumption that the bidder has non-increasing marginal values, the

bidder type corresponding to some point like C will be “closest” to finding the bid

($100, $100, $50) to be a best response. We devise methods to estimate the economic

distance between points like A and points like C in terms of lost expected profits

relative to a best response.

3. Implications of the Theory

In this section, building on McAdams (2006), we develop the relevant theoretical

implications for our investigation of the best-response hypothesis. First, as in the

study of first-price SOAs by Guerre et al., a bid in a discriminatory MUA model

cannot possibly be a best response unless a MLRP-like property is satisfied by the

distribution of observed bids. Unlike in models of first-price SOAs, however, one

can still reject the best-response hypothesis in discriminatory MUA models when a

MLRP-like property is satisfied. In particular, given non-increasing marginal values,

we develop methods to detect and to bound the magnitude of inferred best-response

violations.

3 If negative marginal values are admitted, then the set would correspond to the ray from A

passing through B.
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Figure 2.2

Best-Response Violation given Non-Increasing Marginal Valuations
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3.1. Restrictions on Bids

For each bidder i and each quantity q, introduce

λi,q(b) ≡ Pr(bi,q > si,q|Bi).

From section 2, we then know that bidder i’s expected payoff from bid bi, given values

vi and belief Bi, takes the form

Πi(bi,vi;Bi) =
∑

q∈Q

λi,q(bi,q)(vi,q − bi,q).

3.1.1. Monotone Likelihood-Ratio Property

For the moment, consider the first-price SOA, a special case of the discriminatory

MUA when only one unit is sold. Here, λi,1(b) is the probability that bidder i wins

one unit with bid b. Suppose that bidder i submits a bid bi that exceeds the reserve
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price. Bidder i could have instead submitted (bi−1) or (bi+1). By revealed preference,

it must have been that bidder i preferred submitting bi over these two other bids:

λi,1(bi)(vi − bi) ≥ λi,1(bi − 1)(vi − bi + 1)

λi,1(bi)(vi − bi) ≥ λi,1(bi + 1)(vi − bi − 1).

Re-arranging these two inequalities yields the well-known MLRP of equilibrium bids

at a first-price SOA: For bid bi to be a best response for bidder i, it must be the case

that
λi,1(bi − 1)

[λi,1(bi) − λi,1(bi − 1)]
≤ vi − bi ≤

λi,1(bi + 1)

[λi,1(bi + 1) − λi,1(bi)]
. (3.1)

If condition (3.1) fails, then bidder i must prefer either to lower his bid to (bi − 1) or

to raise his bid to (bi + 1), regardless of his value; see, for example, the discussion in

Athey and Haile (forthcoming).

In practice, when several units are sold at a discriminatory auction, bidders

typically submit bids having steps that contain several units. Let bi,Q be one step-bid

in an observed bid bi. Bidder i could have instead submitted (bi,Q − 1) or (bi,Q + 1)

on all units in the step Q. By revealed preference, it must have been that bidder i

prefers submitting bi,Q on these units:
∑

q∈Q

λi,q(bi,Q)(vi,q − bi,Q) ≥
∑

q∈Q

λi,q(bi,Q − 1)(vi,q − bi,Q + 1) (3.2)

∑

q∈Q

λi,q(bi,Q)(vi,q − bi,Q) ≥
∑

q∈Q

λi,q(bi,Q + 1)(vi,q − bi,Q − 1). (3.3)

Re-arranging conditions (3.2) and (3.3) yields
∑

q∈Q

λi,q(bi,Q + 1) ≥
∑

q∈Q

(vi,q − bi,Q)
[

λi,q(bi,Q + 1) − λi,q(bi,Q)
]

∑

q∈Q

λi,q(bi,Q − 1) ≤
∑

q∈Q

(vi,q − bi,Q)
[

λi,q(bi,Q) − λi,q(bi,Q − 1)
]

,

which requires

∑

q∈Q

(vi,q − bi,Q)

[

λi,q(bi,Q) − λi,q(bi,Q − 1)
]

∑

q∈Q λi,q(bi,Q − 1)
≥ 1 ≥

∑

q∈Q

(vi,q − bi,Q)

[

λi,q(bi,Q + 1) − λi,q(bi,Q)
]

∑

q∈Q λi,q(bi,Q + 1)
.

(3.4)
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Table 3.1

Summary Statistics: Step Sizes versus Bids

Millions of Dollars

Summary Statistic All Steps 1st Steps 2nd Steps 3rd Steps 4th Steps

Average 304 374 102 42 32
First Decile 23 25 20 20 10

Lower Quartile 33 50 25 20 20
Median 99 225 25 25 20

Upper Quartile 632 716 100 27 25

When Q is {1}, condition (3.4) reduces to condition (3.1) and fails to hold whenever

λi,1(bi,1 − 1)

[λi,1(bi,1) − λi,1(bi,1 − 1)]
>

λi,1(bi,1 + 1)

[λi,1(bi,1 + 1) − λi,1(bi,1)]
.

More generally, condition (3.4) fails whenever

λi,q(bi,Q − 1)
[

λi,q(bi,Q) − λi,q(bi,Q − 1)
] >

λi,q(bi,Q + 1)
[

λi,q(bi,Q + 1) − λi,q(bi,Q)
] for all q ∈ Q. (3.5)

As long as condition (3.5) does not fail for some q̃ ∈ Q, however, one can find marginal

values (with relatively large marginal value for the q̃th unit), so the inequalities (3.4)

are satisfied for step Q. We summarize this discussion in the following theorem:

Theorem 1: An observed bid bi cannot be a best response at a discriminatory

MUA unless, for every step Q ∈ Q(bi), there exists q ∈ Q such that
[

λi,q(bi,Q) − λi,q(bi,Q − 1)
]

∑

q∈Q λi,q(bi,Q − 1)
≥

[

λi,q(bi,Q + 1) − λi,q(bi,Q)
]

∑

q∈Q λi,q(bi,Q + 1)
.

Note that a best response can only be rejected by our generalization of the MLRP

when #(Q) separate conditions hold simultaneously for some Q ∈ Q(b) where #(Q)

denotes the number of quantities in step Q. For our application, we tabulated in

Table 3.1 the average step-size as well as some of the quantiles for all of the bids as

well as the first, second, third, and fourth steps. Note that ninety percent of the steps

span a range of more than twenty million dollars. In our application, after the first

step, which is five million dollars, the minimum step size is one million dollars. Thus,

almost all observed steps contain many quantities. Not surprisingly, we never fail to

reject the best-response hypothesis due to a failure of MLRP in our application.
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3.1.2. Non-Increasing Marginal Values

In this section, we derive novel testable restrictions, provided one is willing to as-

sume that bidders have non-increasing marginal values. We summarize these in the

following theorem:

Theorem 2: Suppose that bidder i has non-increasing marginal values. An

observed bid bi cannot be a best response at a discriminatory MUA unless, for

every step Q ∈ Q(bi) and every q ∈ Q,

∑

q̃∈[min Q,q] λi,q̃(bi,Q + 1)
∑

q̃∈[min Q,q]

[

λi,q̃(bi,Q + 1) − λi,q̃(bi,Q)
] ≥

∑

q̃∈[q,max Q] λi,q̃(bi,Q − 1)
∑

q̃∈[q,max Q]

[

λi,q̃(bi,Q) − λi,q̃(bi,Q − 1)
] .

(3.6)

Proof: Consider any step Q ∈ Q(bi) and any q ∈ Q. One feasible deviation for bidder

i is to raise his unit-bids on units [min Q, q] ⊂ Q from bi,Q to bi,Q+1. Another feasible

deviation is to lower his unit-bids on units [q, max Q] ⊂ Q from bi,Q to bi,Q − 1.4 For

bi to be a best response, both of these deviations must be unprofitable. In particular,

the following two inequalities must hold:

∑

q̃∈[min Q,q]

λi,q̃(bi,Q)(vi,q̃ − bi,Q) ≥
∑

q̃∈[min Q,q]

λi,q̃(bi,Q + 1)(vi,q̃ − bi,Q − 1) (3.7)

∑

q̃∈[q,max Q]

λi,q̃(bi,Q)(vi,q̃ − bi,Q) ≥
∑

q̃∈[q,max Q]

λi,q̃(bi,Q − 1)(vi,q̃ − bi,Q + 1) (3.8)

Re-arranging conditions (3.7) yields

∑

q̃∈[min Q,q]

λi,q̃(bi,Q + 1) ≥
∑

q̃∈[min Q,q]

[

λi,q̃(bi,Q + 1) − λi,q̃(bi,Q)
]

(vi,q̃ − bi,Q)

≥ (vi,q − bi,Q)
∑

q̃∈[min Q,q]

[

λi,q̃(bi,Q + 1) − λi,q̃(bi,Q)
]

.

4 In our application, around 2.54 percent of our unique bid pairs contain four steps, the maximal
number of steps allowed. Thus, the maximal number of bids allowed rarely appears to be
binding, at least in our application.
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where the second inequality follows from the assumption of non-increasing marginal

values since vi,q̃ is less than or equal to vi,q for all q̃ less than or equal to q. Similarly,

re-arranging condition (3.8) and using the fact that vi,q̃ is less than or equal to vi,q

for all q̃ greater than or equal to q, yields

∑

q̃∈[q,max Q]

λi,q̃(bi,Q − 1) ≤
∑

q̃∈[q,max Q]

[

λi,q̃(bi,Q) − λi,q̃(bi,Q − 1)
]

(vi,q̃ − bi,Q)

≤ (vi,q − bi,Q)
∑

q̃∈[q,max Q]

[

λi,q̃(bi,Q) − λi,q̃(bi,Q − 1)
]

.

Altogether then

∑

q̃∈[min Q,q] λi,q̃(bi,Q + 1)
∑

q̃∈[min Q,q]

[

λi,q̃(bi,Q + 1) − λi,q̃(bi,Q)
] ≥vi,q − bi,q ≥

∑

q̃∈[q,max Q] λi,q̃(bi,Q − 1)
∑

q̃∈[q,max Q]

[

λi,q̃(bi,Q) − λi,q̃(bi,Q − 1)
] .

If (3.6) is violated for any quantity q, then bidder i must find one of these two

deviations to be profitable, regardless of his values.

3.2. Discussion

When observed bids contain steps having many quantities, the restrictions imposed

by Theorem 1 become very weak, while those imposed by Theorem 2 remain relatively

strong. Consider an example in which an observed bid bi for two hundred units has

two steps, each of length one hundred. To conclude that bi could not be a best

response, Theorem 1 requires that either one hundred conditions hold simultaneously

on the functions [λi,1(·); ...; λi,100(·)] or one hundred conditions hold simultaneously

on the functions [λi,101(·); ...; λi,200(·)]. If one is willing to assume that bidders have

non-increasing marginal values, then Theorem 2 provides many more restrictions. In

particular, we may conclude that bi is not a best response if any of two hundred

conditions hold. One hundred of these conditions depend on [λi,1(·); ...; λi,100(·)],
while the other one hundred depend on [λi,101(·); ...; λi,200(·)].
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In our empirical application, a typical step contains dozens if not hundreds of

quantities. Not surprisingly, the testable restrictions of Theorem 1 have no bite. More

interesting is the fact that many observed bids violate at least one of the restrictions

imposed by Theorem 2. This allows us to conclude that either some bidders often

fail to have non-increasing marginal values or some bidders often fail to play a best

response.

Kastl (2005) has provided an alternative explanation for why bidders submit

bids having steps with many quantities. In his model, bidders prefer to submit

bids having fewer steps, because they must pay a cost that is increasing in the

number of steps that they use. Could such bidding complexity costs account for

observed bidding behaviour? Fortunately, our analysis can be adapted to test this

alternative hypothesis as well. From any given bid, each bidder has a large set of

feasible deviations available to him, including many that do not increase the number

of steps. A bidder who faces complexity costs must not prefer to deviate in any way

that does not increase the number of steps.

Consider any observed bid bi having at least three steps, and consider any step

in this bid that is neither the first nor the last step; i.e., Q ∈ Q(bi) and Q 63 q, q̄. Let

Q,Q ∈ Q(bi) be the steps that are adjacent below and above Q; i.e., Q 3 min Q − 1

and Q 3 max Q + 1. For every q ∈ Q, bidder i could raise all unit-bids on quantities

[min Q, q] from bi,Q to bi,Q or lower all unit-bids on quantities [q, max Q] from bi,Q

to bi,Q. Each of these deviations does not increase the number of steps. Unless an

inequality very similar to condition (3.6) is satisfied, one of these two deviations must

be profitable for bidder i.

Theorem 3: Suppose that bidder i has non-increasing marginal values. An

observed bid bi having three or more steps cannot be a best response (even given

bidding complexity costs) in the discriminatory auction unless, for every triple

of consecutive steps (Q,Q,Q) ⊂ Q(bi) and every q ∈ Q,
∑

q̃∈[min Q,q] λi,q̃(bi,Q)
∑

q̃∈[min Q,q](λi,q̃(bi,Q)−λi,q̃(bi,Q))

bi,Q−bi,Q

≥
∑

q̃∈[q,max Q] λi,q̃(bi,Q)
∑

q̃∈[q,max Q](λi,q̃(bi,Q)−λi,q̃(b
i,Q

))

bi,Q−b
i,Q

.
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The proof of Theorem 3 is almost identical to that of Theorem 2, and omitted to

save space. To be applicable, Theorem 3 requires that bidders submit bids having at

least three steps. Unfortunately, in our data set, bidders rarely submit bids having

three or more steps. For this reason, we must wait for future research to test whether

bidding complexity costs alone can rationalize observed bids.

3.3. Calibrating the Magnitude of the Best-Response Violations

Let bi(vi) denote a best response for bidder i given values vi. When an observed bid

vector bi fails condition (3.6), we may conclude that

Πi(bi,vi,Bi) < Πi[bi(vi),vi,Bi] for all non-increasing vi.

Although bi may not to be a best response, given non-increasing marginal values, it

need not be “far” from being a best response. For each bid that violates condition

(3.6), we compute a lower bound of the bidder’s lost expected profit, relative to a

best response:

Lossi(bi) = min
vi

{Πi[bi(vi),vi,Bi] − Πi(bi,vi,Bi)}

for all non-increasing vi.
(3.9)

4. Empirical Application: Auctions of Receiver General Term Deposits

As the fiscal agent of the Canadian federal government, the Bank of Canada advises

the government on its profile of borrowing as well as manages its day-to-day cash

and foreign exchange reserves.5 The RG auctions, which are conducted in both

the morning and the afternoon, are the main instruments through which the Bank of

Canada conducts cash management. The Bank of Canada uses the morning MUAs to

invest excess government cash in term-deposits held at various financial institutions.

The afternoon MUAs are used to sterilize the effect that government cash flows

5 The majority of the material in this section was derived from Merrett, Boisvert, and Côté
(1995).
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have on the net-supply of reserves funds among Canadian financial institutions, thus

ensuring that the Bank of Canada’s monetary-policy objectives are met.

Short-term repurchases of central-bank funds, also referred to as repos, are the

main traded instruments in the overnight market. These repos are exchanged among

major investment dealers in Canada. While the maturities of the repos can vary

from overnight to one week, the bulk involves overnight funds. The market-makers

are direct clearers in the main Canadian payment and settlement system, the Large

Value Transfer System (LVTS). Firms permitted to use the LVTS include the seven

chartered banks of Canada as well as several large credit unions and some foreign

banks.6

The LVTS, which began operations in February 1999, is the payment and set-

tlement system through which large-value or time-critical transactions are processed.

Only financial institutions that, among other technical requirements, are members

of the Canadian Payments Association (CPA) and have an account at the Bank of

Canada may use the LVTS. All LVTS payments are settled through the accounts of

participants held at Bank of Canada. Negative balances held at the end of trading

need to be financed through loans from the Bank of Canada at the Bank rate, which

the Bank of Canada sets as part of its monetary-policy target.7 Positive balances

held at the end of trading accrue interest at the Bank rate minus 50 basis points;

i.e., at one-half of one percent below the Bank rate. No participant is required to

hold a specific level of reserves at the Bank of Canada. This is essentially a tunnel

system of monetary policy implementation as described in Whitesell (forthcoming)

and Chapman (2006).

The end-of-day net-supply of reserve funds within LVTS is targeted by the Bank

6 In November 2002, for example, the LVTS participants included: Alberta Treasury Branches,
Bank of America National Association, Bank of Montreal, Bank of Nova Scotia, BNP Paribas
(Canada), La Caisse Centrale Desjardins du Québec, Canadian Imperial Bank of Commerce,
Credit Union Central of Canada, HSBC Bank Canada, Laurentian Bank of Canada, National
Bank of Canada, Royal Bank of Canada, and Toronto Dominion Bank.

7 Prior to 2001, this was the Bank rate; after 2001, it is the Bank of Canada’s target rate, which
is the Bank rate minus 25 basis points.
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of Canada as part of an effort to reduce the effects of uncertainty concerning public-

sector flows (such as federal government disbursements and receipts of funds) have

on the overnight rate. Cash managers at the Bank of Canada determine the target

for end-of-day net-supply in the afternoon prior to the afternoon RG auction. At the

inception of LVTS, this targeted level was a zero net-supply of reserves. In the latter

half of 2000, this target was changed to a small positive amount. Actual net-supply

in the LVTS may not equal the target amount because of unexpected changes that

occur after the afternoon RG auction. In general, these differences are small and

unforecastable by the Bank of Canada.

The constant level of net-supply of reserve funds as well as the penalty rates that

the Bank of Canada imposes on non-zero account balances in the LVTS effectively

mean that the overnight rate remains inside a 50-basis point band, with the Bank

rate being the upper bound and the target rate being the middle.

At RG auctions, cash in excess of that needed by the Canadian federal govern-

ment in its daily operations is deposited with direct clearers of the LVTS. The interest

rate on these deposits is determined at a sequence of MUAs. These auctions can be

thought of as auctions at which the Bank of Canada seeks the highest interest rate

for its deposits. The size of an RG auction is based on the daily operational needs

of the Canadian federal government as well as daily monetary-policy operations; see

Merrett et al. (1995) as well as Howard (1998). Thus, it is reasonable to assume that

the supply of funds is exogenous.

The auctions conducted by the Bank of Canada are multi-unit, simultaneous,

dependent auctions. The term multi-unit refers to the fact that billions of dollars of

cash are at auction, while the term simultaneous refers to the fact that all participants

in the LVTS must submit bids by a certain deadline, 9:15 a.m. for the morning RG

auctions and 4:15 p.m. for the afternoon RG auctions. The bids are then processed at

the same time. The term dependent refers to the fact that a bidder’s action determines

both the price he pays and the number of units he wins. At the RG auctions,
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participants submit (size,rate) pairs for term-deposits of different maturities.8 For

example, in the market for overnight deposits, the most important market, a financial

institution might submit a tender of 3.15 percent (an annualized interest rate) for $100

million, another of 3.00 percent for $100 million, and 2.90 percent for $200 million.

At the RG auctions, participants can submit up to four (size,rate) pairs. The Bank

of Canada then aggregates all of these bid vectors and allocates the available units

to the highest bidders.

The prices that bidders pay at auction can be determined in at least two different

ways. At uniform-price auctions, all bidders pay the same per-unit price, which

typically equals the lowest bid that won some amount of the good. The United

States Treasury sells Treasury bills according to this pricing rule as does the Bank of

Canada when selling inflation-protected bonds. On the other hand, at discriminatory

auctions, each bidder pays the amount he bid for each unit he has won. The Bank of

Canada uses the discriminatory pricing rule at RG auctions.

At both the morning and the afternoon RG auctions, the term to maturity

for the funds being auctioned can vary from overnight to a month, but the bulk

is overnight. Multiple deposits with different maturities may be offered simultane-

ously. Each distinct deposit being offered at auction is known as a tranche. Auctions

are conducted through the Bank of Canada’s Communication, Auction and Report-

ing System (CARS). Results are settled using the LVTS, directly through accounts

maintained at the Bank of Canada.

Bids at RG auctions are subject to the following restrictions: First, only partic-

ipants in the LVTS system are eligible to bid; second, each bidder may submit up

to four bids for any tranche of deposits being auctioned; third, bids take the form of

(size,rate) pairs, where the size equals the amount the participant is willing to accept

as a deposit and the rate is the specified interest rate on this deposit; fourth, bidders

pay their bid; fifth, all rates bid are in the form of an annualized interest rate specified

8 Equivalently, one can think of the (size,rate) pairs as (quantity,price) pairs.
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up to a single basis point;9 and, sixth, each quantity bid must be in an increment of

$1 million CAD, starting from a lower bound of $5 million CAD and going up to a

bidder-specific limit.

The bidding limit for each participant is based on its CPA ratio. Essentially,

this ratio is the participant’s market share of Canadian dollar deposits; see Bank of

Canada (2000). The formula used to determine the bidding limits is the following:

`i = ρi × 2.5 max
(

2 × 109, S
)

(4.1)

where S is the auction size, ρi is bidder i’s CPA ratio, and `i is bidder i’s bidding limit.

Therefore, the aggregate bidding limit equals two and one-half times the amount being

auctioned or two billion dollars, whichever is greater. Each bidder is assigned a share

of this aggregate in proportion to its CPA ratio. A limit is placed on individual

bidding in an effort to avoid a market squeeze on available reserves. The two and

one-half multiple is set to ensure that the auction has adequate cover, which refers

to the ratio of bids to total amount being auctioned. A MUA at which inadequate

cover exists may result in the failure to place all the units being sold.

5. Econometric Specification and Empirical Results

Below, we implement the theoretical framework of sections 2 and 3 to interpret the

data described in the appendix using the institutional rules summarized in section 4.

5.1. Econometric Specification

We believe that the following are important empirical features of the RG auctions

that must be incorporated in our empirical model:

1) Each LVTS member appears to have a private value determined by its own

cash-reserve needs.

9 A basis point is 0.01 of one percent.

21



2) The bids are constrained to be on a lattice of 51 points because bids can

only be quoted to four decimal points of the interest rate and must be within

a band of the target rate plus or minus 25 basis points.10

3) For bidder i, quantities are constrained to be on a lattice of points starting

at $5 million and increasing by increments of $1 million up to the nearest

million of `i.

4) There is a common-value component, which Chapman (2006) has isolated

to be the target rate and for which we have data.

We denote by θ the common part to the values of all bidders.

5.1.1. Additional Assumptions concerning Valuations

We assume that bidder i’ private component Vi and the common component θ satisfy:

A4. Bidder i’s marginal value for quantity q is (Vi,q + θ) for all q.

That is, the common component θ affects all marginal values in the same way. We

also assume

A5. θ varies from auction to auction, but is commonly known to the bidders.

Note that, under these assumptions, in equilibrium, all bids will rise and fall, one-for-

one, with θ. An implication of this is that, in equilibrium, participant i’s bid vector

will be of the form [bi(vi) + θ].

Because the good being sold is cash, the assumption of non-increasing marginal

valuations seems natural. Assumption A4 imbeds the implicit notion that the distri-

bution of the demand for cash in Canada by LVTS members, after normalizing for

changes in the target rate, was stable over the sample period 1 October 2001 through

31 December 2003.

10 This is not strictly true. For while CARS will only accept a bid within this band, in some
circumstances, an institution can fax the Bank of Canada with a bid outside this range. In
our data, this happened only four times, all in the four days before the fixed action date of
November 2001.
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Figure 5.1

Difference between the Overnight Rate and the Target Rate
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Although we do not directly observe θ, we have an ex ante proxy for it, the

target rate. One ex post measure of θt would be the actual interest rate determined

in the overnight market on date t. In Figure 5.1, we present a graph of the difference

between the actual θt, the overnight rate, and our proxy of θt, the target rate. This

difference has a sample mean very close to and not significantly different from zero.

Also, most of the deviations are very small. This evidence suggests that the target

rate is a very accurate proxy for θt.

5.2. Empirical Results

As mentioned above, in section 4, each auction can have several different tranches for

sale. Thus, the RG auctions have both multi-unit and multi-object features: Within

a tranche, millions of units (dollars) of cash are available, but funds of different

maturities are effectively different objects. In our data, tranches are defined by days

to maturity. The most common tranche is for one-day maturities, overnight paper.

Nearly two-thirds of all maturities are overnight. Even some of the maturities between

two and eight days are effectively overnight: Two- or three-day maturities sold on
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Fridays ensure that a bank gets to Monday, or Tuesday in the case of a long weekend.

Four-day maturities sold on the Thursday before Good Friday, a statutory holiday

in Canada, just get a bank to the Tuesday following Easter Monday, which is also a

statutory holiday. Only a small fraction of tranches are for longer-term maturities;

i.e., those over three days. For these reasons, we focus exclusively on the overnight

market.

In addition to holding RG auctions in both the morning (AM) and the afternoon

(PM), the Bank of Canada operated under different policy regimes, one before “fixed

action dates” (FAD), which were instituted in the third quarter of 2001, and the other

after. Basically, under fixed action dates, the Bank of Canada committed to making

changes only on pre-specified “action” dates. We focus on data from the Post-FAD

regime.

In order to reduce heterogeneity across auctions, both observed and unobserved,

we focused on a subset of our data concerning the LVTS—the post-FAD period,

auctions taking place between 1 October 2001 and 31 December 2003. In addition,

we focused on the shortest-maturity instrument in the morning auctions that involved

a total supply S of between $800 and $1, 200 million CAD. As a short-hand, we refer

to this sample as the post-FAD, TDAM auctions. We chose this sample for two

reasons. First, since bidders know the volume coming into the auction, their bidding

behaviour will depend on the volume. It is important that volumes not vary too

much. While it would be desireable to focus solely on volumes of, say, $1,200 million

CAD, not enough of these existed in our sample. Thus, we expanded the window that

met a second consideration: Since the λi,qs described in section 3 are to be estimated

nonparametrically, we need a relatively large sample of data. Under the $800–$1,200

million CAD window, we used about one-half of the data set, 46 percent. Note,

however, that even though the total amount for sale might be $1,200 million CAD,

winning bids are typically only ever observed up to $500–$600 million CAD. This is

because the auctions are sufficiently well covered so no participant who bids all the

way out to his bid limit ever wins at those large quantities. Thus, if a step bid goes
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to, say, $1,000 million CAD, then we truncate it to what we can use to estimate the

λi,qs. In the post-FAD TDAM sample, this is $575 million CAD.

5.2.1. Estimating the λ-Probabilities

The λ-probabilities are estimated using a quantity-price grid of observed inverse

residual-supply curves. This grid was constructed as follows: For each bidder, a

quantity-price grid was constructed; for each auction, the inverse residual-supply

curve that the bidder encountered was traced out on this grid of points and one was

added to each of the cells in which it fell. This left, for each quantity-bidder com-

bination, a frequency distribution concerning the number of times that the residual

supply at a given quantity was observed for a given normalized interest rate. Here,

normalized means that we adjusted bids by subtracting out the target rate. In other

words, for quantity q, the normalized interest rate r and bidder j, we observed the

number of times nq,r,j out of the T that the residual supply for quantity q was ob-

served to be r for bidder j. For a typical quantity-price grid, in this case for quantity

150 ($150 million CAD) and bidder having identification number 40, we obtained the

relative frequency distribution presented in Figure 5.2.

Under this grid, the λ-probabilities were constructed nonparametrically in two

related ways—first, using the empirical distribution function (EDF) and, second, by

nonparametric smoothing. Using the EDF, λi,q(b) is estimated by

λ̂i,q(b) =

∑

r≤b nq,r,i
∑25bp

r=−25bp nq,r,i

(5.1)

where bp denotes basis point. In the smoothing case, a discrete version of the Gaussian

kernel was employed where we experimented with different bandwidth parameters

between 0.001 and 0.08.

The discrete version of the Gaussian kernel was constructed as follows. First,

a Gaussian-kernel nonparametric smoother was used in the usual way to create a

nonparametric smoothed probability density function of the winning values. Second,

the probabilities at the lattice points we were using (i.e., ±25bp) were kept and all
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Figure 5.2

Histogram of Inverse Residual-Supply Curve

q = 150; Bidder 40
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Figure 5.3

Smoothed Histogram of Inverse Residual-Supply Curve

q = 150; Bidder 40; Bandwidth = 0.01
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other values were discarded. Third, these were reweighted, by dividing them by their

sum. Thus, these 51 values summed to one. Fourth, one minus the cumulative sum

of these values was then used as the probability of winning the given quantity. The

above weights are weakly positive and sum to one and are, therefore, a valid kernel

to conduct this discrete kernel smoothing; see Santer and Duffy (1989). For a typical

quantity-price grid, in this case for quantity 150 ($150 million CAD) and bidder

having identification number 40, we obtained the “smoothed” relative frequency

distribution presented in Figure 5.3.

We chose to conduct our analysis using both a bandwidth of zero (the EDF) and

a bandwidth of 0.01. We chose the second bandwidth because it was small enough to

introduce only a small amount of bias and because this degree of smoothing eliminated

the “flat” parts of the probability of winning which appeared to be the source of

the majority of best-response violations. As a check that the bandwidth 0.01 was

reasonable, Silverman’s rule was calculated for the each of the sample bidder-quantity

probability distributions.11 The average choice of Silverman’s rule was 0.0081 with a

standard deviation of 0.0019. The number of best-response violations did not change

appreciably with a bandwidth of 0.0081.

5.2.2. Sampling Variability

To calculate estimates of the sampling variability of various quantities, we employed

the method called subsampling; see Politis, Romano, and Wolf (1999). We chose not

to use the bootstrap because in auction models within the private values paradigm the

support of the distribution of bids typically depends on the underlying distribution,

violating one of the regularity conditions required to use the bootstrap. Also, we chose

not to use the jackknife because Efron (1982) has shown that jackknife estimates of

quantiles typically do not work well, presumably because the smoothness regularity

11 Note that Silverman’s rule, which is derived for continuous random variables, is not necessarily
valid theoretically with discrete bids. We include this discussion here because others have
expressed interest concerning what Silverman’s rule would have indicated and how that would
have worked in this case.
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condition is violated; see Shao and Tu (1995). Our estimates of the inverse residual-

supply functions are based on quantiles. Because subsampling works under mild

regularity conditions, when an asymptotic distribution exists, we felt that it was the

most robust for our purposes. We chose a block size T1 equal T
3
4 where T is 372,

and rounded down to 84. T
3
4 is the appropriate block size when the underlying

estimators are
√

T consistent, which seems reasonable given that our estimates are

based on quantiles and sums.

Thus, having calculated the λ̂T using all T observations, we then drew subsam-

ples of size T1. For each subsample, we then carried out the empirical analysis and

then obtained K different estimates {λ̂k
T1
}K

k=1 where the superscript k and the T1

subscript highlight the fact that this kth estimated quantity is based on a subsample

of size T1 drawn from the observed sample of size T . Based on these subsampled es-

timates, we then calculated, among other quantities, the losses that obtained when a

best response was not used. From these subsamples, we then estimated the sampling

variability in our point estimates; these are reported in terms of confidence intervals

in Tables 5.6 and 5.7.12

5.2.3. Highlights of Empirical Results

One of the most striking features of the data from the LVTS is that participants

rarely submitted the four (size,rate) pairs permitted under the rules of the auctions.

In fact, the bulk of the participants used just one (size,rate) pair. We illustrate this

point by reporting the number of unique pairs submitted in our data set in Table 5.1.

Using only one (size,rate) pair does not appear on the surface to be a best response.

We should like to investigate how far from a best response submitting one, two, or

three bid pairs is.

The most striking feature of Table 5.2 is the large proportion of best-response

violations—an average over all bidders of 42 percent, with a range of between 23 and

71 percent, depending on the bidder. Note, however, that the vast majority of these

12 The confidence intervals reported in these tables are one-sided, to be used to test the hypothesis
that the mean (median) loss is greater than zero against the null hypothesis that it equals zero.
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Table 5.1

Number of Unique Bid Pairs

Pairs 1 Day 2–8 Days

1 3222 1218
2 344 146
3 264 93
4 91 47

violations appear to arise from the jagged nature of non-smoothed estimates of the

λs derived from data illustrated by the example in Figure 5.2. Only a small amount

of smoothing caused the proportion of best-response violations to fall to between 5

and 34 percent, again depending on the bidder, with an average of about 9 percent.

Note, too, there does not appear to be a systematic pattern between the proportion of

best-response violations and the step on which they obtained as illustrated in Tables

5.4 and 5.5.

From Tables 5.6 and 5.7, we note that the mean and median lower bound for

estimated losses are relatively small. We estimate that the implicit value at risk

for an average winning bid to be in tens of thousands of dollars, when calibrated

at a daily rate; the comparable average loss, when calibrated at the daily rate, is

between $1.00 and $826.00 when the EDF estimates are used, but only between $0.00

and $35.19 when the smoothed EDF estimates are used. The median estimates are

smaller for both methods of estimation; in the smoothed case all of the estimated

median losses are zero. The ninety-five percent, one-sided confidence intervals that

we have calculated using subsampling are quite small for the EDF estimates, but

sometimes large for the smoothed EDF estimates of the mean losses: Smoothing

appears to admit outliers that are quite influential in determining our estimated

mean losses. Because the median is less influenced by extreme values, our ninety-five

percent one-sided confidence intervals for the smoothed EDF median losses are quite

small.

6. Summary and Conclusions

Deciding whether bidders at auctions are playing a best response is perhaps one
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Table 5.2

Proportion of Violations by Bidder: EDF Estimates

Bidder Number Percent of Bids
38 0.4696
40 0.2391
41 0.2588
42 0.3699
43 0.5031
52 0.7061

510 0.4886
50 0.4588

296 0.4007
39 0.3214
51 0.6466
46 0.5000

573 0.2813
574 0.2857
350 0.2375
344 0.2632
431 0.4444

Average 0.4191

Table 5.3

Proportion of Violations by Bidder: Smoothed EDF Estimates

Bidder Number Percent of Bids
38 0.1768
40 0.0516
41 0.1779
42 0.0116
43 0.0497
52 0.0571

510 0.0183
50 0.0118

296 0.0941
39 0.1071
51 0.0733
46 0.1111

573 0.1563
574 0.1429
350 0.0625
344 0.2632
431 0.3333

Average 0.0852

30



of the most fundamental questions faced by empirical workers employing the struc-

tural econometric approach. We have investigated this question in a model of a

multi-unit, discriminatory auction, assuming that the true valuations of bidders are

unobserved, but that marginal valuations are non-increasing. When we implemented

our framework using data from RG auctions, we found that best-response violations

are frequent, but for most bidders the median lower bound of the economic distance

between the estimated best-response and the bid data is small.

Our main conclusions are the following: While the bidders in this market are

extremely skilled, they make small mistakes relatively frequently. Only occassionally,

however, do they make a costly mistake. The majority of the mistakes that we

measure are small, often less than the price of a cup of coffee when the implicit values

at risk are in tens of thousands of dollars. Thus, equilibrium play appears to be a

reasonable approximation of actual bidder behaviour.
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Table 5.4

Violations of Best Response by Step: EDF Estimates

Bidder Number Step One Step Two Step Three Step Four

38 0.4696 NA∗ NA NA
40 0.2255 0.5000 NA NA
41 0.2507 0.2500 0.1429 0.0000
42 0.3526 0.4286 NA NA
43 0.4658 0.1944 0.5000 NA
52 0.4735 0.2966 0.3645 0.3571

510 0.4703 0.3000 0.0000 1.0000
50 0.4118 0.2500 0.5000 NA

296 0.4007 NA NA NA
39 0.1786 0.8000 NA NA
51 0.4310 0.2671 0.2667 0.1395
46 0.4444 0.3333 NA NA

573 0.1875 0.1667 1.0000 NA
574 0.1429 0.3333 1.0000 NA
350 0.1875 0.2333 0.0000 NA
344 0.1579 0.4000 0.0000 NA
431 0.2222 0.5000 0.0000 0.0000

Average 0.3596 0.2860 0.3115 0.1875

∗ Here, NA denotes not applicable.

Table 5.5

Violations of Best Response by Step: Smoothed EDF Estimates

Bidder Number Step One Step Two Step Three Step Four

38 0.1768 NA∗ NA NA
40 0.0489 0.1667 NA NA
41 0.1698 0.2500 0.1429 0.0000
42 0.0116 0 NA NA
43 0.0373 0.0556 0.0000 NA
52 0.0245 0.0276 0.0561 0.0000

510 0.0091 0.1000 0.0000 1.0000
50 0.0118 0.0000 0.0000 NA

296 0.0941 NA NA NA
39 0.1071 0.0000 NA NA
51 0.0000 0.0497 0.0762 0.1163
46 0.0556 0.3333 NA NA

573 0.0938 0.1667 0.4000 NA
574 0.0000 0.3333 1.0000 NA
350 0.0125 0.1333 0.0000 NA
344 0.2105 0.2000 1.0000 NA
431 0.1111 0.5000 0.0000 0.0000

Average 0.0674 0.0665 0.0779 0.0938

∗ Here, NA denotes not applicable.
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Table 5.6

Statistics on Estimated Losses: EDF Estimates

Bidder Non-rationalizable/
Number Number of Auctions Mean 95% CI Median 95% CI

38 85/181 24.21 (0.00, 468.01) 0.00 (0.00, 33.77)
40 88/368 42.97 (0.00, 127.16) 0.00 (0.00, 0.00)
41 96/371 85.26 (0.00, 220.20) 0.00 (0.00, 30.12)
42 64/173 5.89 (0.00, 51.03) 0.00 (0.00, 5.03)
43 81/161 222.84 (0.00, 678.19) 0.00 (0.00, 13.28)
52 173/245 8.84 (0.00, 70.17) 0.24 (0.00, 12.24)

510 107/219 3.22 (0.00, 24.39) 1.05 (0.00, 4.84)
50 39/85 1.62 (0.00, 42.55) 0.00 (0.00, 2.22)

296 115/287 3.08 (0.00, 7.48) 4.61 (0.00, 1.40)
39 9/28 24.64 (0.00, 375.51) 0.00 (0.00, 22.04)
51 150/232 3.96 (0.00, 45.82) 2.08 (0.00, 7.53)
46 9/18 13.57 (0.00, 65.04) 7.23 (0.00, 16.95)

573 9/32 126.79 (0.00, 206.09) 27.38 (0.00, 2.32)
574 4/14 157.15 (0.00, 404.97) 16.81 (0.00, 289.95)
350 19/80 826.00 (0.00, 875.01) 32.70 (0.00, 5.56)
344 5/19 413.67 (0.00, 760.38) 73.21 (0.00, 40.16)
431 4/9 5.87 (0.00, 117.80) 4.84 (0.00, 146.11)

Overall 50.54 (0.00, 427.64) 0.00 (0.00, 16.11)

Table 5.7

Statistics on Estimated Losses: Smoothed EDF Estimates

Bidder Non-rationalizable/
Number Number of Auctions Mean 95% CI Median 95% CI

38 32/181 0.88 (0.00, 152.04) 0.00 (0.00, 0.00)
40 19/368 0.37 (0.00, 2702.41) 0.00 (0.00, 0.00)
41 66/371 35.19 (0.00, 103253.69) 0.00 (0.00, 0.00)
42 2/173 0.00 (0.00, 1.96) 0.00 (0.00, 0.00)
43 8/161 0.12 (0.00, 245.87) 0.00 (0.00, 0.00)
52 14/245 0.02 (0.00, 956.72) 0.00 (0.00, 0.00)

510 4/219 0.01 (0.00, 0.28) 0.00 (0.00, 0.00)
50 1/85 0.00 (0.00, 0.05) 0.00 (0.00, 0.00)

296 27/287 0.18 (0.00, 19.43) 0.00 (0.00, 0.00)
39 3/28 0.39 (0.00, 310.90) 0.00 (0.00, 0.00)
51 17/232 0.31 (0.00, 185.81) 0.00 (0.00, 0.00)
46 2/18 0.40 (0.00, 1.07) 0.00 (0.00, 0.01)

573 5/32 0.81 (0.00, 3224.08) 0.00 (0.00, 0.00)
574 2/14 0.34 (0.00, 1.49) 0.00 (0.00, 0.45)
350 5/80 10.83 (0.00, 25.25) 0.00 (0.00, 0.00)
344 5/19 16.81 (0.00, 2040.92) 0.00 (0.00, 27.75)
431 3/9 0.25 (0.00, 0.54) 0.00 (0.00, 0.52)

Overall 5.47 (0.00, 427.64) 0.00 (0.00, 16.11)
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A. Appendix

In this appendix, we describe the construction of the data set used. Our entire data set
contains 2409 auctions occurring twice a day at the Bank of Canada from 7 February 1999
to 1 January 2004.13 There are 1222 morning auctions and 1187 afternoon auctions: No
afternoon auctions occur on the day before holidays. However, we did not use all of these
data.

Of the 2409 auctions, 807 morning auctions and 785 afternoon auctions occurred
during the Fixed Action Day (FAD) regime. Of this subset, 326 morning auctions and
321 auctions occurred during the period when the number of bidders was increased from
LVTS participants to other bidders who have pledged collateral to the Bank of Canada and
the Department of Finance.

A.1. Auction Data

Data concerning the RG auctions were supplied by the Bank of Canada. The format of
the data set is especially complex, requiring that we use a relational database management
system (RDBMS) to organize it. We used the open-source RDBMS MySQL to store and
to manipulate the data.

The data concerning the morning and afternoon auctions on a given day are organized
as several tables in the MySQL database.14 These tables are in an hierarchy, with multiple
entries being associated with a single coarser unit of data. The following simplified example
may help illustrate this relationship.

For a given auction, the tender table contains an identification number of the tender,
the identity of the bidder, the time-stamp of when the bidder submitted the bid, and
whether the bid was accepted. The bid table contains the identity of the bidder and a
tender number, uniquely associating with one entry in the tender table. In addition to
these identification entries, the bid table contains the yield of the bid, the amount of the
bid, and the amount that the bidder won. For a given entry in the tender table, up to four
entries exist in the bid table, each uniquely associated with the tender table entry, one per
submitted (size,rate) pair. Below, we explain in detail the entries in each table.

13 A note concerning vocabulary is warranted. Auction managers at the Bank of Canada define an
auction to be a time and a place when multiple term-deposits are sold. They define a tranche

as one of these sales. Therefore, a sale of overnight deposits conducted simultaneously with a
sale of three-day term-deposits would be referred to as one auction with two tranches by these
managers, but would be referred to as two simultaneous auctions by an economic theorist. In
the descriptions that follow, to avoid confusion, we adopt the vocabulary of managers at the
Bank of Canada.

14 A table in a RDBMS may be thought of as a single spreadsheet with a column or combination
of columns containing unique data points for all rows. This column or these columns are
known as the index or key of the table. The process through which this index is constructed
is known as normalization. Information across tables of the relational database is linked by
the key.
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A.2. Auction Tables

These tables contain an identification number which uniquely identifies the group of auctions
as well as data concerning the auctions (e.g., the type of auction—morning collateralized,
morning uncollateralized, or afternoon auctions) and the deadline for the submission of bids.
The primary key of this table is the auction id variable, which is a sequential increasing
number. Therefore, any information in later tables that refers to a specific auction will
contain the auction id key.

A.3. Tranche

The tranche table contains the information pertaining to a specific tranche of an auction:
The associated auction id; the issue date of the term deposit; the maturity date of the
term deposit; the type of term, either 1D for one business day deposits, 2-8D for deposits
less than eight days, or 8+D for longer deposits; the issue amount; the total amount allotted
to bidders; the total amount bid; the lowest, highest, and value-weighted average yields bid;
the cutoff or clearing yield; the total amount allotted and bid at the cutoff; and the ratio
of allotted and bid amount at the cutoff.

A.4. Tender

The tender table contains data corresponding to a specific bidder at a specific auction. A
tender is the package of (size,rate) pairs that a bidder submits to the Bank of Canada at
an auction. An entry in the tranche table contains the auction id key for the associated
auction, the maturity and issue date for the associated tranche, the identifying number for
the bidder, the tender number of the bid, the time-stamp of when the bid was submitted,
and a status code.

In fact, two tranche tables exist. One table contains the official final bids of the
participants; i.e., those bids with a status code S, for sold. These are the bids which are
used to allocate the deposits to the various participants and which are legally binding. A
second table contains all the tenders submitted for the auction. Thus, this latter table, in
addition to containing all the official tenders, contains previous bids that bidders entered and
withdrew as well as bids which were deemed to be in error or late. For example, if bidder A
were to submit a bid at 9:01 a.m. for an auction which closes at 9:15 a.m. and later changes
his bid at 9:10 a.m., then the second bid and its time-stamp will be recorded in both the
official tender table and the all tender table, while the former bid would be recorded
in the all tender table. In another example, suppose bidder A has submitted a bid at
9:01 a.m. for an auction that closed at 9:15 a.m. and later realized that this bid contained
an error in the yield bid. Bidder A could then resubmit the bid at 9:10 a.m. changing the
error. The latter bid would be recorded in both tables, while the former would be recorded
only in the all tender table with a status code of E, for error. Similarly, cancelled bids
are only recorded in the all tender table with a status code of C, for cancelled.

A.5. Bids

The bid table contains information concerning a specific (size,rate) pair of a particular
tender at a given auction. An entry in the bid table contains the auction id of the
associated auction, the issue date and maturity date of the associated tranche, the bidder
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identification and tender number of the associated tender, these pieces of information along
with the bid yield serve to uniquely identify an entry in the bid table. In addition, an entry
in the bid table also contains the amount of the bid in Canadian dollars, the amount that
was allotted to this bid, and the amount of the allotted amount that was uncollateralized.

A.6. Bidding Limits

The bidding limit table contains the maximum amount that bidders may bid at an
auction. These bidding limits are based on the bidders CPA ratio, essentially a bidder’s
market share of retail bank deposits, and per auction are determined by the following
formula

`i = ρi × 2.5 max(2 × 109, S)

where `i is bidder i’s bidding limit, ρi is their CPA ratio and S is the amount being
auctioned. The Bank of Canada sets the total bidding limit to equal either five billion
dollars or two and one-half times the amount being auctioned.

A.7. Interest Rates

The interest-rate series used were downloaded from the Bank of Canada’s website and
consist of the target rate, which is the instrument used by the Bank of Canada in monetary
policy, and the overnight rate, which is the average yield in the overnight market weighted
by transaction volume.

A.8. Bidders

The eligible bidders at RG auctions consist of the direct clearers in the LVTS and, after
September 2002, additional participants who had signed appropriate legal agreements with
the Bank of Canada and the Department of Finance. The total number of distinct bidders
is sixteen before September 2002 and twenty-four after September 2002.
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