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This paper proposes a new mechanism for combinatorial assign-
ment—for example, assigning schedules of courses to students—based
on an approximation to competitive equilibrium from equal incomes
(CEEI) in which incomes are unequal but arbitrarily close together.
The main technical result is an existence theorem for approximate
CEEIL The mechanism is approximately efficient, satisfies two new
criteria of outcome fairness, and is strategyproof in large markets. Its
performance is explored on real data, and it is compared to alter-
natives from theory and practice: all other known mechanisms are
either unfair ex post or manipulable even in large markets, and most
are both manipulable and unfair.

I. Introduction

In a combinatorial assignment problem, a set of indivisible objects is to
be allocated among a set of heterogeneous agents, the agents demand
bundles of the objects, and monetary transfers are exogenously prohib-
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ited. A motivating example is course allocation at educational institu-
tions: if, because of limits on class size, it is not possible for all students
to take their most desired schedule of courses, then how should seats
in overdemanded courses be allocated?' Other examples include the
assignment of shifts or tasks to interchangeable workers, leads to sales-
people, players to sports teams, airport takeoff and landing slots to
airlines, and shared scientific resources to scientists.?

Combinatorial assignment is one feature removed from several well-
known market design problems. It is like a combinatorial auction prob-
lem except for the restriction against monetary transfers.” It differs from
a matching problem in that preferences are one-sided: objects do not
have preferences over the agents.* It generalizes the house allocation
problem, which restricts attention to the case of unit demand.’

Yet, despite its similarity to problems that have been so widely studied,
progress on combinatorial assignment has remained elusive. The lit-
erature consists mostly of impossibility theorems that suggest that there
is a particularly stark tension among concerns of efficiency, fairness, and
incentive compatibility. The main result is that the only mechanisms
that are Pareto efficient and strategyproof are dictatorships,® which,
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' Press coverage and prior research suggest that the scarcity problem is particularly
acute in higher education, especially at professional schools. See Guernsey (1999), Bartlett
(2008), Lehrer (2008), Levitt (2008a, 2008b), and especially Sonmez and Unver (2003).

2 On shifts, leads, players, airports, and scientific “collaboratories,” respectively, see
McKesson’s eShift Web site (http://bitly/opqrlH), incentalign.com, Albergotti (2010),
Shulman (2008), and Wulf (1993). Whether monetary transfers are permitted often varies
by context; for instance, McKesson’s nursing shift assignment software, eShift, has both a
fixed-price version and an auction version, depending on whether the client hospital has
discretion to use flexible wages (e.g., because of union restrictions). Prendergast and Stole
(1999) and Roth (2007) explore foundations for constraints against monetary transfers.

* See Milgrom (2004) and Cramton, Shoham, and Steinberg (2006) for textbook treat-
ments that discuss both theory and applications.

* See Roth and Sotomayor (1990) for a textbook treatment and Roth (1984) on a well-
known application.

® See Sonmez and Unver (2011) for a survey treatment and Chen and Sénmez (2002),
Abdulkadiroglu, Pathak, and Roth (2005), and Abdulkadiroglu et al. (2005) on applica-
tions to housing markets and school choice. Another name for this problem is single-unit
assignment.

¢ For precise statements, see Klaus and Miyagawa (2001), Papai (2001), Ehlers and Klaus
(2003), and Hatfield (2009); see also n. 21. S6nmez (1999) and Konishi, Quint, and Wako
(2001) obtain related negative results under slightly different conditions, including existing
endowments. Zhou (1990) and Kojima (2009) obtain related negative results for random
mechanisms.
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while intuitively sensible and widely used in single-unit assignment (Ab-
dulkadiroglu and Sénmez 1998, 1999), seem unreasonably unfair in the
multiunit case: for any two agents, one gets to choose all her objects
before the other gets to choose any. Practitioners have designed a variety
of nondictatorial mechanisms, often citing fairness as a central design
objective: for example, Wharton’s course allocation system is “designed
to achieve an equitable and efficient allocation of seats in elective courses
when demand exceeds supply” (2011, 2; emphasis in original).” But the
mechanisms found in practice have a variety of flaws, most notably with
respect to incentives (Sonmez and Unver 2003, 2010; Krishna and Unver
2008; Budish and Cantillon, forthcoming).

Missing from both theory and practice is a mechanism that is attractive
in all three dimensions of interest: efficiency, fairness, and incentives.
This paper proposes such a mechanism. It gets around the impossibility
theorems by making several small compromises versus the ideal prop-
erties a mechanism should satisfy.

The mechanism is based on an old idea from general equilibrium
theory, the competitive equilibrium from equal incomes (CEEI). CEEI
itself need not exist in our environment: either indivisibilities or com-
plementarities alone would complicate existence (cf. Varian 1974), and
our economy features both. I prove existence of an approximation to
CEEI in which (i) agents are given approximately equal instead of ex-
actly equal budgets of an artificial currency, and (ii) the market clears
approximately instead of exactly. The first welfare theorem implies that
this approximate CEEI is Pareto efficient but for the market-clearing ap-
proximation; the equal-budgets approximation will play a key role in
ensuring fairness. If instead we were to give agents exactly equal budgets,
then market-clearing error could be arbitrarily large. At the other ex-
treme, the dictatorships mentioned above can be interpreted as exact
competitive equilibria but from arbitrarily unequal budgets.

The second step in the analysis is to articulate what fairness realistically
means in this environment: indivisibilities complicate fair division. For
instance, if there is a single star professor for whom demand exceeds
supply, some ex post unfairness is inevitable. My approach is to weaken
Steinhaus’s (1948) fair share and Foley’s (1967) envy-freeness to ac-
commodate indivisibilities in a realistic and intuitively sensible way. In
particular, I want to articulate that if there are two star professors, it is

7 Here are some additional examples: New York University Law School writes that its
system “promotes a fair allocation of coveted classes” (Adler et al. 2008); Massachusetts
Institute of Technology’s Sloan School writes that its system “establish[es] a ‘fair playing
field’ for access to Sloan classes” (MIT 2008); Harvard Business School has described
fairness as its central design objective in numerous conversations with the author regarding
the design of its course-allocation system; McKesson advertises its software product for
assigning nurses to vacant shifts on the basis of their preferences as “equitable open shift
management.”
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unfair for some students to get both while others who want both get
neither. I define an agent’s maximin share as the most preferred bundle
he could guarantee himself as divider in divide-and-choose against ad-
versarial opponents; the maximin share guarantee requires that each agent
gets a bundle he weakly prefers to his maximin share. I say that an
allocation satisfies envy bounded by a single good if, whenever some agent
ienvies another agent ¢/, by removing some single object from ¢”s bundle
we can eliminate ¢35 envy. Dictatorships clearly fail both criteria in com-
binatorial assignment. Note, though, that dictatorships actually satisfy
both criteria in single-unit assignment, for which they are often observed
in practice. The criteria’s ability to make sense of the empirical pattern
of dictatorship usage is a useful external validity check.

The third step asks the logical next question given steps one and two:
does approximate CEEI satisfy the fairness criteria? I show that it ap-
proximately satisfies the maximin share guarantee and bounds envy by
a single good. The key for both of these results is that the existence
theorem allows for budget inequality to be arbitrarily small, as long as
budgets are not exactly equal. If budgets could be exactly equal without
compromising existence, then the allocation would exactly satisfy the
maximin share guarantee and be exactly envy-free.

The last step is to formally define the approximate CEEI mechanism
(A-CEEI) on the basis of the existence and fairness theorems described
above and analyze its incentive properties. While A-CEEI is not strate-
gyproof like a dictatorship, it is straightforward to show that it is strat-
egyproof in the large, that is, strategyproof in a limit market in which agents
act as price takers. This is in sharp contrast to the course-allocation
mechanisms found in practice and also to most fair-division procedures
proposed outside of economics (see table 1 below); these mechanisms
are manipulable even by the kinds of agents we usually think of as price
takers; that is, they are manipulable in the large.

Some intuition for both the existence and fairness theorems can be
provided by means of a simple example in which there are two agents
with identical, additively separable preferences over four objects. Two
of the objects are valuable diamonds (big and small), and two of the
objects are ordinary rocks (pretty and ugly). Agents require at most two
objects each and have the preferences we would expect given the objects’
names;® think of the diamonds as seats in courses by star professors.

If agents have the same budget, then there is no competitive equilib-
rium: at any price vector, for each object, either both agents demand
the object or neither does. Notice too that discontinuities in aggregate

% Specifically, if we label the big diamond as 4, the small diamond as b, the pretty rock
as ¢, and the ugly rock as d, each agent has preferences > : {a, 0}, {a, d, {a, d}, {a}, {b, d},

{b, d}, {0}, {c d}, {d, {d}, O
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demand are “large”: any change in price that causes one agent to change
his demand causes the other agent to change his demand as well. These
discontinuities are the reason why existence is so problematic with equal
incomes.

Suppose instead that one agent, chosen at random, is given a slightly
larger budget than the other. Now there exist prices that exactly clear
the market: set prices such that only the wealthier agent can afford the
big diamond, whereas the less wealthy agent, unable to afford the big
diamond, instead buys the small diamond and the pretty rock. Fur-
thermore, this allocation satisfies the fairness criteria. The agent who
gets {small diamond, pretty rock} may envy the agent who gets {big
diamond, ugly rock}, but his envy is bounded by a single good, and he
does as well as he could have as divider in divide-and-choose.’

Let me make a few further remarks about this example. First, note
that it is critical for fairness that budget inequality is sufficiently small.
Otherwise, there will exist prices at which the wealthier agent can afford
both diamonds whereas the poorer agent can afford neither, leading to
the same result as a dictatorship.

Second, it is also critical for fairness that we use item prices, and not
the more flexible bundle prices that are commonly used in combina-
torial auctions (e.g., Parkes 2006). Otherwise, we can price the bundle
{big diamond, small diamond} at the wealthier agent’s budget without
having to price any bundles that contain just a single diamond at a level
affordable by the poorer agent, again leading to the same result as a
dictatorship.

Third, another way to achieve the allocation in which one agent re-
ceives {big diamond, ugly rock} but the other receives {small diamond,
pretty rock} is to use a simple draft procedure in which agents choose
objects one at a time and the choosing order reverses each round. Such
a draft is used to allocate courses at Harvard Business School. A-CEEI
and the draft differ in general; in particular, the draft has incentive
problems (Budish and Cantillon, forthcoming). But the two mechanisms
are similar in that they both distribute “budgets”—of artificial currency
and choosing times, respectively—as equally as possible.

Finally, in this simple example an arbitrarily small amount of budget
inequality is enough to ensure exact market clearing. In general, when
we allow agents to have heterogeneous and nonadditive preferences,
existence requires that we allow for a “small” amount of market-clearing
error. I use “small” in two senses. First, the worst-case bound for market-
clearing error does not grow with the number of agents or the number

? There also exist prices at which the wealthier agent gets {big diamond, pretty rock}
whereas the poorer agent gets {small diamond, ugly rock}. This allocation still bounds
envy by a single good but, as noted above, only approximately satisfies the maximin share
guarantee. See Sec. VA for further detail.
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of copies of each object; so in the limit, worst-case market-clearing error
as a fraction of the endowment goes to zero. This is similar in spirit to
a famous result of Starr (1969) in the context of divisible-goods ex-
change economies with continuous but nonconvex preferences. Second,
the worst-case bound is economically small for life-sized problems, and
of course average case is better than worst case."

A-CEEI compromises among the competing design objectives of ef-
ficiency, fairness, and incentive compatibility. To help assess whether it
constitutes an attractive compromise, I perform two additional analyses.
First, I compare A-CEEI to alternative mechanisms. Table 1 below de-
scribes the properties of all previously known mechanisms from both
theory and practice. Every other mechanism is either severely unfair ex
post or manipulable even in limit markets, and most are both unfair
and manipulable. Of special note is the widely used bidding points
auction, first studied by Sénmez and Unver (2003, 2010), which resem-
bles exact CEEI but makes a subtle mistake: it treats fake money as if
it were real money that enters the agent’s utility function. This mistake
can lead to outcomes in which an agent gets zero objects and is implicitly
expected to take consolation in a large budget of unspent fake money
with no outside use. Such outcomes occur surprisingly frequently in
some simple data provided by the University of Chicago’s Booth School
of Business, one of many educational institutions that use this
mechanism.

Second, I examine the performance of A-CEEI on real preference
data from Harvard Business School. There are four findings. First,
average-case market-clearing error is just a single seat in six courses.
Second, students’ outcomes always substantially exceed their maximin
shares. Third, on average, 99 percent of students have no envy, and for
the remainder envy is small in utility terms. Finally, the distribution of
students’ utilities first-order stochastically dominates that from the actual
play of Harvard’s own draft mechanism, which Budish and Cantillon
(forthcoming) show itself second-order stochastically dominates that
from truthful play of the random serial dictatorship. This last finding
suggests that a utilitarian social planner, who does not regard fairness
as a design objective per se (cf. Kaplow and Shavell 2001, 2007), prefers
A-CEEI to both the draft and the dictatorship in this context.

The remainder of the paper is organized as follows. Section II defines
the environment. Section III defines approximate CEEI and presents
the existence theorem. Section IV proposes the new criteria of outcome

% In the specific context of course allocation, a small amount of market-clearing error
is not too costly in practice, for reasons discussed in Sec. III.C. In other contexts, such as
assigning pilots to planes, market-clearing error is much more costly. Two variants of the
proposed mechanism for such contexts are discussed in an earlier version of this paper
(Budish 2010).



COMBINATORIAL ASSIGNMENT 1 067

fairness. Section V provides the two fairness theorems. Section VI for-
mally defines the A-CEEI mechanism and discusses incentives. Section
VII compares A-CEEI to alternatives. Section VIII examines A-CEEI’s
performance on real data. Section IX concludes. Proofs are in the body
of the text when both short and instructive; otherwise they are in the
appendices. The text also contains a detailed sketch of the proof of the
existence theorem.

II. Environment

The combinatorial assignment problem.—A combinatorial assignment
problem consists of a set of objects, each with integral capacity, and a
set of agents, each with scheduling constraints and preferences. I em-
phasize the example of course allocation at universities, in which the
objects are “courses” and the agents are “students.” The elements of a
problem (S, C, (¢);2,, (¥)iL,, (Z)X,), also called an economy, are defined
as follows.

Agents—There is a set S of agents (students), with |S| = N.

Objects and capacities—There is a set C of object types (courses), with
|C| = M. There are g, copies of object j (seats in course j). There are
no other goods in the economy. In particular, there is no divisible
numeraire such as money.

Schedules and preferences—A consumption bundle (schedule) consists
of zero or one seat in each course."" The set of all possible schedules
is the power set of C, that is, 92¢. Each student i is endowed with a
complete, reflexive, transitive preference relation, Z,, defined on the
set of schedules. I assume that preferences are strict and use x >, x’ to
mean not x’ Z; x.

It is convenient to treat schedules as both sets and vectors. In set
form, a schedule x is a subset of C; in vector form, a schedule x is an
element of {0, 1}™. I adopt >; : x, x/, ... as notational shorthand for
x>, x' >, x" for all x € 2°\{x, x'}. I use the operator max, X to pick out
the element of set X € 2¢ that is maximal for Z; that is, x = max, X
means x € Xand x > x' for all x' € X, ¥ # x. The operator min, X is
defined analogously.

In practical applications, each student will have a limited set of per-
missible schedules. For instance, students take at most a certain number

"' The restriction that agents consume at most one of each type of object is technically
without loss of generality. Any economy in which this assumption does not hold can be
transformed into one in which it does by giving each copy of each object its own serial
number (as in, e.g., Ostrovsky [2008]). However, the market-clearing bound of theorem
1 will be most compelling in environments in which individual agents’ consumptions are
small relative to the goods endowment. The role this issue plays in the proof of theorem
1 is described in Sec. IIL.D.1.
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of courses per term, they cannot take two courses that meet at the same
time, and some courses may have prerequisites. I assume that the market
administrator endows each student ¢ with a set ¥, © 2¢ of permissible
schedules and that (§ >, x for x ¢ ¥,. When designing the language by
which students report their preferences, it may be useful to exploit the
market administrators’ knowledge of the ¥/’s (see, e.g., Othman, Budish,
and Sandholm 2010).

No other restrictions are placed on preferences: in particular, students
are free to regard courses as complements and substitutes. This is the
reason the assignment problem is called “combinatorial” as opposed to
the multiunit assignment problem studied by Sénmez and Unver (2003,
2010) and Budish and Cantillon (forthcoming).

Allocations, mechanisms, and efficiency.—An allocation x = (x,);_g assigns
a schedule x, to each agent i e & Allocation x is feasible if 3, x,; < ¢; for
each object j € C. A mechanism is a systematic procedure, possibly with
an element of randomness, that selects an allocation for each economy.

A feasible allocation is (ex post) Pareto efficient if there is no other
feasible allocation weakly preferred by all agents, with at least one strict
preference. The mechanism developed in this paper will be approxi-
mately feasible and approximately ex post efficient in a sense that will
be made clear in Section III. Two variants of this mechanism that are
exactly feasible and exactly ex post efficient are described in an earlier
version of the paper (Budish 2010); these variants are less attractive
with respect to fairness and incentives.

III. The Approximate Competitive Equilibrium from Equal Incomes

CEEI is well known to be an attractive solution to the problem of efficient
and fair division of divisible goods."” Arnsperger (1994, 161) writes that
“essentially, to many economists, [CEEI is] the description of perfect
justice.” CEEI’s appeal extends beyond economics. The philosopher
Ronald Dworkin (1981, 2000) argues extensively that CEEI is fair and
uses CEEI as the motivation for an important theory of fairness (see,
e.g., Sen 1979, 2009).

CEEI would be an attractive solution to our problem of combinatorial
assignment as well were it not for existence problems. Either indivisi-
bilities or complementarities alone can cause existence problems, and
our economy features both. In order to recover existence, we will ap-
proximate both the “CE” and the “EI” of CEEL

'? See Foley (1967), Varian (1974), and several other seminal references summarized
in Thomson and Varian (1985).
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A.  Definition of Approximate CEEI

DerFINITION 1. Fix an economy (S, C, (¢)2,, (¥)L,, (Z)X,). The

j=1>

allocation x* = (xf, ..., x%), budgets b* = (b¥, ..., b%), and item prices
p* = (p¥, ..., p¥) constitute an (o, B)—approximate competitive equilibrium

Sfrom equal incomes ((a, 8)-CEEI) if

I xf = maxy,{x' € 2°:p* - x'<p¥ forallie S
. ||z#|, £ o, where z* = (2%, ..., 2§) and
a. z¥F=3.xt—qif p*>0,

b. z¥ = max (2,x} — g, 0) if p* = 0;
iii. 1 <min (6¥) < max, (bF) <1+ 6.

Condition i indicates that, at the competitive equilibrium prices and
budgets, each agent chooses her most preferred schedule that costs
weakly less than her budget. Condition ii is where I approximate “CE.”
The market is allowed to clear with some error, «, calculated as the
Euclidean distance of the excess demand vector, z*. This market-clearing
error will be discussed in detail in Section III.C. Condition iii is where
I approximate “EL.” The largest budget can be no more than @ pro-
portion larger than the smallest budget. The parameter § will play a
key role in the fairness theorems.

If « = B = 0, then we have an exact CEEI This version of exact CEEI
is stated a bit differently from the classical version (e.g., Varian 1974)
because agents have equal incomes of an artificial currency rather than
equal shares of a divisible-goods endowment. The currency-endowment
formulation of competitive equilibrium is sometimes called the “Fisher
model” after Irving Fisher (see, e.g., Brainard and Scarf 2005; Vazirani

2007).

B. The Existence Theorem

THeEOREM 1. Fix an economy (S, C, (¢)/2,, (¥)L,, (Z)L)). Let k =

max,_smax,_, |x| denote the maximum number of objects in a per-
missible schedule, and let ¢ = min (2k, M).

1. For any 83> 0, there exists a (JoM/2, 3)-CEEL

2. Moreover, for any 8> 0, any budget vector b’ that satisfies 1 <
min; (b)) <max,; (b)) <1+ 6, and any &>0, there exists a
(JoM/2, B)-CEEI with budgets of b* that satisfy |6} — &/| < ¢ for
allie S

The dictatorship mechanisms extensively studied in the prior litera-
ture on combinatorial assignment correspond to an («, 8)-CEEI with
no market-clearing error (o = 0) but substantial budget inequality 8.
Specifically, if there are at most k objects in a permissible schedule, then
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budgets of 0, (1+k), (1+k)?> ..., (1 + k" implement the dicta-
torship.

On the other hand, if we seek an («, 8)—CEEI with exactly equal
incomes (8 = 0), then it is not possible to provide a meaningful guar-
antee on market-clearing error a. Consider the case in which all agents
have the same preferences: at any price vector, all agents demand the
same bundle, so demand for each object is always either zero or N,
irrespective of supply.

Theorem 1 indicates that any strictly positive amount of budget in-
equality is enough to ensure that there is a price vector whose market-
clearing error is at worst JoM/2. Part 2 of the theorem statement in-
dicates that the market administrator can assign these close but unequal
budgets to agents however she likes, subject to an & perturbation that
can be made arbitrarily small. Two natural choices are (i) assign budgets
uniform randomly and (ii) assign budgets on the basis of some pre-
existing priority order, such as seniority or grade point average.

C. Discussion of Market-Clearing Error

There are two senses in which JoM/2 is “small.” First, yoM/2 does not
grow with either N (the number of agents) or (%‘)}1’1 (object quantities).
This means that as N, (g, jf-‘il — o, we converge toward exact market
clearing, in the sense that error goes to zero as a fraction of the en-
dowment. This notion of approximate market clearing was often em-
phasized in the prior literature on general equilibrium with noncon-
vexities (e.g., Starr 1969; Arrow and Hahn 1971; Dierker 1971).

Second, yoM/2 is actually a small number for practical problems,
especially as a worst-case bound. For instance, in a semester at Harvard
Business School, students require five courses each and there are about
50 courses overall, so JoM/2 = 11. Furthermore, if some courses are
known to be in substantial excess supply, we can reformulate the prob-
lem as one of allocating only the potentially scarce courses.”” In the
HBS data described in Section VIII.A, only about 20 courses per semester
are ever scarce, so in the reformulated problem the bound becomes
JoM/2 ~ 7. This corresponds to a maximum market-clearing error of
seven seats in one class, or of two seats in each of 12 classes (since
v12 - 22 = 7), and so on, as compared with about 4,500 course seats
allocated each semester.

I show below that the JyoM/2 bound is tight. For comparison, Starr’s
(1969) bound, developed in the context of a divisible-goods exchange

" Write C = C* U ™. In the reformulated problem, students’ preferences are
defined over subsets of C**, with student i% preference for scarce-course bundle x S
¢ based on the best bundle he can form by adding a subset of C"™“* to x.
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economy with continuous but nonconvex preferences, would be M/2
if it applied to this environment. Dierker’s (1971) bound, developed in
the context of an indivisible-goods exchange economy, would be
(M—1) JM if it applied here. The substantive reason why the Starr and
Dierker bounds cannot be applied or adapted to this environment is
that approximately equal incomes need not be well defined in exchange
economies with indivisibilities: Starr’s economy allows for equal endow-
ments but not indivisibilities; Dierker’s allows for indivisibilities but not
approximately equal endowments. That is why I use a Fisher economy,
in which agents are directly endowed with budgets of the artificial
currency.

While perfect market clearing would obviously be preferable, there
are at least two reasons to think that a small amount of error is not
especially costly in the context of course allocation.' First, a course’s
capacity should trade off the benefits and costs of allowing in additional
students: more students get to enjoy the class, but all students get less
attention from the professor. An envelope theorem argument suggests
that at the optimal capacity the social costs of adding or removing a
marginal student are small. Second, most universities allow students to
adjust their schedules during the first week or so of classes in an “add-
drop” period. A small amount of market-clearing error in the primary
market can be corrected in this secondary market.

D.  Sketch of Proof of Theorem 1

The proof of theorem 1 is contained in Appendix A. Here I provide a
detailed sketch. Some readers may wish to skip directly to Section IV.

1. Demand Discontinuities

The basic difficulty for existence is that agents’ demands are discontin-
uous with respect to price; standard Arrow-Debreu-McKenzie existence
results assume that preferences are continuous. The role of the param-
eter o is that Jo is an upper bound on the magnitude of any discontinuity
in any single agent’s demand. At worst, a small change in price can
cause an agent’s demand to change from one bundle of objects to an
entirely disjoint bundle of objects. Since there are at most k objects in
a permissible bundle and M types of objects overall, this discontinuity

'* For other contexts in which market-clearing error is more costly, see Budish (2010)
for two variants of the proposed mechanism that clear the market without error. One
approach is to increase budget inequality until an exact competitive equilibrium is found.
A second approach is to find an approximate competitive equilibrium with excess supply
but not excess demand and then execute Pareto-improving trades to eliminate the excess

supply.
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involves at most min (2k, M) = o objects and has Euclidean distance
of at most o."°

Consider the diamonds and rocks example from the introduction. A
small increase in the price of the big diamond might cause an agent
who no longer can afford the bundle {big diamond, ugly rock]} to instead
demand the bundle {small diamond, pretty rock}."

2. The Role of Unequal Budgets

The role of unequal budgets is to mitigate how individual agent demand
discontinuities aggregate up into aggregate demand discontinuities.

If agents have the same budgets, their demand discontinuities occur
at the same points in price space. It is possible that the magnitude of
the discontinuity in aggregate demand is as large as Mo. For instance,
imagine that some small change in price causes all N agents to change
their demands simultaneously from {big diamond, ugly rock} to {small
diamond, pretty rock]}.

If agents have distinct budgets, then it becomes possible to change
one agent’s choice set without changing all agents’ choice sets. This is
the basic intuition for why even an arbitrarily small amount of budget
inequality is so useful.

The formal way to represent how choice sets change as prices change
is using what I will call budget constraint hyperplanes. Let H(i, x) =
{p:p x =10} denote the hyperplane in M-dimensional price space
along which agent i can exactly afford bundle x. As prices cross H(i,
x) from below, bundle x goes from being affordable for ¢ to unaffordable
for i.

Importantly, the number of such hyperplanes is finite because the
number of agents and the number of bundles are finite. This is an
advantage of having only indivisible goods. As long as each agent has

! More generally, we can define

lo = suplim sup [|x¥(p) — x*(p) .,

ip 6-0"peBs(p)
with

x(p) = max{x’ e 2%:p - x'<1).
In some contexts {o defined this way will be strictly less than min (2k, M).

' Observe too that in this example the big diamond and ugly rock are complements:
increasing the price of one reduces demand for the other. This complementarity is intrinsic
to allocation problems with both indivisibilities and budget constraints (be they of fake
money or real money) and is the reason that we are unable to use the monotone price
path techniques that have been successful at establishing the existence of market-clearing
item prices in certain combinatorial auction environments. See Parkes (2006) for a survey
of monotone price path techniques, Milgrom (2000) for a well-known example, and Mon-
gell and Roth (1986) on the relationship between budget constraints and complemen-
tarities.



COMBINATORIAL ASSIGNMENT 1073

a unique budget, the number of agents’ hyperplanes intersecting at any
one point is generically at most M, the dimensionality of the price
space.'”” Now, the maximum discontinuity in aggregate demand with
respect to price is Mo, which no longer grows with N (see step 1 of
the formal proof).

3. A Fixed Point of Convexified Excess Demand

The next step is to artificially smooth out the (mitigated) discontinuities,
enabling application of a fixed-point theorem to artificially convexified
aggregate demand. Consider a traditional taitonnement price adjust-
ment function of the form

f(p) =ptzp, 1)

where z(p) indicates excess demand. If f(*) had a fixed point, this point
would be a competitive equilibrium price vector (step 2). Next consider
the following convexification of f(*):

w

F(p) = coly:3 a sequence p“— p, p* # p such that f(p”) =y}, (2)

where co denotes the convex hull. The correspondence F(*) smooths
out discontinuities at budget constraint hyperplanes. If aggregate de-
mand is X’ on one side of a discontinuity and x” on the other, then on
the point of discontinuity itself /(") maps to the set of convex combi-
nations of x’ and x”.

Cromme and Diener (1991, lemma 2.4) show that for any map f(})
on a compact and convex set, correspondences of the form (2) are
upper hemicontinuous. To apply the Cromme and Diener result, we
need to specify the set on which f(°) is defined. In a traditional Arrow-
Debreu-McKenzie setting, this would be difficult because excess demand
for a good goes to infinity as its price approaches zero. However, in our
setting excess demand is bounded because each student requires at most
one seat in each course; formally, our setting violates the standard non-
satiation assumption. In fact, the main boundary concern in the proof
arises in the case in which excess demand for good jis negative at prices
near zero; hence f(p) can be negative. The proof handles these issues
by defining two price spaces: a legal price space P = [0, 1 + 3 + &]
and an auxiliary enlargement of this space, which is also convex and
compact, on which f() and F(-) are defined. For the remainder of the
proof sketch, we will ignore the distinction between the legal and the
auxiliary price spaces.

Once we have upper hemicontinuity of F(*) on a convex and compact

'" A perturbation scheme ensures that there are in fact no L-way intersections with
L> M. This perturbation scheme is the reason theorem 1 allows b* to differ from b’
pointwise by £ > 0.
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set, we can apply Kakutani’s fixed-point theorem (the other conditions
are trivially satisfied): there exists p* such that p* e F(p*) (step 3). In
words, p* € F(p*) tells us that there exists a set of prices arbitrarily close
to p* such that a convex combination of their demands exactly clears
the market.

At this point we could apply theorem 2.1 of Cromme and Diener
(1991) to obtain a price vector that clears the market to within error
of Myo. The purpose of the remainder of the proof is to tighten the
bound to VoM/2.

4. Mapping from Price Space to Demand Space Near p*

This step maps from an arbitrarily small neighborhood of p* in price
space to the actual excess demands associated with these prices in excess
demand space. This map is the key to tightening the bound.

Because agents’ demands change only when price crosses one of their
budget constraint hyperplanes, we can put a lot of structure on demands
in a neighborhood of p*. If p* is not on any of the hyperplanes, then
in a small enough neighborhood of p* demand is unchanging, and so
p* € F(p*) actually implies p* = f(p*), and we are done (step 4). Sup-
pose instead that p* is on L £ M of the hyperplanes.

The two key ideas for building the map are as follows. First, for any
price p’ in a small enough neighborhood of p*, demand at p’is entirely
determined by which side of the L hyperplanes p’ is on: the affordable
side or the unaffordable side. That is, out of a whole neighborhood of
p*, we can limit attention to a finite set of at most 2" points (steps 5
and 6).

Second, for each of the L agents corresponding to the L hyperplanes,
their demand depends only on which side of their own hyperplane price
is on. For each of the L agents we can define a change-in-demand vector
v, € {—1, 0, 1}* that describes how their demand changes as price crosses
from the affordable to the unaffordable side of their hyperplane.' Thus,
demand in a neighborhood of p* is described by at most 2" points,
which themselves are described by at most L vectors. Since p* itself is
on the affordable side of each hyperplane (weakly), the set of feasible
demands in an arbitrarily small neighborhood of p* can be written as

(step 7)

'* There are two exceptions to this statement that are handled in the proof. The first
exception is if p* is on the boundary of legal price space. In this case we may need to
perturb budgets a tiny bit more in order to cross certain combinations of hyperplanes.
The second exception is if multiple intersecting hyperplanes belong to a single agent.
Then the agent’s change in demand close to p* is a bit more complicated than can be
described by a single change-in-demand vector, which is bad for the bound. But, there
will be fewer total agents to worry about, which is good for the bound. The latter effect
dominates.
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@y, ..., ay) €10, -1 z(p*) + 2, aw,. (3)

5. Obtaining the Bound

Now p* e F(p*) tells us something very useful: perfect market clearing
is in the convex hull of (3). Our market-clearing error is the maximum-
minimum distance between a vertex of (3)—one of the feasible demands
near p*—and a point in the convex hull of (3). This worst-case distance
occurs when (8) is an M-dimensional hypercube of side length o, and
the perfect market-clearing ideal is equidistant from all 2" vertices of
(3). Half the diagonal length of such a hypercube is yoM/2 (steps 8
and 9).

E.  Tightness of Theorem 1

The bound of theorem 1 is tight in the following sense.

ProrosiTION 1. For any M’ there exists an economy with M 2> M’
object types such that, for some 8> 0, there does not exist an (¢, §)—
CEEI for any a < JoM/2.

The proof, contained in Appendix B, presents an example for which
the bound is tight and then describes how to construct arbitrarily large
versions of the example.

E  Analogue to the First Welfare Theorem

For completeness I provide the analogue to the first welfare theorem

for approximate as opposed to exact competitive equilibria.
ProrosITION 2. Let [x*, b*, p*] be an (o, B)-CEEI of economy

(S, C, (g, (B)L,, (Z)L)). For each j e C, let ¢* = 3, x% if p* >0 and

¢* = max (3, x¥, ¢) if p¥ = 0. The allocation x* is Pareto efficient in

economy (S, C, (1]]* }Vzlla ()L, (tl)f\:l)

A practical implication of proposition 2 is that the allocation induced
by an approximate CEEI will not admit any Pareto-improving trades
among the agents but may admit Pareto-improving trades among sets

of agents and the market administrator.

IV. Ciriteria of Outcome Fairness

Indivisibilities complicate fair division. If there are two agents and two
indivisible objects—say a valuable diamond and an ordinary rock—then
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one of the agents will be left with just the rock. Some outcome unfairness
is inevitable."

There have been several previous approaches to outcome fairness in
the presence of indivisibilities. First, many authors consider a simpler
problem in which monetary transfers are permitted (Svensson 1983;
Maskin 1987; Alkan, Demange, and Gale 1991). This makes it possible
to run an auction in which the high bidder gets the diamond but pays
a transfer to the low bidder to ensure outcome fairness. A second ap-
proach is that of Brams and Taylor (1999), who assume that indivisible
objects are actually divisible in a pinch; this may be a reasonable as-
sumption in the context of complex multi-issue negotiations. Of course,
it is easier to divide a diamond and a rock if the diamond can be cut
in half without loss of value. A third approach is to assess criteria of
outcome fairness at an interim stage, after preferences have been re-
ported but before the resolution of some randomness (Hylland and
Zeckhauser 1979; Bogomolnaia and Moulin 2001). If we award each
agent the lottery in which he receives each object with probability one-
half, then neither agent envies the other agent’s lottery.

The common thread in all these approaches is that by modifying
either the problem or the time at which fairness is assessed, it becomes
possible to use traditional criteria of outcome fairness.” I take a different
approach. I keep my problem as is and assess outcome fairness ex post,
but I weaken the criteria themselves to accommodate indivisibilities in
a realistic way. Specifically, I weaken the fair-share guarantee (Steinhaus
1948) and envy-freeness (Foley 1967)—which Moulin (1995, 166) de-
scribes as “the two most important tests of equity”—and propose the
maximin share guarantee and envy bounded by a single good, respectively.

A.  The Maximin Share Guarantee

In a divisible-goods fair-division problem, an agent is said to receive his
Jair share if he receives a bundle he likes at least as well as his per capita
share of the endowment. Formally, if q € RY is an endowment of di-

' Procedural fairness is not similarly problematic: tossing a fair coin to determine which
agent gets the diamond satisfies the standard procedural fairness requirement of ano-
nymity, also known as symmetry or equal treatment of equals. A mechanism violates an-
onymity if its treatment of agents depends on not only their reports but their identities;
see Moulin (1995) for a formal definition. See also Moulin (2004, chap. 1) for more on
the distinction between outcome fairness and procedural fairness, which are sometimes
called “end state justice” and “procedural justice.”

* Another alternative is to ignore outcome fairness altogether and look solely to pro-
cedural fairness. Ehlers and Klaus (2003) take this approach to argue that dictatorships
are fair for combinatorial assignment: “Dictatorships can be considered to be ‘fair’ if the
ordering of agents is fairly determined” (266).
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visible goods, an allocation x satisfies the fair-share guarantee if
x; Z,q/N for all i (Steinhaus 1948).

With indivisibilities, fair share is not well defined: q/N, with q € Z%,
may not be a valid consumption bundle. I propose the following weak-
ening of the fair-share ideal.

DEFINITION 2. Agent % maximin share is the consumption bundle

; (4)

max(min {x;, ..., x5
&) |z

where the maxg, {-} is taken over all allocations (x));L, such that x, €
2¢ for all land 3, x, < ¢ for all j. A maximin split of agent i is any alloca-
tion that maximizes (4). Any allocation in which all Nagents get a bundle
they weakly prefer to their own maximin share is said to satisfy the
maximin share guarantee.

The maximin share can be interpreted as the outcome of a divide-
and-choose procedure against adversaries, in which an agent divides the
endowment into N bundles such that his least favorite bundle is as
attractive as possible (cf. Crawford 1977). The maximin share can also
be interpreted as a Rawlsian guarantee from behind what Moulin (1991)
calls a “thin veil of ignorance.” The agent knows his own preferences
and knows what resources are available to be divided (this is what makes
the veil “thin”) but does not know other agents’ preferences.

Maximin shares are equivalent to fair shares in divisible-goods econ-
omies with convex and monotonic preferences; for a formal proof, see

Budish (2010).

B.  Envy Bounded by a Single Good

An allocation x is said to be envyfiee if x;Z, x,, for all 4, i’ € & (Foley
1967). In words, envy-freeness requires that each agent likes his own
bundle weakly better than anyone else’s.

In contrast to the fair-share guarantee, envy-freeness is perfectly well
defined in the presence of indivisibilities. Its difficulty is that it is un-
realistic: if there is a single diamond, then whichever agent receives it
will be envied by the other. But we can take advantage of the fact that
bundles of indivisible objects are somewhat divisible. If there are two
diamonds, then an allocation in which some agent gets both creates
more envy than is necessary given the level of indivisibility in the econ-
omy. I propose the following weakening of the envy-free test.

DEeFINITION 3. An allocation x satisfies envy bounded by a single good
if, for any i, i € & either (i) x,Z,;x, or (ii) there exists some good
j € x, such that x, Z; (x;\{j}).
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In words, if agent i envies agent ¢/, we require that by removing some
single good from i”s bundle we can eliminate ¢5 envy.

C. Dictatorships and Fairness

In combinatorial assignment problems, dictatorships violate the max-
imin share guarantee and envy bounded by a single good. This obser-
vation, together with theorem 1 of Klaus and Miyagawa (2001),*' directly
yields the following impossibility result.

ProrosITION 3. There is no combinatorial assignment mechanism
that is strategyproof, is ex post efficient, and satisfies either the maximin
share guarantee or envy bounded by a single good.

Note that in single-unit assignment problems, for which dictatorships
are commonly observed in practice (see the references in n. 5), dicta-
torships actually satisfy both fairness criteria.

V. Fairness Theorems for Approximate CEEI

I provide two fairness theorems for the approximate CEEI guaranteed
to exist by theorem 1. The first indicates that for small enough 8, an
(o, B)—CEEI guarantees an approximation to maximin shares; the sec-
ond indicates that for small enough 8, an (o, 8)-CEEI guarantees that
envy is bounded by a single good.

A, Theorem 2: Approximate CEEI Guarantees Approximate Maximin Shares

I begin by showing that exact CEEIs guarantee exact maximin shares.
The proof is short and helps build intuition for theorem 2.

ProrosiTioN 4. If [x*, b*, p*] is a (0, 0)—CEEI then x* satisfies the
maximin share guarantee.

Proof. Let x™ denote a maximin split for agent i. Suppose that

%" >, x¥ for each x™ e x™. By conditions i and iii of definition 1 we

have p* - x> b¥ for each x*° e x™ and p* - xF < b* for each x¥ e

x*, respectively. But by condition ii of definition 1, any object that has
positive price under p* is at full capacity under x*, so x** cannot cost
more in total than x*. This yields a contradiction:

# Theorem 1 of Klaus and Miyagawa (2001) says that the serial dictatorship is the only
mechanism that is strategyproof and ex post efficient for the case of N = 2 agents, which
is enough to yield proposition 3 as stated. If we restrict attention to larger economies (i.e.,
N> 2), then we can obtain a slightly weaker statement than proposition 3 by using either
proposition 1 of Papai (2001) or theorem 1 of Ehlers and Klaus (2003), each of which
characterizes dictatorships in terms of strategyproofness, ex post efficiency, and a mild
additional property (nonbossiness and coalitional strategyproofness, respectively).
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NbF > *Z*p* CxE> D, pF e xS > NbE.

QED

The proof of proposition 4 relies on two facts about (0, 0)—CEEIs:
(i) 8 = 0 means that each agent has 1/N of the budget endowment,
and (ii) @ = 0 means that at price vector p* the goods endowment
costs weakly less than the budget endowment.

The approximate CEEI jeopardizes both of these properties. Setting
8 > 0 but sufficiently small minimizes the harm from violating condition
i. Issue ii is handled with the following approximation parameter and
minor extension of theorem 1.

DeriNITION 4. For 6 > 0 and budgets b, the set P(5, b) is defined to
be the set of price vectors at which the goods endowment costs at most
0 proportion more than the budget endowment. Formally,

PE. b) = {p e [0, max (B)]": X, pg;< X b1 + ).

LemMma 1. For any 6 > 0 and any set of target budgets b’, there exists
an (o, 8)-CEEI [x*, b*, p*] that satisfies all of the conditions of theorem
1 and additionally p* € P(5, b*).

By choosing 3, 6 small enough, we can ensure that each agent’s budget
is at least 1/(N+ 1) of the cost of the endowment at the approximate
CEEI price vector p*. This guarantees that the approximate CEEI ap-
proximately satisfies the maximin share guarantee.

DEFINITION 5. Agent is N + 1 maximin shareis the consumption bun-
dle

max {min{x,, ..., Xy, Xyi1}(s
&) | (z)

where the max, {-} is taken over all allocations (x,),.}' such that x, €

2¢ for all Zand 3, x, < ¢ for all j.

THEOREM 2. If [x*, b*, p*] is an («, 8)—CEEI where, for some 6 >
0, p* € P, b*) and < (1 —6N)/N(1 +6), then x* satisfies the
(N + 1)-maximin share guarantee.

Theorem 2 indicates that approximate CEEI guarantees each agent
his maximin share based on a hypothetical economy in which there are
N+ 1 instead of N total participants. In fact, a slightly better approxi-
mation to maximin shares can be provided in case o = 0. In particular,
in the diamonds and rocks example from the introduction we can guar-
antee that each of the two agents gets a diamond; the approximation
is that the agent who gets the small diamond may also get the ugly rock.
For details, see Budish (2010).
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B.  Theorem 3: Approximate CEEI Guarantees Envy Bounded by a Single
Good

Exact CEEIs are envy-free because all agents have the same choice set.
When agents have unequal incomes (8 > 0), they have different choice
sets, so envy-freeness cannot be assured. The following result shows that
if the inequality in budgets is sufficiently small, we can bound the degree
of envy.

TrEOREM 3. If [x*, b*, p*] is an (a, B)-CEEI with 8 <1/(k— 1),
where k is the maximum number of objects per agent as defined in
theorem 1, then x* satisfies envy bounded by a single good.

Proof. Suppose for a contradiction that i envies ¢’ and that this envy
is not bounded by a single good. Let k' < k denote the number of objects
in the envied bundle x¥, and number these objects ji, ..., j,. Condition
i of definition 1 indicates that i cannot afford any of the %’ bundles
formed by removing a single object from x7:

p* - (F\ D) > OF,

p* - (xF\Uih) > bF.

Since {j,}Ul{j,}u--U{j) = xf, we can sum these inequalities to
obtain

(k" = D)(p* - xf) > k'bF,
which, since & > (p* - ) by the fact that ¢’ can afford her bundle,
gives
K — 1)b% > kb,
Since k' < k, we have

v k
- > >——>1+4,
bR —1"k—1°7 g

which contradicts condition iii of definition 1. QED

VI. The Approximate CEEI Mechanism

On the basis of the efficiency and fairness results of Sections III-V and
with an eye toward incentives as discussed below, I propose the ap-
proximate CEEI mechanism.

MEcHANISM 1 (Approximate CEEI mechanism).

1. Each student i reports her preferences >, over her permissible
schedules ¥,. The market administrator sets (J >, x for x ¢ V..



COMBINATORIAL ASSIGNMENT 1081

2. Assign each student 7 a budget b¥ that is a uniform random draw

from [1, 1 + 3], with
O<B<min(l, L)
N k-1

3. Compute a set of prices (p¥, ..., p#) and allocations (x¥, ...,
x%), in an anonymous manner, such that (a) each student’s allo-
cation maximizes her utility, on the basis of her reported prefer-
ences, subject to her budget constraint (formally, condition i of
definition 1 is satisfied); (b) the magnitude of market-clearing
error, as defined in condition ii of definition 1, is smaller than the
theorem 1 bound of JoM/2.2

4. Announce [x*, b¥, p*].

In step 1, students report their preferences over permissible sched-
ules. In practice, the number of possible schedules can be quite large,
so the market administrator must provide a language by which students
can express their preferences concisely. Othman et al. (2010) propose
one such language, the starting point of which is the observation that
if ¢ preferences are additively separable but for scheduling constraints,
M numbers can be used to describe ordinal preferences over the entire
set V.

In step 2, students are randomly assigned approximately equal bud-
gets. In practice, the market administrator may wish to assign budgets
nonrandomly, for example, on the basis of seniority or grade point
average.

In step 3, the mechanism computes approximate market-clearing
prices. Othman et al. (2010) propose one such computational proce-
dure that appears to work well in life-size problems; in particular, in
both the data in Section VIII and simulation economies, it typically finds
prices that clear the market with error that is much smaller than the
theorem 1 bound. However, it remains an important open question
what is the best such computational procedure, both in terms of min-
imizing market-clearing error and in terms of computational efficiency.

Finally, in step 4, allocations, budgets, and prices are announced pub-
licly. This step relates to the issue of “transparency,” which is an im-
portant if imprecisely defined concern in practical market design. The
computation of A-CEEI prices is necessarily somewhat opaque since it
involves calculating approximate fixed points. But, once computed, the
prices can then be announced publicly. The assignment of random
budgets can be public as well. Perhaps the most important sense in
which A-CEEI is transparent is that students can verify that they received

* Technically, it may be necessary to perturb budgets by some £ >0 to guarantee an
error smaller than yoM/2. One other technicality is that prices should satisfy p* e
P((1 — NB)/(N+ NB), b*¥) as per lemma 1 and theorem 2.
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their most preferred affordable schedules at the publicly announced
prices.

Incentive properties of the approximate CEEI mechanism.—A-CEEI is not
strategyproof because agents’ reports might affect prices. But, in a large-
market limit economy in which agents are price takers, it is a dominant
strategy to report truthfully. Formally, A-CEEI has the property of being
strategyproof in the large, as defined in Budish (2010).* The intuition is
straightforward: by reporting truthfully, the agent is sure to receive her
most preferred affordable bundle at the realized prices; if she cannot
affect prices, she might as well tell the truth.

By contrast, the course-allocation mechanisms currently found in
practice not only are not strategyproof but also fail to be strategyproof
in the large. In the bidding points auction studied by Sénmez and Unver
(2003, 2010), students should misreport their preferences even if they
cannot affect prices. In the HBS draft mechanism studied by Budish
and Cantillon (forthcoming), students should misreport their prefer-
ences even if they cannot affect course run-out times, which are that
mechanism’s analogue of prices.

Empirical evidence suggests that large-market strategyproofness is im-
portant in practice. In addition to the two course-allocation mechanisms
mentioned above, other mechanisms that fail to be strategyproof in the
large and that have been shown to have important incentive problems
in practice include nonstable matching algorithms (cf. Roth 2002), the
Boston mechanism for school choice (Abdulkadiroglu, Pathak, and Roth
2005), and discriminatory price multiunit auctions (e.g., Friedman
1991). Examples of mechanisms that are strategyproof in the large and
that are thought to have attractive incentive properties in practice in-
clude deferred acceptance algorithms and double auctions.” To the
best of my knowledge, there are no empirical examples of market de-
signs that are strategyproof in the large but have been shown to be
harmfully manipulated in large finite markets, nor are there empirical
examples of market designs that are manipulable in the large but are
thought to be truthful in large finite markets.

* The Budish (2010) definition of strategyproof in the large is based on the continuum
replication of a given finite economy. See also Azevedo and Budish (2012) for a definition
based on the limit of a sequence of finite economies.

* For both deferred acceptance and double auctions (e.g., Perry and Reny 2006; Kojima
and Pathak 2009) and Walrasian mechanisms with perfectly divisible goods (e.g., Roberts
and Postlewaite 1976), we have a formal theoretical understanding of how truthful behavior
converges to optimal behavior as the market grows large. Unfortunately, the kinds of proof
techniques that have been developed for these other contexts are not readily applicable
here because the relationship between agents’ reports and realized prices is nonconstruc-
tive and discontinuous, as well as somewhat random. Developing a better understanding
of A-CEEI’s incentive properties away from the limit is a natural topic for future research.
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VII. Comparison to Alternate Mechanisms

Impossibility theorems indicate that there is no perfect mechanism for
combinatorial assignment. The approximate CEEI mechanism devel-
oped in Sections III-VI offers a compromise of competing design ob-
jectives. It is approximately ex post efficient, guarantees approximate
maximin shares, bounds envy by a single good, and is strategyproof in
the large. Additionally, it satisfies the procedural fairness requirement
of anonymity.

One way to assess whether A-CEEI constitutes an attractive compro-
mise is to compare its properties with those of alternatives. Table 1
describes the efficiency, fairness, and incentives properties of every prior
combinatorial assignment mechanism I am aware of from either theory
or practice.

Every other mechanism but for A-CEEI is either severely unfair ex
post or manipulable in the large, and most are both unfair and manip-
ulable. Many of the mechanisms are ex post Pareto efficient under
truthful play, whereas A-CEEI is only approximately efficient. However,
most of these mechanisms are manipulable even in large markets, and
most also restrict the preference information agents can report. So it
is difficult to say which will be more efficient in practice. In the one
case we are able to test with data (in Sec. VIII), A-CEEI is the more
efficient mechanism, both ex ante and ex post.

Comparison to the bidding points auction.*—Of special note among al-
ternate mechanisms is the widely used bidding points auction (BPA)
since it resembles exact CEEL.* The BPA works roughly as follows: Each
student submits integer bids for individual classes, the sum of their bids
not to exceed some fixed budget amount (say 10,000 points). If course
J has g, seats, the ¢, highest bidders for it get a seat, with ties broken
randomly.”” Student i% bids can be interpreted as a report of an addi-
tively separable utility function, u,(-). The gth-highest bid for course j
is frequently interpreted as the “clearing price” p; for course j and the
allocation itself as a “market equilibrium” (e.g., Wharton 2011).

* See Budish (2010) for two additional detailed comparisons, to the random serial
dictatorship and the Hylland-Zeckhauser pseudomarket mechanism.

* Variants of the BPA are used at Berkeley, Chicago, Columbia, MIT, Michigan, NYU,
Northwestern, Penn, Princeton, and Yale. See Sénmez and Unver (2003, 2010), Adler et
al. (2008), MIT (2008), https://ibid.chicagobooth.edu/registrarstudent/Home.tap, and
Wharton (2011) for details.

*” More precisely, bids for all courses are sorted in descending order and are either
filled or rejected one at a time depending on whether (i) the course still has capacity for
the student and (ii) the student still has capacity for the course. Because of condition ii,
a student whose bid for course j is among the ¢; highest might not get it whereas some
other student who bids less does. Strategic issues aside, condition ii can lead to inefficient
allocations. Sénmez and Unver (2008, 2010) and Krishna and Unver (2008) propose a
mechanism that eliminates the inefficiencies that arise from this specific aspect of the
BPA.
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To the casual observer, the BPA looks like an equal-incomes com-
petitive equilibrium procedure. Yet it turns out that the BPA makes a
subtle mistake: the BPA treals fake money as if it were real money that enters
the utility function. That is, it treats a general equilibrium theory problem
as if it were an auction theory problem.

Suppose that student ¢ has a budget of b, and faces a price vector of
p, and let B, = {x’ € 2°: p * x < b}. With fake money, student % correct
demand is

xF = argmax [u,(x')], (5)
x'eB;
which is what student i would receive at these prices under A-CEEIL The
BPA instead allocates student ¢ the bundle

xP™ = argmax [u,(x") —p - «'], (6)

2
x'eB;

that is, the bundle that maximizes the difference between reported
utility and expenditure of fake money. This can lead to situations in
which a student gets zero of the courses she bids on. Suppose that Alice
bids 7,000, 2,000, and 1,000 for courses a, b, and ¢, but their prices are
8,000, 3,000, and 1,500. Then, since each of Alice’s bids is less than the
course’s price, she gets none of them.

If Alice bids differently—say, submits bids of 8,001, 0, and 1,501—
then she can trick the demand function (6) into behaving like the
demand function (5). That is, she will receive the bundle {a, ¢ that
maximizes (5) for u,,. = (7,000, 2,000, 1,000) and that maximizes (6)
for w,;,.. = (8,001, 0, 1,501). This seems to solve the problem with the
BPA, but in fact it just pushes the problem onto some other student:
when Alice obtains a for 8,001, she causes the unlucky student who bid
8,000 for a (say Bob) now no longer to get it. Results in Budish (2010)
formalize that the BPA is not a backdoor method for implementing true
competitive equilibria and that the BPA can lead to outcomes, both
under truthful play and in Nash equilibrium, in which some students
get zero courses.

The zero courses issue is not just a theoretical curiosity but manifests
in some simple data provided by the University of Chicago’s Booth
School of Business, which recently adopted a BPA. During the four
quarters from summer 2009 to spring 2010, the numbers of students
allocated zero courses in the main round of bidding have been 53, 37,
64, and 17.* In Chicago Booth’s BPA, budget that is unspent in one
quarter carries over to future quarters, so these numbers should be
interpreted with some caution. The cleanest evidence comes from fo-

2 Students allocated zero courses in the main round can fill their schedules in sub-
sequent rounds of bidding, typically with courses that were in excess supply in the main
round.



COMBINATORIAL ASSIGNMENT 108’7

cusing on students who get zero courses in their last term. Of the 17
students who got zero courses in spring 2010, five were full-time master
of business administration students about to graduate. One student
bears an uncanny resemblance to Alice: he bid 5,466, 5,000, 1,500, and
1 for courses that had prices of 5,741, 5,104, 2,023, and 721. Another
case that is instructive is a student who bid 11,354, 3, 3, 3, and 2 for
courses that then had prices of 13,266, 2,023, 1,502, 1,300, and 103.
This student used essentially all of his budget in a futile attempt to get
the single most expensive course. Not only did he not get the “big
diamond,” but he also did not get a small diamond or even any rocks.”
Theorems 2 and 3 ensure that such outcomes never occur under
A-CEEL

VIII. Performance of A-CEEI in an Empirical Environment

This section examines the performance of the approximate CEEI mech-
anism in a specific course-allocation environment. I use Budish and
Cantillon’s (forthcoming) data from course allocation at Harvard Busi-
ness School (HBS) and Othman etal.’s (2010) computational procedure
for A-CEEL

A. Data and Key Assumptions

The HBS data consist of 456 students’ true and stated ordinal prefer-
ences over 50 fall semester courses and 48 spring semester courses, as
well as these courses’ capacities, for academic year 2005-6. For details,
see Budish and Cantillon (forthcoming).

To convert preferences over courses into preferences over bundles,
I follow Budish and Cantillon (forthcoming) and assume that students
compare bundles on the basis of the “average rank” of the courses in
each bundle. For instance, a student prefers the bundle consisting of
her second- and third-favorite courses to that consisting of her first and
fiftth because 2.5 is a lower average rank than 3.0. Ties are broken
randomly. The average-rank assumption seems reasonable for handling
the data incompleteness problem for two reasons: first, the HBS elective
year curriculum is designed to avoid complementarities and overlap
between courses; second, in the HBS draft mechanism, students are

* A second implication of the BPA’s treatment of fake money as if it entered the utility
function is that some students will graduate with large budgets of unspent fake money.
Among full-time MBA students graduating in Spring 2010, the median student graduated
with a budget of 6,601 unspent points, which is nearly a full quarter’s budget (8,000
points). The 90th-percentile student graduated with 17,547 unspent points and the 99th
with 26,675 unspent points.
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unable to express the intensity of their preference for individual courses
beyond ordinal rank.

I assume that students report their preferences truthfully under
A-CEEL* For computational reasons, I treat each semester’s allocation
problem separately.”

B.  Market-Clearing Error

Theorem 1 indicates that there exist A-CEEI prices that clear the HBS
course-allocation market to within market-clearing error of VoRM/2,
where k is the number of courses per student and M is the number of
courses. Here, k = 5 and M = 50, 48 for the fall and spring semesters,
respectively.

I run A-CEEI 100 times for each semester and record its actual market-
clearing error. The actual error is meaningfully smaller than the bound
implied by theorem 1. The maximum (mean) observed error in Eu-
clidean distance is V13 (y5.61) in the fall and 22 (16.12) in the spring,
as compared with the theorem 1 bounds of Y125 and 120, respectively.
In terms of seats, the maximum (mean) observed error is 11 (5.46)
seats in the fall and 14 (5.96) seats in the spring.

Part of the explanation for the low amount of market-clearing error
is that only a subset of courses ever have a strictly positive price: 21 in
the fall and 23 in the winter. If we reformulated the problem as one of
allocating only the potentially scarce courses (see Sec. III.C), this would
reduce the bounds to y52.5 and 57.5, respectively.

C. Outcome Fairness

Theorem 2 indicates that A-CEEI guarantees students an approximation
to their maximin share that is based on adding one more student to
the economy. In the HBS economy, students’ outcomes always exceed
their exact maximin shares by a large margin. The worst outcome any
student receives is an average rank of around 8, whereas students’ max-
imin shares have an average rank of around 18-20.

* Unfortunately, I have no formal way of assessing whether an HBS-size economy is
“large,” i.e., whether truthful reporting is an approximate equilibrium. There are 50
courses per semester, and each student ranks about 15 courses per semester. So there are
about 50!/(50 — 15)! = 3 x 10* possible reports for each student, even within the re-
stricted class of average-rank preferences. I have no theoretically motivated way to restrict
attention to some subset of these potential manipulations, in contrast to, e.g., Roth and
Peranson (1999).

* The Othman et al. (2010) computational procedure can solve problems the size of
a single semester at HBS, in which there are roughly 50 courses and ( 0y ~ 10° schedules,
in around 20 minutes in Matlab on a standard workstation. It can solve problems the size
of a full year at HBS, in which there are roughly 100 courses and A0 10 0y~ 10" schedules,
in around 11 hours in a more sophisticated computing environment.
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Theorem 3 indicates that A-CEEI bounds each student’s envy by a
single good. In the data, over 100 runs of A-CEEI, around 99 percent
of students have no envy; that is, they weakly prefer their own allocation
to any other student’s allocation. For the 1 percent of students who do
envy, the degree of envy is small. The worst observed case is envy of
seven course ranks, for example, a student who receives her second- to
fifth- and eighth-favorite courses whereas someone else receives the stu-
dent’s first- to fifth-favorite courses.

D. Ex Ante Welfare Comparison versus the HBS Draft Mechanism

In each semester, the distribution of average ranks under A-CEEI first-
order stochastically dominates that under the actual play of the HBS
draft. First-order stochastic dominance is an especially strong compar-
ison relation: we do not need to make any further assumptions on how
von Neumann-Morgenstern utility responds to average rank to reach
an ex ante welfare comparison.” Additionally, the magnitude of the
improvement seems economically meaningful. The mean average ranks
under A-CEEI are 4.20 in the fall and 4.32 in the spring versus 4.56 and
4.47 for HBS (lower is better; 3.00 is bliss). Thus, on average, the quality
of a student’s schedule improves by 0.25 ranks per course.

IX. Conclusion

Most of what is known about the combinatorial assignment problem is
a series of impossibility theorems that indicate that there is no perfect
solution. This paper gets around the impossibility theorems by seeking
second-best approximations of the ideal properties a combinatorial as-
signment mechanism should satisfy. Ideally, a mechanism would be ex-
actly Pareto efficient, both ex post and ex ante. A-CEEI is approximately
ex post efficient in theory and has attractive ex ante efficiency perfor-
mance in a specific empirical environment. Ideally, a mechanism would
satisfy the outcome fairness criteria of envyfreeness and the maximin
share guarantee. A-CEEI approximates these two ideals in theory and
gives exact maximin shares and is 99 percent envy-free in the data.
Ideally, a mechanism would be strategyproof. A-CEEI is strategyproof in
the large, whereas the mechanisms found in practice are simple to
manipulate even in large markets.

The computational analysis raises two interesting questions for future
research. First, market-clearing error in the data is considerably smaller

* 1 have assumed that students’ ordinal preferences over bundles are based on the
average rank of the courses contained in each bundle. I have not made any additional
assumption about how their von Neumann-Morgenstern utilities depend on average rank.
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than the theorem 1 worst-case bound, consisting, on average, of just a
single seat in six courses. Can we improve the bound of theorem 1 if
we restrict attention to certain classes of preferences or make assump-
tions about the degree of preference heterogeneity? Second, envy in
the data is exceedingly rare, whereas we know that in the worst case all
agents but one will have envy. What are the features of an environment
that make average-case envy small?

Two other interesting questions are raised by considering combina-
torial assignment’s relationship to other well-known market design prob-
lems. First, there may be an interesting hybrid problem combining com-
binatorial assignment with two-sided matching, just as the school choice
problem is often formulated as a hybrid between single-unit assignment
and two-sided matching (Abdulkadiroglu and Sénmez 2003). For in-
stance, in the context of course allocation, schools may wish to give
course-specific priority to students who need a certain course to fulfill
a requirement or who performed well in a related prerequisite. It would
be interesting to see if the competitive equilibrium approach can be
adapted to such environments. Second, there may be an interesting
hybrid problem combining combinatorial assignment with combinato-
rial auctions. In a sense, combinatorial assignment is like a combinatorial
auction in which all participants have a real-money budget constraint
of zero, so it becomes important to use an artificial currency instead.
It would be interesting to ask whether there are useful ways to combine
real-money market designs and fake-money market designs in environ-
ments in which budget constraints are nonzero but often bind, or in
which monetary transfers are restricted in other ways.

I close on a methodological note. Practical market design problems
often prompt the development of new theory that enhances and extends
old ideas. To give a prominent example, the elegant matching model
of Gale and Shapley (1962) was not able to accommodate several com-
plexities found in the practical design problem of matching medical
students to residency positions. This problem prompted the develop-
ment of substantial new theory (summarized in Roth [2002]) and a new
market design described in Roth and Peranson (1999). Similarly, the
beautiful theory of competitive equilibrium from equal incomes devel-
oped by Foley (1967), Varian (1974), and others is too simple for prac-
tice because it assumes perfect divisibility. This paper proposes a richer
theory that accommodates indivisibilities and develops a market design
based on this richer theory. I hope that, just as a concrete application
renewed interest in Gale and Shapley’s remarkable deferred-acceptance
algorithm, this paper and its motivating application will renew interest
in CEEI as a framework for market design.
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Appendix A
Proof of Theorem 1

Preliminaries—Fix an economy (S, C, (¢)2,, (¥)X,, (Z)L,), and fix >0 and
€>0. Fix a budget vector b’ = (b;, ..., b)) that satisfies 1 <min,(}/) <
max, (b)) <1+ 6.

Let b = 1 + 8 + €. Define an M-dimensional price space P = [0, 5] and an
auxiliary enlargement of this space P = [~1, b+ 1]". Define a truncation func-
tion {:P—P that takes any price vector in P and truncates each of its com-
ponents to be within [0, ?). Formally, for p P, {(p) = (min [6, max (0, f),)],

.., min [b, max (0, p,)]).

In step 1 we will assign to each agent-bundle pair a small reverse tax 7,, €
(—¢, &) that affects agent i% cost of purchasing bundle x: at prices p, i% total
costis p -+ x— 7,.

Demand and excess demand are defined on all prices in P. Agent i demand
d,() depends on prices p, her budget b, and her set of taxes 7, = (7,,),.oc:

d(p; b, 1) = max{x' € 2°:p - x' < b+ 7.} (A1)
)

Demand is a function rather than a correspondence because of the assumption
that preferences are strict over schedules. Let 7 = (7)) Excess demand z(°) is
defined by

iesS*

N

> d(B; by T)

i=1

z(p; b, 7) = -q. (A2)

Note the slight difference between z(") as defined here and the z* defined
in definition 1.ii.5, which is that z(-) does not distinguish between goods that
have prices of zero and goods with a strictly positive price. We will suppress the
b and 7 arguments from d,() and z() when their values are clear from the
context.

Since each agent i consumes either 0 or 1 of each object j, it is without loss
of generality to assume q; € {1, ..., N}, so —N< z;SN— 1 for all j € C. The fact
that excess demand is bounded is an important advantage of our environment
relative to the traditional Arrow-Debreu-McKenzie environment.

For each agent i € & and schedule x e 2°, define the budget constraint hy-
perplane H(, x) by HG, x) = {p € P:p-x= b+ 7.}

Both the taxes and the enlarged price space play a role that is entirely internal
to the proof. At the end we will have a price vector in P and set all of the taxes
to zero.

Step 1: Choose a set of taxes (7/,);cs.eoc Such that

i. —e<7.<e (taxes are small);
ii. 7,>7, if x>, x' (taxes favor more preferred bundles);
iii. 1<min;, (b + 7,) <max, (b +7,) <1+ (inequality bound is pre-
served);
iv. o+ 7, # b+ 7, forany (i, x) # (7, x’) (no two perturbed budgets are
equal);
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v. thereis no price p € P at which more than M perturbed budget constraint
hyperplanes intersect.

Existence of a set of taxes (7),);.s.coc satisfying parts i-v follows from the fact
that the number of agents, number of schedules, and number of budget con-
straint hyperplanes are all finite.

Step 2: Define a titonnement price adjustment function fon P. If fhas a
fixed point p* = f(p*), then its truncation p* = #(p*) is an exact competitive
equilibrium price vector.

Let v € (0, 1/N) be a small positive constant. Given budgets b and taxes 7,
define f: P— P by

/() = up) +yz(U(p); b, 7). (A3)
The reason we impose y < 1/Nis to ensure that the image of flies in P.

Suppose, for budgets of b’ and taxes of 7, that f has a fixed point p* =
f(p*). Then its truncation p* = #(p*) is an exact competitive equilibrium price
vector for the allocation x* given by x¥ = d,(p*; b, 7;) for all i € & and budgets
of b* given by b = b/ + 7,. for all i e S First, note that at any fixed point
no individual price pj > b. Given the definition of b, no agent can afford a seat
in object jat price b. So p¥ > bimplies z(p*; b’, 7) = 0 — ¢,< 0, which contradicts
P¥ = b being part of a fixed point. Second, p¥ € (0, b) implies that z(p*; b/,
7) = 0. Third, p¥ = 0 implies that z,(p*; b’, 7) <0. Finally, revealed preference
and requirement i of step 1 together imply that any bundle that ¢ prefers to
x¥ costs strictly more than b/ + 7., so each agent’s demand at the budgets b*
with no taxes is the same as his demand at the budgets b’ with taxes 7. Thus
z,(p*; b*, 0) <0 and z(p*; b* 0) <0 = p¥ = 0, as required for competitive
equilibrium.

Step 3: Define an upper hemicontinuous set-valued correspondence F, which
is a “convexification” of fand is guaranteed to have a fixed point by Kakutani’s
theorem. Let p* € F(p*) denote the fixed point and let p* = #p*) denote its
truncation.

Fix budgets to b’ and taxes to 7' as described in step 1. Create the corre-
spondence F:P— P as follows:

F(p) = coly:3 a sequence p'—~p, p # p* € P such that f(p*) >y}, (A4)

where co denotes the convex hull. Cromme and Diener (1991, lemma 2.4) show
that for any map f; the correspondence Fconstructed according to (A4) is upper
hemicontinuous and hence has a fixed point (the other conditions for Kaku-
tani’s fixed-point theorem—F is nonempty, P is compact and convex, and
F(p) is convex—are trivially satisfied).

So there exists p* € F(p*). Let p* = {(p*) denote its truncation. Fix p* and
p* for the remainder of the proof.

Step 4: If the price vector p* is not on any budget constraint hyperplane,
then it is an exact competitive equilibrium price vector and we are done.

If p* is not on any budget constraint hyperplane, then in a small enough
neighborhood of p*, every agent’s choice set is unchanging in price. Hence,
every agent’s demand is unchanging in price near p*, and f(*) is continuous at
p*. From the construction of F(*) in (A4), this means that F(p*) = f(p*).

If p* = p*, that is, if the fixed point lies within the legal price space P and
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so the truncation is meaningless, then we have

p* = p* € F(p*) = F(p*) = f(p*),

and so step 2 implies that p* is an exact competitive equilibrium price vector.
For p* # p*, that is, for cases in which the fixed point lies in P\P, we need the
following simple lemma.

Lemma 2. For any p € P\P, (i) f(p) = f(U(p)) and (i) F(p) S F(p)).

Proof. (i) Follows immediately from (A3). (ii) Consider ay for which there
exists a sequence p*— p, p* # p such that f(p*) = y. Now consider the sequence
{(p"). By the continuity of (), this sequence converges to {(p), and from part
i of the lemma, f(t(p“)) converges toy. Soy € F(p) =y € F(i(p)), and the desired
result follows. QED

Combining lemma 2 with F(p*) = f(p*) from above and p* € F(p*) from
step 3 yields

p* € F(p*) € F(p*) = f(p*) = f(p¥),
so p* = f(p*), and step 2 implies that p* is an exact competitive equilibrium
price vector.
Step 5: Suppose that p* is on L > 1 budget constraint hyperplanes. From step
1 we know that L< M. Let ® = {0, 1}". Define a set of 2" price vectors {p®}, ¢
satisfying the following conditions:

i. Each p?is close enough to p* that there is a path from p® to p* that does
not cross any budget constraint hyperplane (until the moment it reaches
p*).

ii. Each p?is on the “affordable” side of the Ith hyperplane if ¢, = 0 and is
on the “unaffordable” side if ¢, = 1.

That is, each ¢ € ¢ “labels” a region of price space close to p*.

Each of the L intersecting budget constraint hyperplanes defines two half
spaces. Let H’ = {p e P p - x,<b,+ 7,} denote the closed half space in which
the agent named on the I/th hyperplane, ¢, can weakly afford the bundle named
on the /th hyperplane, x,. Let H' = {p 75:p ©x,>0b,+7,} denote the open
half space in which agent 7, cannot afford bundle x,.

We label combinations of half spaces as follows. Let & = {0, 1}, with each
label ¢ = (¢,, ..., ¢,) € ® an [-dimensional vector of zeros and ones. The
convex polytope (¢) := N, H denotes the set of points in P that belong to
the intersection of half spaces indexed by ¢.

Let H denote the finite set of all hyperplanes formed by any i, x: H = {H(,

x)ies,x,ezf}- Let

X1

b< inf (|(p* —p").:p" € H. p* ¢ H).
pleP,HeH
That is, any hyperplane to which p* does not belong is strictly further than 6
away from p* in Euclidean distance. Let B;(p*) denote a 6-ball of p*.

We can now define a set {p®),., satisfying the requirements above: each p® is
an arbitrary element of 7(¢) N B;(p*).

Step 6: Consider the set of excess demands {z(p®)},., corresponding to the
prices {p®},.s defined in step 5. A perfect market-clearing excess demand vector,
¢, lies in the convex hull of {z(p®)},.q-
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We need the following lemma.

LemMa 3. For any y € F(p*) there exist nonnegative weights {N},_, with
S4ca N = 1 such that p* + 3, _, Nyz(p®) =y.

Proof. Consider an arbitrary ¢ and consider any two prices p’, p” € w(¢) N
B;(p*). Since both prices are in 7(¢), they are on the same side of each of the
L hyperplanes that intersect at p*. Since both prices are in B;(p*), by the way
we chose 6 in step b, for any other hyperplane in H, p’ and p” are on the same
side. Together, this means that every agent has the same choice set at p’ as at
p’. Since we chose p’, p” arbitrarily, demand at any price vector in w(¢) N
B;(p*) is equal to demand at p®.

Consider any sequence of prices p** = p*, with each p** e w(¢) N B,;(p*). The
preceding argument implies

f(p*?) = p* + vz(p°). (A5)
Note too that any sequence p” — p* for which f(p"”) converges must converge
to p* + z(p*) for some ¢’ € ® because U,_,m(p) N B;(p*) = P By(p*). This
observation, (Ab), and the way that we constructed F() (i.e., [A4]) together
imply that if y € F(p*), there exist nonnegative weights {N}, s, with 3, _ N =
1, such that p* + 3, _, Nyz(p®) =y. QED
From step 3 we have p* e F(p*) and from lemma 2 in step 4 we have
F(p*) € F(p*), so p* € F(p*). Thus we can apply lemma 3 to p* € F(p*) to
obtain that there exist nonnegative weights {N},_,, with X,_, N = 1 such that

p* +%)x‘"yz(p"’) = p*.
This in turn implies (using the same N’s)
Bk —
> Na(p) = B
ped Y

By the same argument as in step 2, demand for any object j must be zero at
price b or higher, so f# € [~1, 3) for all j e C. So, for all j, either p* = p* or
p¥<0 = p*. So we have that 3, _,Nz(p®) <0 with 3,_,Nz/(p®) <0 = p* = 0.

Define ¢ = 3,_,Nz(p®). The vector { is in the convex hull of {z(p®)},.. by
construction, and it is a perfect market-clearing ideal at prices p* since {<0
with {<0= p¥ = 0.

Step 7: The set of excess demands {z(p®)}, .5 has a special geometric structure.

The L budget constraint hyperplanes that intersect at p* name L' < L distinct
agents; renumber the agents in S so that agents {1, ..., L'} are the ones so
named. Denote by w, the number of intersecting hyperplanes that name agent
iell,...,L}andletx}, ..., x* denote the bundles pertaining to ¢5 hyperplanes,
numbered so that x] >, >, x™. Note that 2;;1 w, = L.

The following argument illustrates that agent ¢ € {1, ..., L'} purchases at most
w, + 1 distinct bundles at prices near to p*. In the half space H°(i, x}) he can
afford x;, his favorite bundle whose affordability is in question near to p*, and
so it does not matter which side of H(, x7), ..., H(i, x") price is on. Let d}
denote his demand at prices in H°@i, x!) N B,(p*) N 2. If price is in H'(,
x;) N H@, x2), then i cannot afford x] but can afford x?, his second-favorite
bundle whose affordability is in question. So it does not matter which side of
H@, x7), ..., H(, x}") price is on. Let d] denote his demand at prices in H'(;,




COMBINATORIAL ASSIGNMENT 1095

x}) N H @, x?) N B;(p*) N 2. Continuing in this manner, define d?, ..., d. The
process ends when we have crossed to the unaffordable side of all w, of ¢5 budget
constraint hyperplanes, so i cannot afford any of x/, ..., x¥.

The demand of any agents other than the L just discussed is unchanging near
p*. Call the total demand of such agents

N
dsi,....n(P*) = 2 a,(p*; b, 7)),
i=0+1
and let
zot,.n(P*) = dsuiy(P*) — Q.

We can now characterize the set {z(p®)},., in terms of the demands of the
L individual agents near p*:

U w
{Z2(P")ges = |2sur..n(P¥) + Z;) afd] (A6)
subject to
ale{0,1} foralli=1, ..., L, f=0, ..., w,
Dal=1 foralli=1, ..., L.
/=0
At any price vector near to p*, each agent i = 1, ..., L' demands exactly one

of his w;+ 1 demand bundles. Over the set ® = {0, 1}", every combination of
the L agents’ demands is possible. The set (A6) has a particularly intuitive
structure in case I' = L (and so w, =1 for i = 1, ..., L); see (3).

Step 6 tells us that there exists a market-clearing excess demand vector in the
convex hull of (A6). This convex hull can be written as

U
{Z(Pd))}d,y» =z, (P) + Z 2 “,@;f (A7)

i=1/=0
subject to
ale[0,1] foralli=1, ..., L, f=0, ..., w,

i

Dal=1 foralli=1, ..., L.
/=0
Step 8: There exists a vertex of the geometric structure from step 7, (A6),
that is within JoM/2 distance of the perfect market-clearing excess demand
vector, {, found in step 6. That is, for some z(p*) € {z(p*)}ycar |Z2(p*) — 2|, <
oM/2.
We are interested in bounding the distance between an element of (A6) and
an element of its convex hull (A7), which we know contains {.**
Fix an arbitrary point of (A7); that is, fix a set of al € [0, 1] that satisfy
E;:oafz lforalli=1, ..., L. For each i = 1, ..., I define a random vector

* The proof technique for this step closely follows that of theorem 2.4.2 in Alon and
Spencer (2000). I am grateful to Michel Goemans for the pointer. Another choice would
be to use the Shapley Folkman theorem (Starr 1969).
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6, = (0, ..., 6/, where the support of each 0/ is {0, 1}, E(©/) = a! for all
f=1, ..., w, and in any realization 0, Z: 6/ = 1. Suppose that the ©)’s are
independent. Let
' w 2
[ 2, [/~ ) |,
Linearity of expectations yields
14 w 2
ot = 2 Eo| X lla/- 0/>1d,4\2]
i=1 /=0 (AS)
+ 33 D Eqgollal - 01(ar - 691 - 4.
j#i [=0g=0
Independence yields
Eogod(a! — 6))(af — 69 = Eqfal — 0/E ofaf — 041 = 0 (A9)
since the random vectors are independent across agents and Eq#/ = a/ for all
i, f.
Lemma 4. Foreachi:=1, ..., L,
ow,
0d ‘.
[/ 0 ) f‘ 4

Proof. Fix i. For any d/, d/, the vector &/— d/' e {—1, 0, 1} has at most
o = min (2k, M) nonzero elements, where k is the maximum number of objects
in a permissible bundle and M is the number of object types. Thus ||d/—
!, <\o. Let d, = 3" a/dl. Now rewrite

w;

= /E all[d,— d|)* (A10)

ond]

If w, = 1, then (A10) is largest when |d! — d°||, = Vo and a° = a! = 2, this

maximum value is 6/4, which is equal to the bound. If w, = 2, then (A10) is
largest when {df’, d!, d?} forms an equilateral triangle of side length o and

a=a; =a’= %, this maximum value is ¢/3, which is strlctly lower than the
bound of 0/2. If w, = 3, then (A10) is largest when {d?, d}, d?, d?} forms a
triangular pyramid of side length yo and a] = a; = a = a] = 3; this maximum

value is 30/8, which is strictly lower than the bound of 30/4. For w,;> 4, the
bound can be obtained by observing that there exists some sphere of diameter
Jo that contains the convex hull of {d/}"’ o> 50 the expected squared distance is
less than or equal to ¢ whereas the right-hand side of the bound ow,/4 > 6. QED
Combining lemma 4, (A8), and (A9) yields
i ow; ol oM
— =—=<—.
- 4 4

r w
2 _
P = 2 IEe,
i=1 /=0 4

This means that there must exist at least one realization of ¢ such that

U w; ;‘M
>t/ - o], <
i=1/=0 2 2
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Since we chose the a!’s arbitrarily, there exists such a realization for any interior
point of (A7), in particular for weights a/ such that

U
Zor,...n(P*) T 21/20 adl = ¢
Call this realization 8. This realization points us to an element of {z(p“’)}d,eq”
namely
L
Zsut,...n(P¥) + 21,20 0},

that is within JoM/2 Euclidean distance of the perfect market-clearing ideal
point, {. Call this element z(p*).

Step 9: Use the vertex found in step 8, z(p*), to produce prices, budgets, and
an allocation that satisfy the statement of theorem 1.

There is no guarantee that p* € P; in particular, if p* = 0, it is possible that
p/f”' is strictly negative, so p* € P\P. So we will use the prices p*, which are
guaranteed to be in P, and perturb budgets in a way that generates excess
demand at p* equal to z(p*) from step 8.

If agent i € &'is not named on any of the L budget constraint hyperplanes
of step 5, then his consumption is x¥ = d(p*, b/, 7/) and we set b* = b/ + 7/,
Requirement i of step 1 implies that any bundle he prefers to x}* costs strictly
more than 4/ + 7,,; else he would demand it at prices p*, budget 4/, and taxes
of 7.

If agent i € &'is named on some of the budget constraint hyperplanes, then
we will use the information in ¢’ to perturb his taxes and ultimately his budget.
For f=1, ..., w, if p¥ € H'(, x/), that is, x/ is unaffordable for i at p*, then
set 7., = 7;,,— 0, for 6,>0 but small enough to preserve conditions i-iii of step
1. For all other bundles, including bundles not named on any hyperplane, set
7,y = 7,,. Consider d(p*, b/, 7/'): this is simply i5 demand at the original budget
and taxes but at prices p*, that is, d,(p*, b}, 7/') = d(p®, b/, 7/).

Set x¥ = d(p*, b/, 7') and set bF = b/ + 7/ for all i € S. Now set all taxes
equal to zero. Since we set §, small enough to ensure that requirement ii of
step 1 still obtains, x¥ remains optimal for i at prices p* and a budget of b}.
Similarly, we have preserved the original level of budget inequality and the &
bounds, by requirements iii and i, respectively, of step 1. Approximate market
clearing is ensured by step 8. So budgets of b*, prices of p*, and the allocation
x* satisfy all of the requirements of theorem 1. QED

Appendix B
Other Omitted Proofs
Proof of Proposition 1

For the case M = 4, consider the following example.

ExampLE 1. There are four objects, C = {a, b, ¢, d}, each with capacity 2.
There are four agents, S = {i,, i,, is, i,}, whose preferences are >, :{a, b, d,
{d}, ....,>, da, b, d}, {d, ..., >, {a, ¢, d}, (B}, ..., and >, :{b, ¢, d}, {d}, ....

Fix 0<B< l, and consider an arbitrary budget vector b* = (1+6,, 1+ ,,
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1+8,, 1+, for B, By, Bs, B,<B. The unique fixed point of correspondence
(A4) is p* as given by

w 1+61+62+637264
pal - 3 5

. 1+B1+62_263+B4
pi = 3 >

L 1+B,—26,+8,+8,
P = 3 ?

" 1_261+62+Bs+:84
pfi‘ = 3 .

At p*, each agent can exactly afford her most preferred bundle and can strictly
afford her second most preferred bundle, so in arbitrary sequences p*— p¥*,
each agent’s demand converges to either of her two most preferred bundles.
The convex combination in which each agent receives each bundle with prob-
ability one-half exactly clears the market (and is unique in this respect).
Every feasible demand in a neighborhood of p* is Euclidean distance
JoM/2 = 2 from the perfect market-clearing demand of q=(2222).

To see why example 1 obtains the theorem 1 bound, consider the matrix that
is formed by stacking the four agents’ change-in-demand vectors at p* (see Sec.
II1.D.4):

-1 -1 -1 +1
-1 -1 +1 —1
-1 +1 -1 -1 (B1)

+1 -1 -1 -1

This is a Hadamard matrix: all of its entries are +1, and its rows are mutually
orthogonal (Wallis, Street, and Wallis 1972). Whenever the change-in-demand
matrix at p* is a Hadamard matrix, aggregate demand in a neighborhood of
p* forms a hypercube with sides of length VM (here, ¢ = M).

The Hadamard matrix (B1) has an additional feature, regularity, which requires
that each row has the same number of +1’s. Neil Sloane has shown that regular
Hadamard matrices exist for all powers of 4. We can use these regular Had-
amard matrices to construct examples that are exactly analogous to example 1
for M = 16, 64, 256, .... QED

* Here is Sloane’s proof. Let A be the matrix defined in (B1). The tensor product of
two Hadamard matrices is itself a Hadamard matrix, and the tensor product preserves
the “same number of +1’s per row” property. So A® A is a 16-dimensional Hadamard
matrix with the same number of +1’s per row, A® (A® A) is a 64-dimensional example,
and so forth. QED. It has been conjectured that there exist regular Hadamard matrices
of order (2n)? for any integer n. Useful references are http://www2.research.att.com/
~njas/hadamard/index.html and http://oeis.org/A016742.


http://www2.research.att.com/njas/hadamard/index.html
http://www2.research.att.com/njas/hadamard/index.html
http://www2.research.att.com/njas/hadamard/index.html
http://www2.research.att.com/njas/hadamard/index.html
http://www2.research.att.com/njas/hadamard/index.html
http://oeis.org/A016742
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Proof of Proposition 2

Suppose that x’ Pareto improves on x* in economy (S, C, (¢* )j L (TN,
(ZIN). By condition i of definition 1 and strict preferences, if x; # x¥, then
p* - x/>p* - x¥. This implies that 3,p* - x;>>,p* - x¥, a contradiction since
prices are nonnegative and x* allocates all units of positive-priced goods. QED

Proof of Lemma 1

Step 6 of the proof of theorem 1 shows that X,_,N°p* - z(p®) = 0 for a set of
nonnegative weights (X°),_, summing to one and a set of prices (p®),.¢ arbitrarily
close to p*. Choose &,>0 as an upper bound on the distance in the L, norm
between p* and each p? for any bundle x and any ¢, this means p* - x>
p* * x— &,. Summing over all p?, we have

N
2 Npe - 2 a(p®, bl, . o BT
ped i=1

(B2)
=p* - q— Ne,,
where the equality follows from noting that
Zdw b, 1) = 2(p*) +q
by definition (A2). Recall that € >0 is an upper bound for both 7/ and the
discrepancy between each b/ and 4. Thus at each price p®, each agent i% ex-

penditure is weakly less than b/ + &, which itself is weakly less than b + 2¢, so
p? - d(p®, b, 7/) < b¥ + 2e. Summing over all i and ¢ gives

> Npe ded’ b, 7')

N
<D b¥ + 2Ne.
e =
Together with (B2), this implies

N

< ¥+ 2Ne + Ne,.

Since & and &, can be set arbitrarily small, the desired result follows. QED

Proof of Theorem 2
Since b* and p* are part of an («, 8)-CEEI with p* € P(6, b*),

N(1 +B)(1 +6)ZZbl-*(l +0) 2 p* - q.

Let x™ denote an (N+ 1)-maximin split for agent i. Suppose that i cannot
afford any bundle in x™ at p*. Then p* - x¥>p¥>1 for all =1, ..., N,
N+ 1. By the definition of the (N+ 1)-maximin split, we have 3,p* - xM¥ <
p* - q. Putting this all together gives
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N+ B)(1+8) 2p*-q= D p* - x> N+1,
1

which contradicts 8 < (1 — N§)/N(1 + 6). QED
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