
Rio Yokota
Weigang Wu (Eds.)

LN
CS

 1
07

76

4th Asian Conference, SCFA 2018
Singapore, March 26–29, 2018
Proceedings

Supercomputing Frontiers

Lecture Notes in Computer Science 10776

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Rio Yokota • Weigang Wu (Eds.)

Supercomputing Frontiers
4th Asian Conference, SCFA 2018
Singapore, March 26–29, 2018
Proceedings

Editors
Rio Yokota
Tokyo Institute of Technology
Tokyo
Japan

Weigang Wu
Sun Yat-sen University
Guangzhou
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-69952-3 ISBN 978-3-319-69953-0 (eBook)
https://doi.org/10.1007/978-3-319-69953-0

Library of Congress Control Number: 2018937379

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2018, corrected publication 2018. This book is an open
access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7573-7873
http://orcid.org/0000-0002-4714-7021

Preface

As the share of supercomputers in Asia continues to increase, the relevance of
supercomputing in Asia has achieved a critical mass to merit the inauguration of a
supercomputing conference for Asia. Supercomputing Asia (SCA) 2018 encompassed
an umbrella of notable supercomputing events with the key objective of promoting a
vibrant and relevant HPC ecosystem in Asian countries, and was held during March
26–29, 2018, at Resorts World Convention Centre, Singapore.

The technical program of SCA18 had its roots in Supercomputing Frontiers (SCF),
which is Singapore’s annual international HPC conference that provides a platform for
leaders from both academia and industry to interact and discuss visionary ideas,
important global trends, and substantial innovations in supercomputing. The confer-
ence was inaugurated in 2015 and helmed by A*STAR Computational Resource
Centre (A*CRC). In March 2017, the National Supercomputing Centre (NSCC)
Singapore took over hosting of Supercomputing Frontiers 2017 (SCF17). NSCC was
established in 2015 and manages Singapore’s first national petascale facility with
available HPC resources to support science and engineering computing needs for
academic, research, and industry communities. SCF17 was attended by over 450
delegates from over 12 different countries.

Riding on the success from the previous year, the SCA18 program highlights will
included:

– HPC technology updates and case studies
– Scientific paper presentations
– Academic activities and workshop for students

The co-located HPC events include:

– Asia-Pacific Advanced Network Meeting (APAN45)
– Towards an Asia Research Platform (ARP)
– Conference on Next-Generation Arithmetic (CoNGA)
– Singapore–Japan Joint Sessions
– Supercomputing Frontiers Asia (SCFA)

SCFA represented the technical program for SCA18, consisting of four tracks:

– Application, Algorithms, and Libraries
– Programming and System Software
– Data, Storage, and Visualization
– Architecture, Network/Communications, and Management

We would like to express our gratitude to all our colleagues for submitting papers to
the SCA18 scientific sessions, as well as to the members of the Program Committee for
organizing this year’s attractive program.

March 2018 Rio Yokota
Weigang Wu

VI Preface

Organization

Technical Program Committee

Technical Papers Co-chairs

Rio Yokota Tokyo Institute of Technology, Japan
Weigang Wu Sun Yat-sen University, China

Application, Algorithms, and Libraries

Emmanuel Agullo Inria, France
Ariful Azad Lawrence Berkeley National Laboratory, USA
Costas Bekas IBM, Switzerland
Aparna Chandramowlishwaran University of California Irvine, USA
Kate Clark NVIDIA, USA
Hal Finkel Argonne National Laboratory, USA
Michael Heroux Sandia National Laboratories, USA
Johannes Langguth Simula, Norway
Piotr R. Luszczek University of Tennessee at Knoxville, USA
Maciej Malawski AGH University of Science and Technology,

Poland
John Owens UC Davis, USA
Vivek Pallipuram University of the Pacific, USA
Antonio Pena Barcelona Supercomputing Center, Spain
Min Si Argonne National Laboratory, USA
Hari Sundar University of Utah, USA
Nathan Tallent Pacific Northwest National Laboratory, USA

Programming and System Software

Olivier Aumage Inria, France
Sunita Chandrasekaran University of Delaware, USA
Florina M. Ciorba University of Basel, Switzerland
Bilel Hadri King Abdullah University of Science

and Technology, Saudi Arabia
Zbigniew Kalbarczyk University of Illinois, USA
Hatem Ltaief King Abdullah University of Science

and Technology, Saudi Arabia
Arthur Maccabe Oak Ridge National Laboratory, USA
Naoya Maruyama Lawrence Livermore National Laboratory, USA
Ronald Minnich Google Inc., USA
Raymond Namyst University of Bordeaux, France
C. J. Newburn NVIDIA, USA
Christian Perez Inria, France

Miquel Pericas Chalmers University of Technology, Sweden
Mohamed Wahib National Institute of Advanced Industrial Science

and Technology, Japan

Data, Storage, and Visualization

Janine Bennett Sandia National Laboratories, USA
Mahdi Bohlouli University of Koblenz, Germany
Steffen Frey University of Stuttgart, Germany
Shadi Ibrahim Inria, France
Hai Jin Huazhong University of Science and Technology,

China
Hideyuki Kawashima University of Tsukuba, Japan
Quincey Koziol Lawrence Berkeley National Laboratory, USA
Suzanne McIntosh New York University, USA
Bogdan Nicolae Huawei Technologies, China
David Pugmire Oak Ridge National Laboratory, USA
Shinji Sumimoto Fujitsu, Japan
Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Daniela Ushizima Lawrence Berkeley National Laboratory, USA
Jon Woodring Los Alamos National Laboratory, USA
Amelie Chi Zhou Inria, France

Architecture, Network/Communications, and Management

David Abramson The University of Queensland, Australia
Eishi Arima The University of Tokyo, Japan
Ali R. Butt Virginia Tech, USA
Nikhil Jain University of Illinois, USA
John Kim Korea Advanced Institute of Science

and Technology, Korea
John Shalf Lawrence Berkeley National Laboratory, USA
Ryota Shioya Nagoya University, Japan
Jeremiah J. Wilke Sandia National Laboratories, USA
Weikuan Yu Florida State University, USA

VIII Organization

Contents

Big Data

HHVSF: A Framework to Accelerate Drug-Based High-Throughput
Virtual Screening on High-Performance Computers 3

Pin Chen, Xin Yan, Jiahui Li, Yunfei Du, and Jun Xu

HBasechainDB – A Scalable Blockchain Framework
on Hadoop Ecosystem . 18

Manuj Subhankar Sahoo and Pallav Kumar Baruah

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 30
Jinzhen Bao, Dezun Dong, and Baokang Zhao

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 51
Junmin Gu, Scott Klasky, Norbert Podhorszki, Ji Qiang,
and Kesheng Wu

On the Performance of Spark on HPC Systems: Towards
a Complete Picture . 70

Orcun Yildiz and Shadi Ibrahim

Experiences of Converging Big Data Analytics Frameworks
with High Performance Computing Systems . 90

Peng Cheng, Yutong Lu, Yunfei Du, and Zhiguang Chen

GPU/FPGA

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 109
Kazuaki Matsumura, Mitsuhisa Sato, Taisuke Boku, Artur Podobas,
and Satoshi Matsuoka

Acceleration of Wind Simulation Using Locally Mesh-Refined
Lattice Boltzmann Method on GPU-Rich Supercomputers 128

Naoyuki Onodera and Yasuhiro Idomura

Architecture of an FPGA-Based Heterogeneous System
for Code-Search Problems . 146

Yuki Hiradate, Hasitha Muthumala Waidyasooriya,
Masanori Hariyama, and Masaaki Harada

Performance Tools

TINS: A Task-Based Dynamic Helper Core Strategy
for In Situ Analytics . 159

Estelle Dirand, Laurent Colombet, and Bruno Raffin

Machine Learning Predictions for Underestimation of Job Runtime
on HPC System . 179

Jian Guo, Akihiro Nomura, Ryan Barton, Haoyu Zhang,
and Satoshi Matsuoka

A Power Management Framework with Simple DSL for Automatic
Power-Performance Optimization on Power-Constrained HPC Systems 199

Yasutaka Wada, Yuan He, Thang Cao, and Masaaki Kondo

Scalable Data Management of the Uintah Simulation Framework
for Next-Generation Engineering Problems with Radiation 219

Sidharth Kumar, Alan Humphrey, Will Usher, Steve Petruzza,
Brad Peterson, John A. Schmidt, Derek Harris, Ben Isaac,
Jeremy Thornock, Todd Harman, Valerio Pascucci, and Martin Berzins

Linear Algebra

High Performance LOBPCG Method for Solving Multiple Eigenvalues
of Hubbard Model: Efficiency of Communication Avoiding Neumann
Expansion Preconditioner . 243

Susumu Yamada, Toshiyuki Imamura, and Masahiko Machida

Application of a Preconditioned Chebyshev Basis
Communication-Avoiding Conjugate Gradient Method
to a Multiphase Thermal-Hydraulic CFD Code . 257

Yasuhiro Idomura, Takuya Ina, Akie Mayumi, Susumu Yamada,
and Toshiyuki Imamura

Optimization of Hierarchical Matrix Computation on GPU. 274
Satoshi Ohshima, Ichitaro Yamazaki, Akihiro Ida, and Rio Yokota

Erratum to: Machine Learning Predictions for Underestimation
of Job Runtime on HPC System . E1

Jian Guo, Akihiro Nomura, Ryan Barton, Haoyu Zhang,
and Satoshi Matsuoka

Author Index . 293

X Contents

Big Data

HHVSF: A Framework to Accelerate
Drug-Based High-Throughput Virtual

Screening on High-Performance Computers

Pin Chen1, Xin Yan1, Jiahui Li1, Yunfei Du1,2(&), and Jun Xu1(&)

1 National Supercomputer Center in Guangzhou and Research Center
for Drug Discovery, School of Data and Computer Science and School

of Pharmaceutical Sciences, Sun Yat-Sen University,
132 East Circle at University City, Guangzhou 510006, China
yunfei.du@nscc-gz.cn, junxu@biochemomes.com

2 School of Computer Science, National University of Defense Technology,
Changsha 410073, China

Abstract. The High-performance High-throuhput Virtual Screening Frame-
work (HHVSF) has been developed to accelerate High-Throughput Virtual
Screening (HTVS) on high-performance computers. Task management and data
management are two core components in HHVSF. Fine-grained computing
resources are configured to support serial or threaded applications. Each task
gets the input file from database through a preemptive algorithm and the failed
tasks can be found and corrected. NoSQL database MongoDB is used as the
data repository engine. Data is mobilized between the RAMDISK in computing
node and the database. Data analysis is carried out after the computing process,
and the results are stored in the database. Among the most popular molecular
docking and molecular structure similarity packages, Autodock_vina (ADV)
and WEGA were chosen to carry out experiments. Results show that when ADV
was used for molecular docking, 10 million molecules were screened and
analyzed in 22.31 h with 16000 cores, and the throughput reached up to 1324
molecules per second, averaging 145 molecules per second during the
steady-running process. For WEGA, 958 million conformations were screened
and analyzed in 34.12 min with 4000 cores, of which throughput reached up to
9448 molecules per second, 6430 molecules per second on average.

Keywords: High-Throughput Virtual Screening � Drug discovery
High-Performance Computing � Molecular docking
Molecular structure similarity

1 Introduction

Computational methodology has become a significant component in pharmaceutical
industry for drug design and discovery [1–4]. Typically, molecular docking and
molecular structure similarity are two frequently used computational approaches.
High-Throughput Virtual Screening (HTVS) is known to computationally screen large
compound libraries. These libraries contain a huge number of small-molecules varying

© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-69953-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_1&domain=pdf

from tens of thousands to millions, require a high volume of lots-of-small files scenario
for a virtual screening campaign. With the development of high-performance com-
puters, the virtual drug screening is accelerating. However, HTVS still faces challenges
while a large scale virtual screening application is executed on High-Performance
Computing (HPC) resources, such as distributing massive tasks, analyzing lots-of-
small molecular structure files, and implementing fault tolerance.

Tools have been developed to accelerate the process of HTVS on HPC resources.
Falkon [5] is a lightweight execution framework to enable loosely coupled program to
run on peta-scale systems. The benchmark [6] shows that DOCK5 can scale up to
116,000 cores with high efficiency by Falkon. VinaMPI is a MPI version program
based on ADV package, which uses a large number of cores to speed-up individual
docking tasks. VinaMPI successfully ran on 84,672 cores on Kraken supercomputer
and efficiently reduce the total time-to-completion. While all the above works focus on
performance and efficiency of distributing tasks, ignoring the whole HTVS process, for
instance, robustness, recoverability and result analysis. FireWorks (FWS) [7] is a
workflow software for high-throughput calculation running on supercomputer, effec-
tively solve the problem of concurrent task distribution and fault tolerance manage-
ment, and provide an intuitive graphical interface. However, FWS pays more attention
on versatility and usability. DVSDMS [8] is a distributed virtual screening data
management system, only focusing on high-throughput docking process in the data
management issues. Therefore, the architecture of high-performance computers, as well
as the computational characteristics of the application, needs to be considered to design
the framework for HTVS on high-performance computers.

In this work, we report a general framework - High-performance High-throughput
Virtual Screening Framework (HHVSF) - to enable large-scale, multitasking and
small-size input and output (IO) applications to efficiently execute on HPC resources.
This framework contains task management and data management systems, which can
handle thousands of tasks, manage a large volume of lots-of-small files, and reduce the
long processing time for analyzing. The purpose of HHVSF is to provide high com-
putational performance based on portability, availability, serviceability and stability
(PASS).

2 Experimental and Computational Details

The framework of HHVSF is comprised of two parts: task management and distributed
data management (see Fig. 1). In order to access and store data efficiently and flexibly,
the executions of a program are coupled loosely by MongoDB C driver, while the
application codes do not need to be modified. The following three subsections docu-
ment the overall framework of HHVSF, the simulation parameters and the data sets of
the experiments are introduced at the end of this section. ADV [9] and WEGA [10] are
chosen as typical applications to carry out the experiments, and others can be integrated
into the HHVSF in similar way.

4 P. Chen et al.

2.1 Task Management

The followings are mainly considered in the task management system: two-level task
scheduling, preemptive scheduling algorithm for worker and failed tasks recovery.

2.1.1 Task Scheduling
HTVS employs massive computing resources to support a large number of independent
computing tasks. Because most molecular docking and molecular structure similarity
tools, for instance, ADV, Gold [11], Glide [12], FlexX [13] and WEGA, are serial or
threaded codes, these computing tasks are typical fine-grained Many-Task Computing
(MTC) [6]. Such MTC tasks cannot take full advantage of the static scheduling solution
with coarse scheduling granularity, while most traditional large-scale HPC resources
are configured with coarse scheduling granularity under a control of batch queuing
system such as Simple Linux Utility for Resource Management (SLURM) [14], Por-
table Batch System (PBS)/Torque [15], and Sun Grid Engine (SGE) [16].

Multi-level scheduling method can effectively solve the different application
requirements for scheduling granularity, while maintaining the unified management of
computing resources. The first level scheduler applies for a number of resources to the
second level for task distribution. The second level scheduler can refine the computing
resources and then distributes the tasks. HTCondor [17] is chosen to be the second
level scheduler to dispatch tasks. HTCondor is full-featured batch workload manage-
ment system for coordinating a large number of independent serial or parallel jobs in
High-Throughput Computing (HTC) environment. We configure the HTCondor with
one core per slot to provide more flexible task scheduling.

HTCondor for task
dispatching

MongoDB for data storage

Execute machine
HPC cluster

Workers (loosely-coupled program)

Submit tasks to queuing system

Select data for computation

Save result data into the database server

Login node

Manage failed tasks

Check job status

Query router

Config server

Shard 0

Shard 1

Shard N-1

Central menager Submit machine

Get ranked results

Fig. 1. The hardware and relevant operations in HHVSF.

HHVSF: A Framework to Accelerate Drug-Based HTVS 5

2.1.2 Preemptive Scheduling Algorithm
Molecular docking and molecular structure similarity are typical MTC applications,
while maintaining millions of tasks by HTCondor to screen a large database with
millions of ligands or conformers is still a touch work. Thus, we transform MTC into
HTC by wrapping ADV or WEGA program with MongoDB C driver (version 1.4.2) as
a worker. Each worker accesses database preemptively to get input files until all data is
traversed. MongoDB provides atomic operation with “inc” to ensure data security
when multitudinous workers start concurrently, so that each worker can get unique job.
After the worker obtains data from the database, the data is written to a file and stored
on the local file system implemented in RAMDISK. The kernel function’s computa-
tional procedure is shown in the Fig. 2.

2.1.3 Fault Tolerance
Fault tolerance in this context can be simplified as the ability to automatically restart a
task when the original run fails. When the HTVS scales to millions of tasks or run a
long-time task, it is easy to get failures for bad input parameters, such as computing
node fault, IO blocking, and network latency. There are two ways to consider fault

Algorithm for vina_wrapper

1:index_id ← 1
2:while index_id ≤ ligand_count
3: //atomic increment operation
4: do index_id ← index_id + 1
5: get_pdbqt_file_from_database (index_id)
6: execute (vina.exe)
7: analyze (output)
8: insert_database (score,conformation,status_tag)
9: remove(temporary_files)
10:end

Algorithm for wega_wrapper

1: index_id ←1
2:while index_id ≤ sd_file_count
3: //atomic increment operation
4: do index_id ← index_id + 1
5: get_sd_file_from_database (index_id)
6: execute (wega.exe)
7: analyze (output)
8: insert_database (score,conformation,status_tag)
9: remove (temporary_files)
10:end

Fig. 2. The pseudo code of vina_wrapper and wega_wrapper.

6 P. Chen et al.

tolerance in this case, one is monitoring the job status during the running by job
management system, another is making a successful or failed tag on each task after the
task is finished. HTCondor provides checkpoint mechanism in the standard universe by
using condor_compile to relink the execution with the HTCondor libraries, while those
coupled program vina_wrapper and wega_wrapper, containing system calls like system
(), cannot provide check pointing services with HTCondor. As a result, we choose the
second method. When a worker calls the execution of ADV or WEGA successfully, a
tag that represents the task status will insert into the corresponding document in
MongoDB database. After the job is finished, it needs to check the document’s failed
tag and then restart the failed jobs.

2.2 Data Management

Data storage, data relocation and data analysis are the bottlenecks when a virtual
screening is scaled up to handle millions of tasks on thousands of cores. Such scattered
lots-of-small files can overburden the shared file system with abundant IO operations if
the plain files are accessed and stored directly. Database offers an attractive solution to
both the storage and the data querying. In our framework, we avoid using shared file
system by replacing it with the combination of MongoDB and local RAMDISK.
The IO files are stored in MongoDB, while they are cached in the local RAMDISK
during computation. The following three subsections describe the details on the data
storage, data relocation and data analysis in HHVSF.

2.2.1 NoSQL Database for Storage
Chemical databases are the critical components of HTVS, which provide the basic
information to build knowledge-based models for discovering and designing drug.
Such as, PubChem [18], ZINC [19], ChEMBL [20], ChemDB [21], contain millions of
compounds, provide shape data, physical properties, biological activities, and other
information for pharmaceutical evaluations. Currently, many molecular docking pro-
grams and molecular structure similarity algorithms read the input and store the output
in plain text files, which is not suitable for management when data grow up rapidly.
Maintaining and analyzing such data are difficult.

MongoDB [22] is used as the data repository engine, which is a high performance,
high availability, automatic scaling, open source NoSQL (Not Only SQL) database.
This architecture is suitable for sparse and document-like data storage. By using
MongoDB “index”, molecules can be queried and ranked easily. In addition, Mon-
goDB uses “sharding” (a method for distributing data across multiple machines) to
support deployments with large data sets in high throughput manner, enhancing the
computational performance by balancing query loading as the database growing.
Finally, MongDB accepts big data up to 16 MB. MongDB is employed for WEGA to
access the big conformation SDF input file.

2.2.2 Data Relocation
ADV and WEGA involve in processing large sized plain text files. Without modifying
their source codes, the programs have to process huge number of small molecular
structure files by moving on the shared file disks when screening a large-scale

HHVSF: A Framework to Accelerate Drug-Based HTVS 7

compound library. Hence, the RAMDISK in computing nodes are used to temporarily
store the IO files needed by the applications (see Fig. 3). The RAMDISK provides
high-speed, low-latency IO operations for handling lots-of-small files, while the high
storage capacity of shared file disk is still fully occupied to store the resulting data. By
relocating data between MongDB and RAMDISK, the IO pressure for shared file
storage is effectively mitigated.

2.2.3 Data Analysis
For virtual screening using molecular docking and molecular structure similarity
approaches, scores and molecular similarities have to be calculated before ranking the
molecules in a large sized compound library. In consideration of high-performance
computing systems with shared file storage, it is necessary to avoid IO overloading
problems which are caused by a great number of small files. Thus, it is not wise to
analyze the output files on the shared storage disk. When the computations are
accomplished in the RAMDISK, the output files are analyzed and the compounds in the
library are ranked based upon scores or similarities. This protocol minimizes the IO
stress when the number of small files increases dramatically.

2.3 Simulation Parameters and Data Sets

2.3.1 ADV
About twenty million ligands with mol2 format file were obtained from ZINC database
FTP server (http://zinc.docking.org/db/bysubset/6/). The pymongo (version 3.2.1)
Python library was used for database operations. A python script was developed to

NoSQL database

Local RAM in node

Shared file disk

Storage, backup Recovery

Analysis resultsTemporary files

fast

slow

low high

Access speed

Storage capacity

Fig. 3. The flowchart of the data relocation.

8 P. Chen et al.

http://zinc.docking.org/db/bysubset/6/

insert mol2 files into MongoDB. MGLTools (version 1.5.6) was used to convert mol2
files into pdbqt file for docking. We prepared five different sized data sets (from zinc_
ligand_1*5), as shown in Table 2. All data sets are sorted by heavy atom number
arranged in ascending order. After finishing molecular docking, the result pdbqt file
format was converted to mol file format by Open Babel package [23] (version 2.4.0).

The protein target is a crystal structure of the alpha subunit of glycyl tRNA syn-
thetase (PDB codes: 5F5 W). The (x, y, z) coordinates (in Å) for the center of the
docking site is (−94.666, 51.401, 8.991), and the side of the cubic box is (14, 18, 12).
The argument of num_modes is set to 1.

2.3.2 WEGA
A SDF file containing about twenty million molecules was obtained from ZINC
database FTP server. Approximately 958 million conformers were generated from the
SDF file using the CAESAR algorithm [24] in discovery studio (version 3.5) [25] for
shape-feature similarity calculation. In order to take advantage of the 16 MB storage
space in MongoDB, the conformer files were split into smaller files which occupied
15 MB for each file, and then inserted into the database. Table 2 gives two data sets for
WEGA (zinc_conformer_1 and zinc_conformer_2).

The query molecule is 4-amino-1-[4,5-dihydroxy-3-(2-hydroxyethyl)-1-cyclopent-
2-enyl]-pyrimidin-2-one (ZINC ID: ZINC03834084). The method for molecular
overlay is set to 2 (combing the shape similarity and pharmacophore similarity).
Each SDF file corresponds up to 100 similar molecules. The Table 1 shows the detailed
information of the data sets which are used throughout the article.

Table 1. Data sets for testing. The zinc_ligand_1*5 databases are prepared for Audock_vina,
the zinc_ligand_2*5 databases were extracted from zinc_ligand_1 in accordance with a certain
proportion. The zinc_conformer_1*2 databases are prepared for WEGA, and the zinc_con-
former_2 are extracted from zinc_conformer_1 randomly.

Database name Number Description

zinc_ligand_1 20430347 ZINC purchasable subset
zinc_ligand_2 107 Enumerate one from every 2 molecules of ZINC

purchasable subset
zinc_ligand_3 106 Enumerate one from every 20 molecules of ZINC

purchasable subset
zinc_ligand_4 105 Enumerate one from every 200 molecules of ZINC

purchasable subset
zinc_ligand_5 104 Enumerate one from every 2000 molecules of ZINC

purchasable subset
zinc_conformer_1 *9.58 * 108 Up to 50 conformers per molecule of ZINC

purchasable subset
zinc_conformer_2 *106 Up to 50 conformers per molecule of ZINC

purchasable subset

HHVSF: A Framework to Accelerate Drug-Based HTVS 9

All tests run on Tianhe-2 (MilkyWay-2) supercomputer, which consists of 16,000
computing nodes connected via the TH Express-2 interconnect. Each computing node
is equipped with two Intel Xeon E5-2692 CPUs (12-core, 2.2 GHz), and configured
with 64 GB memory. The storage subsystem contains 64 storage servers with a total
capacity of 12.4 PB. The LUSTRE storage architecture is used as a site-wide global file
system.

3 Results and Discussion

3.1 Load Balance

Time for screening a compound ranges from minutes to hours depending on the
complexity of the molecular structure. Reports [9, 26] indicate that the compound
complexity, for instance, number of active torsions or number of heavy atoms, dom-
inates the computing time of molecular docking. In order to determine the relation
between the number of heavy atoms computing time and the computing complexity,
the zinc_lignad_5 data set was chosen to record the number of heavy atom in a ligand
and computing time, as depicted in Fig. 4. The number of heavy atoms presents a linear
relationship with time (logarithmic form), which indicates more heavy atoms in a small
molecule requires longer computing time. For zinc_ligand_2*5 data sets are scaled
down from zinc_ligand_1 by a certain percentage, the other data sets will also benefit
from this approach. Based on this information, the zinc_ligand_4 data set was tested on
8,000 cores. Figure 5a and b demonstrate that the average computing time per worker
is reduced by 8.83 s when load balancing protocol was used.

Fig. 4. The number of heavy atoms in a compound (x-axis), the computing time (logarithmic
form) of a molecular docking (y-axis). The results are based upon zinc_ligand_5 data set.

10 P. Chen et al.

3.2 Throughput with Data

The MongoDB monitors the status of a running instance. When a worker starts, a
“connection” operation is activated by MongoDB’s server. After the computing task is

(a)

(b)

Fig. 5. (a) The computing time of each worker without load balancing. The red line is the
average computing time per task. (b) The computing time per worker with load balance. The red
line is the average computing time per task. (Color figure online)

HHVSF: A Framework to Accelerate Drug-Based HTVS 11

accomplished, the resulting data (score, structural conformation, and running status)
will be inserted into MongoDB’s collection. Figure 6 shows the “connection” and
“insert” operations of MongoDB’s server every second with vina_wrapper during the
whole computing period, the points of inverted triangle clearly reveal the three stages
of running tasks: startup, steady-running and finish. The total time during the startup
was 1,396 s to start 16,000 workers, averaging 11 tasks per second. The points of
rhombus become higher gradually as time progresses, reaching up to 1,324 molecules
per second and averaging 145 molecules per second. Table 2 gives the results for other
data sets. As for WEGA, Fig. 7 shows that the data throughput can reach up to 9,448
molecules per second, averaging 6,430 molecules per second, indicating a high per-
formance and a high data throughput.

Fig. 6. The number of “insert” operation and “connection” operation in MongoDB’s server
when running ADV application. The zinc_ligand_3 data set was used to run on 16,000 cores.

Table 2. Data throughput for ADV and WEGA on different data sets.

Program Test
number

Cores Startup
time
(second)

Maximum data
throughput
(molecules/second)

Average data
throughput
(molecules/second)

ADV 107 16000 1222 1957 130
ADV 106 16000 1396 1324 145
ADV 105 8000 564 473 76
WEGA 95712 4000 313 9448 6430

12 P. Chen et al.

3.3 Scalability

To test scalability, we perform the experiments of speedup and parallel efficiency with
zinc_ligand_4 data set and zinc_ligand_3 data set. Figure 8a shows zinc_ligand_4 data
set can be scaled to 8,000 cores with parallel efficiency of 0.84, and the zinc_ligand_4
data set can be scaled to 16,000 cores with parallel efficiency of 0.83 (see Fig. 8b). It is
shown that the parallel efficiency decreases sharply when computing resource is scaled
up to more than 8,000 cores. This is because more cores represent more workers, and
thus, more time will be cost by HTCondor to start those workers.

3.4 Fault Tolerance

Fault tolerance management can avoid task failures due to external environments, for
instances, compute node fault, network blocking, IO latency, etc. Table 3 gives the
information of failed tasks on different data sets. The zinc_ligand_2 data set has a high
failure rate than others due to ten million ligands containing more ligands with high
molecular weight which are not suitable for docking space of the protein (PDB code:
5W5F). In addition, longer calculations can lead to higher failures. The zinc_con-
former_1 data set has fewer files (95712 SDF files in total) and less computing time, as
a result, produces a low failure rate.

Fig. 7. The number of “insert” operation and “connection” operation in MongoDB’s server
when running WEGA application. The zinc_conformer_1 data set was used to run on 4,000
cores.

HHVSF: A Framework to Accelerate Drug-Based HTVS 13

(a)

(b)

Fig. 8. (a) Speedup (right triangle) and parallel efficiency (read dot) of molecular docking
experiment on zinc_ligand_4 data set. (b) Speedup (block dot) and parallel efficiency (upper
triangle) of molecular docking experiment on zinc_ligand_3 data set.

Table 3. The failure rate and computing time for ADV and WEGA on different data sets.

Program Data set Cores Failure rate Last task time Average time

ADV zinc_ligand_2 16000 0.01171 22.31 h 20.14 h
ADV zinc_ligand_3 16000 0.00390 3.34 h 2.43 h
ADV zinc_ligand_4 8000 0.00001 48.10 min 31.31 min
WEGA zinc_conformer_1 4000 0.00002 34.12 min 28.20 min

14 P. Chen et al.

4 Conclusions

HHVSF includes task management and relocating data management, and supports the
high-throughput applications of large-scale, multitasking and small sized IO files
running on HPC resources. There are two types of virtual drug screening applications:
(1) computation-intensive applications (such as molecular docking), and
(2) data-intensive applications (such as molecular structure similarity based virtual
screening campaigns). With HHVSF, two types of applications can run on Tianhe-2
supercomputer with high performance. Testing results show that when use ADV for
molecular docking, the protein target (PDB code: 5W5F) was used to screen nearly half
of compounds from the ZINC database within one day on 16,000 cores. For WEGA,
958 million conformations were screened by using about a half hour on 4,000 cores.
The ranked ligands or conformers can be accessed in milliseconds by specifying the
“sort” method from the database. Meanwhile, the IO pressure of shared file storage
affected by lots-of-small files in HPC resources can be mitigated. Thus, HHVSF can
significantly accelerate HTVS campaigns on HPC resources.

Acknowledgments. We would like to thank Prof. Xin Yan for permission to use WEGA
program to test. Helpful discussions with Guixin Guo, Lin Li, Wen Wan and technical assistance
by HTCondor Team (University of Wisconsin-Madison) are gratefully acknowledged. This work
was performed by the auspices of the NSFC (U1611261), GD Frontier & Key Techn, Innovation
Program (2015B010109004).

References

1. Manglik, A., Lin, H., Aryal, D.K., Mccorvy, J.D., Dengler, D., Corder, G., Levit, A., Kling,
R.C., Bernat, V., Hübner, H.: Structure-based discovery of opioid analgesics with reduced
side effects. Nature 537(7619), 1 (2016)

2. Rodrigues, T., Reker, D., Schneider, P., Schneider, G.: Counting on natural products for
drug design. Nat. Chem. 8(6), 531–541 (2016)

3. Hao, G.F., Wang, F., Li, H., Zhu, X.L., Yang, W.C., Huang, L.S., Wu, J.W., Berry, E.A.,
Yang, G.F.: Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1
complex. J. Am. Chem. Soc. 134(27), 11168–11176 (2012)

4. Forli, S., Huey, R., Pique, M.E., Sanner, M.F., Goodsell, D.S., Olson, A.J.: Computational
protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc.
11(5), 905 (2016)

5. Raicu, I.: Falkon: a Fast and Light-weight tasK executiON framework, p. 43 (2007)
6. Raicu, I., Zhao, Z., Wilde, M., Foster, I., Beckman, P., Iskra, K., Clifford, B.: Toward

loosely coupled programming on petascale systems, pp. 1–12 (2008)
7. Jain, A., Ong, S.P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G.,

Rignanese, G.M., Hautier, G.: FireWorks: a dynamic workflow system designed for
high-throughput applications. Concurr. Comput. Pract. Exp. 27(17), 5037–5059 (2015)

8. Zhou, T., Caflisch, A.: Data management system for distributed virtual screening. J. Chem.
Inf. Model. 49(1), 145–152 (2009)

9. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a
new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2),
455–461 (2010)

HHVSF: A Framework to Accelerate Drug-Based HTVS 15

10. Yan, X., Li, J., Liu, Z., Zheng, M., Ge, H., Xu, J.: Enhancing molecular shape comparison
by weighted gaussian functions. J. Chem. Inf. Model. 53(8), 1967–1978 (2013)

11. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a
genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727–748 (1997)

12. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky,
M.P., Knoll, E.H., Shelley, M., Perry, J.K.: Glide: a new approach for rapid, accurate
docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47(7),
1739–1749 (2004)

13. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an
incremental construction algorithm. J. Mol. Biol. 261(3), 470–489 (1996)

14. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987_3

15. Bode, B., Halstead, D.M., Kendall, R., Lei, Z., Jackson, D.: The Portable batch scheduler
and the Maui Scheduler on Linux Clusters (2000)

16. Gentzsch, W.: Sun Grid Engine: Towards Creating a Compute Power Grid, pp. 35–36
(2001)

17. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor
experience: research articles. Concurr. Comput. Pract. Exp. 17(2–4), 323–356 (2010)

18. Wang, Y., Xiao, J., Suzek, T.O., Jian, Z., Wang, J., Bryant, S.H.: PubChem: a public
information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37
(Web Server issue), W623 (2009)

19. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: ZINC: a free tool to
discover chemistry for biology. J. Chem. Inf. Model. 52(7), 1757–1768 (2012)

20. Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Hersey, A., Light, Y., Mcglinchey, S.,
Michalovich, D., Allazikani, B.: ChEMBL: a large-scale bioactivity database for drug
discovery. Nucleic Acids Res. 40(Database issue), D1100 (2012)

21. Chen, J., Swamidass, S.J., Dou, Y., Bruand, J., Baldi, P.: ChemDB: a public database of
small molecules and related chemoinformatics resources. Bioinformatics 21(22), 4133–4139
(2005)

22. Banker, K.: MongoDB in Action. Manning Publications Co., Greenwich (2011)
23. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.:

Open babel: an open chemical toolbox. J. Cheminform. 3(1), 1–14 (2011)
24. Li, J., Ehlers, T., Sutter, J., Varma-O’Brien, S., Kirchmair, J.: CAESAR: a new conformer

generation algorithm based on recursive buildup and local rotational symmetry consider-
ation. J. Chem. Inf. Model. 47(5), 1923–1932 (2007)

25. Visualizer, D.S.: Release 3.5. Accelrys Inc., San Diego (2012)
26. Jaghoori, M.M., Bleijlevens, B., Olabarriaga, S.D.: 1001 ways to run AutoDock Vina for

virtual screening. J. Comput. Aided Mol. Des. 30(3), 1–13 (2016)

16 P. Chen et al.

http://dx.doi.org/10.1007/10968987_3
http://dx.doi.org/10.1007/10968987_3

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

HHVSF: A Framework to Accelerate Drug-Based HTVS 17

http://creativecommons.org/licenses/by/4.0/

HBasechainDB – A Scalable Blockchain
Framework on Hadoop Ecosystem

Manuj Subhankar Sahoo(B) and Pallav Kumar Baruah

Sri Sathya Sai Institute of Higher Learning, Anantapur 515134,
Andhra Pradesh, India

subhankar.3eblue@gmail.com, pkbaruah@sssihl.edu.in

Abstract. After the introduction of Bitcoin, blockchain has made its
way through numerous applications and been adopted by various com-
munities. A number of implementations exist today providing a platform
to carry on business with ease. However, it is observed the scalability
of blockchain still remains an issue. Also, none of the framework can
claim the ability to handle Big Data and support to perform analyt-
ics, which is an important and integral facet of current world of busi-
ness. We propose HBasechainDB, a scalable blockchain-based tamper-
proofed Big Data store for distributed computing. HBasechainDB adds
the blockchain characteristics of immutability and decentralization to
the HBase database in the Hadoop ecosystem. Linear scaling is achieved
by pushing computation to the data nodes. HBasechainDB comes with
inherent property of efficient big data processing as it is built on Hadoop
ecosystem. HBasechainDB also makes adaptation of blockchain very
easy for those organizations whose business logic are already existing
on Hadoop ecosystem. HBasechainDB can be used as a tamper-proof,
decentralized, distributed Big Data store.

Keywords: Blockchain · HBase · Big Data · Tamperproof
Immutability

1 Introduction

A Blockchain is a distributed ledger of blocks which records all the transactions
that have taken place. It was first popularized by a person or a group under
the pseudonym Satoshi Nakamoto, in 2008 by introducing Bitcoin [11]: A Peer-
to-Peer Electronic Cash System. This technology revolutionized the decentral-
ized paradigm by introducing and using a Consensus mechanism: Proof-of-Work
(PoW). Proof-of-Work defines the requirement of an expensive calculation also
called mining, to be performed so as to create a new trustless set of transactions,
also called blocks on the blockchain. The major breakthrough for Bitcoin was
the hash based blockchain which made the blocks of transactions tamper-proof,
transparent and aversive to DoS attack.

Blockchains can support a variety of applications like decentralized financial
services, Internet-of-Things [12], smart properties, etc. Several works have cen-
tered around the evaluation of potential use cases for the blockchain [3,9,13].
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 18–29, 2018.
https://doi.org/10.1007/978-3-319-69953-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_2&domain=pdf

HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 19

Blockchains can also be seen as a tamper-proof, decentralized data store of a vari-
ety of data including government deeds, land ownership records, stock market
transactions, etc. However, the PoW consensus protocol enforces major perfor-
mance bottlenecks on the blockchain. Transaction latencies are as high as an
hour and the theoretical peak transactions throughput is just 7 transactions
per second. Further, the full nodes in the Bitcoin network which are capable
of validating blocks and transactions are expected to maintain copies of the
entire Bitcoin blockchain. This places heavy storage demands on the participat-
ing nodes. The Bitcoin blockchain is about 136 GB at the time of writing [1].
The communication model also places heavy demands on network bandwidth.
The Bitcoin blockchain is also not scalable in that an increase in the number of
nodes in the Bitcoin network does not help in increasing the network through-
put, latency or capacity. As pointed out by Croman et al. [7], with the increasing
adoption of blockchains, we need to address concerns about their scalability.

Apart from digital currency, blockchain technology has taken its own way
through many types of industries which includes Finance and Accounting, Sup-
ply Chain and Logistics, Insurance etc. For example, financial institutions can
settle securities in minutes instead of days. Manufacturers can reduce prod-
uct recalls by sharing production logs with original equipment manufacturers
(OEMs) and regulators. Businesses of all types can more closely manage the
flow of goods and related payments with greater speed and less risk. For this
reason various industries are trying to adopt blockchain for running their busi-
ness process smoother and faster. Hyperledger Fabric and BigchainDB are the
most widely used framework for blockchainifying business processes.

Today’s business processes doesn’t generate just data, they generates huge
amount of data of wide variety with thrilling velocity. After putting these kinds
of data on blockchain it is very important to process and analyze these data in
an efficient way. Hadoop is a classic ecosystem which provides numerous func-
tionalities with high efficiency for processing and analyzing these kind of data. A
lot of business logic already exists in Hadoop ecosystem to process and analyze
these data. Therefore it will be much more easier for the industries to adopt
blockchain technology if there exists a scalable blockchain framework in Hadoop
ecosystem. Towards this end, HBasechainDB is a first step towards providing
a scalable blockchain framework in the Hadoop ecosystem. HBasechainDB is
started by High performance Computing and Data (HPCD) Group, Depart-
ment of Mathematics and Computer Science (DMACS), Sri Sathya Sai Institute
of Higher Learning. This is achieved by imparting the blockchain characteristics
of immutability and decentralization to the HBase database.

2 Background and Related Work

A lot of work has been underway for addressing the scalability of blockchains.
Vukolic [14] has contrasted PoW-based blockchains to those based on BFT state
machine replication for scalability. Eyal et al. [8] introduces Bitcoin-NG as a scal-
able blockchain protocol based on BFT consensus protocols. These approaches

20 M. S. Sahoo and P. K. Baruah

are focused upon improving the consensus protocol. McConaghy et al. [10]
adopted a different approach to scalability. They started with a distributed
database, MongoDB, and added the blockchain features of decentralized con-
trol, immutability while supporting the creation and movement of digital assets
to provide a scalable, decentralized database BigchainDB. The major contri-
bution of BigchainDB that enables this scalability is the concept of blockchain
pipelining. In blockchain pipelining, blocks are added to the blockchain with-
out waiting for the current block to be agreed upon by the other nodes. The
consensus is taken care of by the underlying database. The validation of blocks
is not done during block addition but eventually by a process of voting among
nodes. This has huge performance gains and BigchainDB has points to trans-
action throughputs of over a million transactions per second and sub-second
latencies.

In creating HBasechainDB, we have adopted an approach similar to that of
BigchainDB. Instead of using MongoDB as the underlying database, we use the
Hadoop database, Apache HBase. Apache HBase is a distributed, scalable Big
Data store. It supports random, real-time read/write access to Big Data. Apache
HBase is an open-source, distributed, versioned, non-relational, column-family
oriented database modeled after Google’s Bigtable [6]. HBase provides both lin-
ear and modular scaling, along with strongly consistent reads/writes. HBase
tables are distributed on the cluster via regions. HBase supports automatic
sharding by splitting and re-distributing regions automatically as data grows.
HBasechainDB is a scalable, decentralized data store akin to BigchainDB.

3 Terminology

– Blockchain: A chain of blocks where every block has a hash link to the
previous block i.e. every block stores the hash of the previous block. An
advantage is, just by storing the hash of the last block we can easily detect if
any change has been made to any of the block.

– Double spending: It is an attack where the asset is spent in more than
one transaction. To prevent double spending, blockchain framework needs to
check whether a particular asset is spent in any of the previous transactions.
For instance: user U2 wants to spend/transfer an asset A1, in transaction T2,
to another user U3. Say, the asset A1 was transferred to U2 by user U1 in
some previous transaction T1. U2 specifies T1’s Id in T2, which shows that
T1 was the transaction which contained asset A1, and U2 got it from U1.
Now, U2 wants to spend/transfer it to U3. So before validating transaction
T2 with asset A1, a Blockchain framework checks all the transaction with
asset A1 that has occurred/lies in between T1 and T2, in order. If A1 does
not occur in any of the transactions then A1 is not double spent else it’s
double spent.

– Blockchain Pipeline: In Blockchain pipelining, blocks are written to the
underlying database without waiting for a vote which confirms the block’s
validity. Voting for a block and forming a chain happens as a separate layer.

HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 21

– Changefeed: It is a mechanism by which any update on the Blockchain is
notified to the nodes. This automatic change notifications on the Blockchain
brings another benefit: they improve tamper-detection (beyond what a
blockchain offers). If a hacker somehow manages to delete or update a record
in the data store, the hashes change (like any blockchain). In addition, a data-
store with automatic change notifications would notify all the nodes, which
can then immediately revert the changes and restore the hash integrity.

– HBase region-server: These are the basic elements of availability and dis-
tribution for tables, and are comprised of a store per Column Family.

– HBase Master: Responsible for coordinating Regions in the cluster and
execute administrative operations.

4 Architecture

4.1 Data Model of Transaction

The Transaction Model of all Blockchain Platforms has three important fields:
Transaction Id, List of Inputs, List of Outputs. Apart from these, there are fields
which are platform dependent. HBasechainDB’s transaction model consists of;
Transaction Id, Asset, List of Inputs, List of Outputs and Metadata.

1. ID: The transaction Id uniquely identifies the transaction. It is a SHA3-256
hash of the asset, list of inputs, list of outputs and metadata.

2. Asset: A JSON format document associated with a transaction.
3. List of Inputs: Each input in the list of a transaction is spend-

able/transferable if it has a link to the output of some previous transaction
(in case of transfer transaction. Creation transaction doesn’t have link to out
of any previous transaction). This input is then spent/transferred by satis-
fying/fulfilling the crypto-conditions on that previous transaction output. A
CREATE transaction should have exactly one input. A TRANSFER trans-
action should have at least one input (i.e. ≥1).

4. List of outputs: Each output in the list of a transactions indicates
the crypto-conditions which must be satisfied by anyone who wishes to
spend/transfer that output to some other transaction. It also indicates the
number of shares of the asset tied to that output.

5. Metadata: User-provided transaction metadata. It can be any valid JSON
document or NULL.

4.2 Design Details

HBasechainDB is a super peer-to-peer network operating using a federation
of nodes. All the nodes in the federation have equal privileges which gives
HBasechainDB its decentralization. Such a super peer-to-peer network was
inspired by the Internet Domain Name System. Any client can submit or
retrieve transactions or blocks, but only the federation nodes can modify the
blockchain. The federation can grow or shrink during the course of operation of

22 M. S. Sahoo and P. K. Baruah

HBasechainDB. Let us say there are n federation nodes N1, N2, ..., Nn. When
a client submits a transaction t, it is assigned to one of the federation nodes,
say Nk. The node Nk is now responsible for entering this transaction into the
blockchain. Nk first checks for the validity of the transaction. Validity of a trans-
action includes having a correct transaction hash, correct signatures, existence
of the inputs to the transaction, if any, and the inputs not having been already
spent. Once Nk has validated a set of transactions, it bundles them together in
a block, and adds it to the blockchain. Any block can only contain a specified
maximum number of transactions. Let us say t was added in the block B.

When the block B is added to the blockchain its validity is undecided.
Since the federation is allowed to grow or shrink during the operation of
HBasechainDB, blocks also include a list of voters based on the current fed-
eration. All the nodes in the voter list for a block vote upon B for its validity.
For voting upon a block, a node validates all the transactions in the block. A
block is voted valid only if all the transactions are found to be valid, else it is
voted invalid. If a block gathers a majority of valid or invalid votes, its validity
changes from undecided to valid or invalid respectively. Only the transactions in
a valid block are considered to have been recorded in the blockchain. The ones in
the invalid blocks are ignored altogether. However, the chain retains both valid
and invalid blocks. A block being invalid does not imply that all the transac-
tions in the block are invalid. Therefore, the transactions from an invalid block
are re-assigned to federation nodes to give the transactions further chance of
inclusion in the blockchain. The reassignment is done randomly. This way, if a
particular rogue node was trying to add an invalid transaction to the blockchain,
this transaction will likely be assigned to a different node the second time and
dropped from consideration. Thus, if block B acquires a majority of valid votes,
then transaction t would have been irreversibly added to the blockchain. On the
other hand, if B were invalid, then t would be reassigned to another node and
so on until it is included in the chain or removed from the system.

As discussed in the previous section, the chain is not formed when blocks are
created. When a block is entered into hbasechain table, the blocks are stored
in HBase in the lexicographical order of their ids. The chain is actually formed
during vote time. When a node votes on a block, it also specifies the previous
block that it had voted upon. Thus, instead of waiting for all the federation nodes
to validate the current block before proceeding to the creation of a new block,
blocks are created independent of validation. This is the technique of blockchain
pipelining described earlier. Over time, the blockchain accumulates a mix of
valid and invalid blocks. The invalid blocks are not deleted from the chain to
keep the chain immutable. What we also note here is that while it would seem
that different nodes could have a different view of the chain depending upon
the order in which they view the incoming blocks, it is not seen in practice in
HBasechainDB due to the strong consistency of HBase and the fact that the
blocks to be voted upon are ordered based on their timestamp. Thus, each node
sees the same order of blocks, and we have the same chain view for different
nodes.

HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 23

To tamper with any block in the blockchain, an adversary will have to modify
the block, leading to a change in its hash. This changed hash would not match
the vote information for the block in the votes table, and also in subsequent
votes that refer to this block as the previous block. Thus an adversary would
have to modify the vote information all the way up to the present. However,
we require that all the votes being appended by nodes are signed. Thus, unless
an adversary can forge a node’s signature, which is cryptographically hard, he
cannot modify the node’s votes. In fact, he has to forge multiple signatures to
affect any change in the blockchain preventing any chances of tampering. This
way HBasechainDB provides a tamper-proof blockchain over HBase.

4.3 Exploiting HBase

In this section we describe the distinction between MongoDB and
HBase. We also justify the means to achieve greater performance with
the proposed system design.

MongoDB is a document store database. A document is a big JSON block
with no particular schema or format. This gives an edge to dynamic use cases and
ever-changing applications. MongoDB does not provide triggers. Although Mon-
goDB has its own advantages, the document store characteristic of MongoDB
degrades its performance for following operations:

1. Working with individual columns.
2. Performing join operations.

HBase is a wide column store database. It is a distributed, scalable, reliable,
and versioned storage system capable of providing random read/write access in
real-time. It provides a fault-tolerant way of storing large quantities of sparse
data. HBase features compression, in-memory operation and Bloom filters on a
per-column basis.

We use the following characteristics of HBase extensively to derive
performance:

1. HBase is partitioned to tables, and tables are further split into column fam-
ilies. Column families must be declared in the schema, and we can group
certain set of columns together. One of the major operations in blockchain
transaction is checking for Double-Spending. In order to make the check for
double spending more efficient, we can keep the input column of all these
transactions in a separate column family. This will allow us to perform the
check for double spending faster because the region server will need to load
only one column family which contains the input of the transaction. In case
of database such as MongoDB the database server needs to load the whole
document before filtering out the input column and performing Double Spent
check.

2. HBase is optimized for reads, supported by single-write master, which results
in a strict consistency model. And use of Ordered Partitioning supports row-
scans. In Blockchain we need one write and many read operation because

24 M. S. Sahoo and P. K. Baruah

the transactions are written only once but read many times for various pur-
poses like checking double spending and performing checks on whether any
tampering took place.

3. HBase provides us with various ways in which we can run our custom code on
the region-server. HBase co-processor and custom filters are two such ways.
HBase co-processor can act as database triggers. In our implementation we
use these features in following ways:
(a) The check for double spending is generally done by loading the transac-

tions to the federation nodes(i.e. the client system). Loading this many
transactions from region-server to the federations node system is a major
bottleneck for the system throughput. In our approach, instead of pulling
the data required for double spending check on to the client-system, we
push the computation check to the region-server using HBase custom
filter. This approach improves the performance in two ways:
i. Data does not move towards the computation node rather computa-

tion moves towards the Data node. Since the code size is exponentially
lesser than data size, we improve the system by decreasing the com-
munication time.

ii. Computation for double spending is done in parallel on multiple
region-server compared to the traditional approach of checking on
a single Client node.

(b) Changefeed brings a great benefit to the Blockchain framework. We use
HBase co-processor to implement changefeed which will notify imme-
diately whenever a hacker tries to change or delete the content of the
database.

5 Implementation Details

The Federation Nodes in HBasechainDB are initialized with a key-pair; Ed25519
[2,4] signing system. SHA3-256 [5] hashing scheme is used for hashing the trans-
actions and blocks. The current implementation of HBasechainDB uses six HBase
tables. A critical issue in the current design of HBase tables is that of designing
the row key, since the region splits and the scans on HBase tables are done in
the lexicographical order of the row key. The row key pattern depends upon the
access pattern for the data in the Hbase table.

Following is the description of the HBase tables:

1. backLog: When a transaction is submitted to the Federation nodes, the trans-
action is randomly assigned to one of the nodes. All such assigned transactions
are stored in the backlog table with each transaction stored in a single row.
A node scanning the backlog table should only have to read the transactions
assigned to itself. Thus, the first segment of the row key for backlog table is
the public key of the node to whom the transaction was assigned, to ensure
that a node can scan the backlog table with the row prefix being its own pub-
lic key. The last segment of the row key contains the transaction reference id.
So the row key looks like: <publicKey> <transactionId>

HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 25

2. block: This is the table that contains all the blocks in the blockchain. Each
block is a logical block which contains only the id’s of the transaction
which are present in the block. The actual transaction details are stored
in "hbasechaindb" table. Since the access pattern for this table is looking
up blocks based on block id, the row key for this table is just the block id:
<blockId>

3. hbasechaindb: This is the table where all the transaction details are stored
after a transaction is put on the blockchain. In this table each row cor-
responds to a single transaction. Since the access pattern for this table
is looking up transaction based on transaction link id, the row key of
this table is <transaction link id>. The transaction link id consists of
<block id> <transaction id>. This transaction link id which is of previous out-
put is used in inputs of current transaction while spending an asset

4. toVote: Every new block created has to be voted upon by the Federation
nodes. For this, we need to inform the Federation nodes of their need to vote
upon a newly created block. To this end, every block created is added to
this table to signal the node for voting. It is removed from the table once
the node has finished voting on it. The row key of this table is : <federation
node’s signing key> <block id>

5. vote: This is the table in which all the votes are recorded. There has to be an
entry for every federation node which votes for their respective blocks. The
row key of the table is: <block id> <decision> <Fed. Node public key>

6. reference: This is the table which stores the map between transaction link
id and transaction id. This table acts as an index when the details of a
transaction is queried. Since the access pattern of the table is transaction
reference id, the row key of this table is just the transaction reference id:
<transacation link Id>

When a transaction is submitted to HBasechainDB, it is first put in the back-
Log table. Federation nodes picks the transactions from backLog table in certain
time interval, checks the validity of the transactions, bundles them into blocks
and adds those blocks to the Blockchain. As show in Fig. 1, when a federation
node forms a block, it updates 3 HBase tables. In block table, the transac-
tion Id of all the transactions are made as separate blocks and stored. In the
hbasechaindb table, all the transaction details are stored. In the toVote table
the information about newly created block is stored. The federation nodes refers
this toVote table to vote for the block. All the Federation nodes, in certain time
interval checks the toVote table and cast their vote after checking the validity of
the block. All the votes are stored in the vote table. After the validity of a block,
entries corresponding to all the transactions are made in the reference table.

The complete implementation of HBasechainDB is done using Java since the
performance of HBase API for Java is best among the HBase API’s present for
different languages. HBase API for Java also gives advantage of writing custom
filters and coprocessors.

26 M. S. Sahoo and P. K. Baruah

Fig. 1. Transaction flow of HBasechainDB

6 Performance

6.1 Experimental Setup

We have used three nodes for the initial performance testing of HBasechainDB
with the following configurations:

– 3 nodes with Intel Core i5-4670 CPU @ 3.40 GHz*4 processor and 16 GB of
memory, with Ubuntu 16.04 OS.

– Each of the 3 nodes runs HBase region-server. There is a HBase master run-
ning in one of the system.

– There is a Replication factor of 3 for the underlying HDFS.
– The HBase is backed by 3 quorum zookeeper.
– We consider only creation of transactions for our case.

6.2 Results

We have tested HBasechainDB for scalability over three nodes. There are two
parameters that we describe the performance of HBasechainDB with:

– Transaction Latency: This is defined as the time elapsed since the sub-
mission of a transaction to HBasechainDB until the block in which it has
been recorded is validated. The transaction latency is found for streaming
transactions.

– Throughput: This is the number of transactions that are recorded in the
blockchain per second. To find the peak throughput the blockchain is capable
of, we store the transactions in the backlog beforehand and then run the
nodes. The throughput observed then is the peak throughput.

HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 27

Fig. 2. Performance of BigchainDB and HBasechainDB

Fig. 3. Latency of HBasechainDB in sec.

Fig. 4. Scalability of HBasechainDB upto 8 nodes

Figure 2 compares the transaction throughput of HBasechainDB and
BigchainDB, using systems with 1, 2 and 3 nodes and Fig. 3 shows the latency of
HBasechainDB. Figure 4 shows the scalability of HBasechainDB till 8 nodes. The
result shows, as we add the nodes the transaction throughput of HBasechainDB
scales linearly.

28 M. S. Sahoo and P. K. Baruah

The main reason behind the linear scale of HBasechainDB is, almost all the
computation which includes computation for transaction’s validity and check for
double spending is pushed to server side. Therefore if we increase the HBase
nodes keeping the federation node constant, the system scales linearly.

7 Conclusion

Blockchain technologies can be very useful in the Big Data scenario by helping
us immutably record data and decentralizing data services. However, current
blockchain implementations with their extremely low transaction throughputs
and high transaction latencies do not lend themselves to Big Data. Discussions
on improving blockchain scalability have largely focused on using better con-
sensus protocols as against the PoW protocol used by Bitcoin. BigchainDB
provides an alternative idea where instead of scaling blockchains to provide
scalable data stores, they implement a blockchain over an existing scalable
distributed database. Such an implementation inherits the scalability of the
underlying database, while adding the immutability and decentralization offered
by blockchains. While BigchainDB was implemented upon the MongoDB and
RethinkDB database, with our work we provide an alternate implementation
over HBase. HBasechainDB is an hitherto unavailable blockchain implementa-
tion integrated with the Hadoop ecosystem. It supports very high transaction
throughputs with sub-second latencies and the creation and movement of digital
assets. HBasechainDB scales linearly and also is good platform for analyzing
data that are present on blockchain.

Acknowledgments. Our work is dedicated to Bhagawan Sri Sathya Sai Baba,
Founder Chancellor of Sri Sathya Sai Institute of Higher Learning. We acknowledge
Adarsh Saraf from IBM Research, Bengaluru, India, who has initiated this work. We
thank him for his inspiration and motivation. We also acknowledge Maestro Technol-
ogy, USA for their help and support.

References

1. https://blockchain.info/charts/blocks-size
2. https://github.com/str4d/ed25519-java/tree/master/src/net/i2p/crypto/eddsa
3. Aron, J.: Automatic world (2015)
4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-

security signatures. J. Cryptographic Eng. 2(2), 1–13 (2012)
5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Sub-

mission to NIST (Round 2) (2009)
6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

7. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

https://blockchain.info/charts/blocks-size
https://github.com/str4d/ed25519-java/tree/master/src/net/i2p/crypto/eddsa
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8

HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem 29

8. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: NSDI, pp. 45–59 (2016)

9. Liebenau, J., Elaluf-Calderwood, S.M.:. Blockchain innovation beyond bitcoin and
banking (2016)

10. McConaghy, T., Marques, R., Müller, A., De Jonghe, D., McConaghy, T.,
McMullen, G., Henderson, R., Bellemare, S., Granzotto, A.: BigchainDB: a scalable
blockchain database. White paper, BigChainDB (2016)

11. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
12. Panikkar, S., Nair, S., Brody, P., Pureswaran, V.: Adept: an IoT practitioner per-

spective. IBM Institute for Business Value (2014)
13. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc.,

Sebastopol (2015)
14. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-

cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-39028-4_9
http://creativecommons.org/licenses/by/4.0/

DETOUR: A Large-Scale Non-blocking
Optical Data Center Fabric

Jinzhen Bao1,2, Dezun Dong2(B), and Baokang Zhao2

1 PLA Academy of Military Science, Beijing, China
2 National University of Defense Technology, Changsha, China

{baojinzhen,dong,bkzhao}@nudt.edu.cn

Abstract. Optical data center networks (DCNs) are attracting growing
interest due to the technical strength compared to traditional electrical
switching networks, which effectively eliminates the potential hotspot
caused by over-subscription. However, the evolving traffics with high
fan-out and various patterns pose new challenges to optical DCNs. Prior
solutions are either hard to support high fan-out communications in
large-scale or suffer from limited connections with low performance.

In this paper we propose DETOUR, a large-scale non-blocking opti-
cal switching data center fabric. DETOUR composes of optical circuit
switches (OCSes) and connects them in a 2D-Torus topology. It supports
up to 729 racks and 69K+ ports with each OCS having 96 wavelengths.
DETOUR utilizes a broadcast-and-select mechanism and enables signals
optically forwarded to any dimension. Moreover, it realizes non-blocking
by recursively adjusting conflict links between the diagonal forwarding
OCSes. Our extensive evaluation results show that DETOUR delivers
comparable high performance to a non-blocking optical switching fabric.
It outperforms up to 2.14× higher throughput, and reduces 34% flow
completion times (FCT) and 21% energy consumption compared with
the state-of-the-art works.

1 Introduction

Data centers as the infrastructure of cloud computing, are rapidly expanded to
meet the increasing demand of cloud services, big data and high performance
applications. Many novel network architectures have been proposed to efficiently
connect tens of thousands servers inside data centers. Pure electrical switching
architectures, such as Fat-Tree [4], BCube [13] and Jellyfish [20], provide static
and uniform interconnections among servers, without considering the dynamic
traffic patterns. Due to the mismatch between the static interconnections and the
dynamic network traffic, pure electrical switching networks must pay extremely
high cost and complex wiring to deliver high bisection bandwidth.

Owning on the traffic characteristics of frequently concentrated and bursty
[14], optical switching technologies are introduced to DCNs due to their recon-
figurability, higher bit-rates and lower power [8,9,12,17,21,25]. Optical DCNs

c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 30–50, 2018.
https://doi.org/10.1007/978-3-319-69953-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_3&domain=pdf

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 31

support on-demand link connectivity and bandwidth allocation, which mitigat-
ing potential hotspots caused by the over-subscription. However, the increasing
large-scale data-intensive applications have produced new traffic characteristics
and pose challenges to existing optical DCNs:

(1) High Fan-Out. Traces from production clusters (e.g., Microsoft [16], Face-
book [18], and Google [19]) show that source top-of-rack (ToR) electrical
packet switches (EPSes) usually communicate with tens to hundreds of other
EPSes simultaneously and have the stability across time periods from sec-
onds to days. Constructing high fan-out EPSes connections in large-scale is
significant to improve the network throughput and reduce flow completion
times (FCT).

(2) Various Communication Patterns. The iterative computing frameworks
(e.g., MapReduce, Spark, Hadoop) for large scale data analytics contain
various communication patterns, such as unicast, multicast and broadcast
(*-cast). Multicast and broadcast data dissemination are always the perfor-
mance bottleneck for data analytics applications [11].

Along with the scale of DCN expanding, the ultimate goal is to provide
non-blocking network services in large-scale with high flexibility. However, exist-
ing optical switching networks fail to meet all of the goals (as summarized in
Table 1). Most designs are based on the techniques of Microelectromechanical
system (MEMS) Optical Circuit Switch (OCS), Wavelength Division Multiplex-
ing (WDM) and Wavelength Selective Switch (WSS).

(1) MEMS-based OCS is a N×N non-blocking switching matrix which mechan-
ically rotates mirrors to direct any input signals to any one of the output
ports. c-Through [21], Helios [12] and OSA [8] leverage a single MEMS-
based OCS. However, the network scale is limited, since MEMS-based OCS
is hard to scale and difficult to support high fan-out traffic patterns.

(2) WDM technology multiplexes multiple non-interfering wavelengths onto a
single fiber, which supports up to 100 wavelengths by using Dense WDM
(DWDM).

Table 1. Summary of prior optical DCNs and comparison to detour

Optical DCNs Scalability(Ports) Non-blocking Flexibility

c-Through [21]
Helios [12] OSA [8]

Low (∼2000) Yes Yes

Wavecube [9] High (Unlimited) No No

Mordia [17],
MegaSwitch [10]

Low (∼704)
Low (∼6000)

Yes Yes

OvS [25] High (100K+) No Yes

DETOUR High (69K+) Yes Yes

32 J. Bao et al.

(3) WSS is reconfigurable to switch the input multiplexed wavelengths to desired
output. WDM and WSS are usually used together to construct a distributed
optical switching fabric (e.g., Wavecube [9], Mordia [17], MegaSwitch [10]
and OvS [25]). Although Wavecube is scalable, it is blocking due to the
optical links are reconfigurable only between neighbor switches. Mordia,
MegaSwitch and OvS construct a broadcast-and-select optical switching
fabric. They naturally supports unicast, multicast and broadcast with high
flexibility. However, Mordia and MegaSwitch have low scalability. OvS is
scalable based on the 2D-Torus topology, but it blocked without supporting
arbitrary connections.

In this paper, we propose DETOUR, a large-scale and non-blocking opti-
cal switching data center fabric. DETOUR utilizes the DWDM technique and
connects OCSes in a 2D-Torus topology. It can easily extend up to 729 racks
and 69K+ ports when each OCS supports 96 wavelengths. DETOUR utilizes
broadcast-and-select optical switching mechanism. The multiplexed DWDM sig-
nals are broadcasted along the same horizontal and vertical dimensions with the
source OCS, and can also be optically forwarded to other orthogonal dimensions
by the crosspoint OCSes. DETOUR recursively adjusts the conflicting broadcast-
ing paths between diagonal forwarding OCSes to realize a non-blocking optical
switching fabric.

We summarize the contributions of this paper as follows:

– We propose a novel optical switching data center network architecture, which
is non-blocking in large-scale, named DETOUR. DETOUR delivers high scal-
ability with up to 729 racks and 69K+ ports. By utilizing the broadcast-and-
select mechanism and enabling optically forwarding signals to other orthogo-
nal dimensions, DETOUR delivers high flexibility with establishing directly
connected and dynamic bandwidth links between arbitrary EPS pairs.

– We develop control algorithms to optimize the network performance, includ-
ing demand estimation, topology generation, wavelength assignment, recon-
figuration and so on. Especially, we realize a non-blocking wavelength assign-
ment algorithm by recursively adjusting the conflicting wavelengths, which
exploiting the topology properties of DETOUR. And we also prove the non-
blocking property in theory.

– We realize an event-based flow level simulator and conduct extensive simula-
tions. Our simulation results show that DETOUR delivers comparable high
performance to a non-blocking optical switching fabric. It outperforms up to
2.14× higher throughput and reduces 34% FCT and 57% energy consumption
compared with the state-of-the-art works.

The rest of this paper is organized as follows. Section 2 describes the archi-
tecture of DETOUR. Section 3 details the algorithms realized in the controller.
In Sect. 4, we implement a flow level simulator and evaluate the performance of
DETOUR. Section 5 summarizes the related work. Finally, Sect. 6 concludes the
paper.

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 33

2 DETOUR Architecture Overview

In this section, we firstly give an overview of DETOUR and describe the archi-
tecture of OCS, which is the key device to construct DETOUR. Then we give an
example to explain the specific broadcast-and-select workflow. Lastly, we analyze
the scalability, feasibility and cost of DETOUR.

DETOUR is a distributed optical switching fabric, in which the OCSes are
physically connected in 2D-Torus topology and configured by a centralized con-
troller, as shown in Fig. 1. DETOUR overlays above ToR EPSes to construct
a flattened and hybrid packet/circuit switched DCN. Each OCS in DETOUR
has m ports directly connected with the below EPS, whose up-link ports are
equipped with m DWDM transceivers. Thus, the EPSes are logically connected
as a m-regular random graph [20] in the optical DCN.

DETOUR is based on the broadcast-and-select optical switching mechanism
and uses multi-fibers for space division multiplexing different broadcast signals.
For each sender OCS, the signals are statically broadcasted along the same
horizontal (west-east) and vertical (south-north) dimensions. For OCSes in dif-
ferent dimensions, the desired signals are selected from the broadcasted signal
sets by the crosspoint OCS, and optically forwarded from one dimension to the
orthogonal dimension without being relayed by the crosspoint EPS. DETOUR
constructs a non-blocking optical switching fabric that supports establishing
directly connected optical links between arbitrary EPS pairs. Thus, it reduces
the hop counts of EPS and improves network throughput.

Figure 2 illustrates the detailed architecture of OCS. Each OCS comprises
of commercial optical components, such as N × 1 Wavelength Selective Switch
(WSS), Multiplexer (MUX), Demultiplexer (DEMUX), Optical Splitter, Cou-
pler, Erbium Doped Fiber Amplifier (EDFA).

We firstly give a description about these optical elements. (1) N × 1 WSS
takes N fibers with k wavelengths each and outputs a non-interfering subset

Fig. 1. The high-level architecture of DETOUR

34 J. Bao et al.

Fig. 2. The architecture of OCS

of the k × N wavelengths to an output fiber. The measured switching delay of
N × 1 WSS is less than 10 ms [25]. 2N × 2 WSS is composed of two N × 1
WSSes and has N input ports for each horizontal and vertical dimension in the
2D-Torus topology. To construct a non-blocking optical switching fabric, there
are at most N + 1 OCSes at each dimension. The option of N is the key factor
to determine the number of other components. (2) MUX/DEMUX combines
or separates optical signals at different wavelengths. (3) Splitter/Coupler are
passive devices that combine or split optical power by a certain ratio. (4) EDFA
is used to boost the signals and compensate losses.

In the following, we will detailedly explain the workflow of the specific
broadcast-and-select optical switching mechanism.

– From the Broadcasting View

For each OCS, it has m ports to connect with the below EPS, and the
corresponding EPS has m up-link ports equipped with DWDM transceivers,
which have fixed unique wavelengths. The input DWDM signals are multiplexed
into a single fiber by MUX. And the MUXed DWDM signals are then equally
split into two fibers by a (5:5) optical splitter and unidirectionally transmitted to
next neighbor OCSes. For broadcasting the signals, the source MUXed DWDM
signals are statically split into two parts at each OCS along the broadcasting
path. By using a passive drop-continue splitter, one part is dropped to the WSS
for being passed to the local OCS or forwarded to the orthogonal dimension,
the other part continues transmitting to the next OCS. As shown in Fig. 3, the
multi-coloured line represents that the MUXed DWDM signals from EPS1 are
statically and unidirectionally broadcasted to all the other OCSes along the west-
east and south-north direction. The red line means that this signal is selected
to be forwarded from west-east direction to south-north direction by WSS2. As
optical splitter and connector insertion have signal losses, a single stage EDFA is

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 35

Fig. 3. An example of how DETOUR works (Color figure online)

used to boost the DWDM signals before being broadcasted out. This ensures all
the dropped signals’ intensity greater than the transceivers’ receiver sensitivity,
all signals can be recovered correctly.

To ensure the consistency of OCS architecture and simplify the connection
between neighbor OCSes, OCS takes advantage of the uniform passive routing
fabric (PRF) to reroute the multiple broadcasted signals. PRF also couples with
passive drop-continue splitters to drop the broadcasted signals. The ratio of
drop and continue is determined by the scale of DETOUR. As shown in Fig. 2,
OCS contains 4 PRFs and each dimension has 2 PRFs. PRF1 and PRF3 are
used for the signals that are broadcasted from the same dimension. PRF2 and
PRF4 are used for the signals forwarded from other dimensions. Focusing on one
dimension, for each OCS:

– The source DWDM signals are transmitted out from port E1 and the source
forwarded signals are transmitted out from port EN+1.

– The signals from port Wi (1 ≤ i < N) are transmitted out from port Ei+1

and dropped to the (N + i)-th (5:5) splitter.
– The signals from port Wi (i = N) are only dropped to the 2N -th (5:5) splitter.
– The signals from port Wi (N + 1 ≤ i < 2N) are transmitted out from port

Ei+1 and dropped to the i-th port of WSS4.
– The signals from port Wi (i = 2N) are only dropped to the 2N -th port of

WSS4.

36 J. Bao et al.

Thus, OCS has consistency architecture and can be directly connected with
neighbor OCSes to construct a 2D-Torus topology. And OCS uses 2N -fiber opti-
cal ribbon to simplify the complexity of cabling, as shown in Fig. 3.

– From the Selecting View

As shown in Fig. 2, OCS contains 4 WSSes at the receiver end. N ×1 WSS1 is
used to forward the signals from south-north dimension to west-east dimension
and N × 1 WSS2 does the opposite. 2N × 2 WSS3 is used to select the desired
non-conflict DWDM signals coming from other OCSes, which are at the same
north-south and west-east dimension with the OCS. The input signals of 2N ×2
WSS4 come from OCSes which are not at the same south-north and west-east
dimension with this OCS. The signals selected by WSS3 and WSS4 are coupled
into one fiber and then de-multiplexed by DEMUX to the up-link ports of the
associated EPS.

For each OCS, the input port represents the source OCS of the MUXed
DWDM signals. Because the output port of the source DWDM signals gradually
increases at each OCS along the broadcasting path, thus:

– The signals from port Wi (1 ≤ i ≤ N) mean that the source OCS of these
signals is the i-th OCS on the west of this OCS. The dropped signals are
equally split by the (N + i)-th splitter, then transmitted to the i-th port of
WSS2 and the (N + i)-th port of WSS3.

– The signals from port Wi (N + 1 ≤ i ≤ 2N) mean that they are forwarded
by the (i−N)-th OCS on the west of this OCS, and the source OCS of these
signals is on the south-north dimension passing the forwarding OCS. Then
the dropped signals are transmitted to the i-th port of WSS4.

– The signal from port Si (1 ≤ i ≤ N) means that the source OCS of these
signals is the i-th OCS on the south of this OCS. The dropped signals are
equally split by the i-th splitter, then transmitted to the i-th port of WSS1
and WSS3.

– The signals from port Si (N + 1 ≤ i ≤ 2N) mean that they are forwarded by
the (i − N)-th OCS on the south of this OCS, and the source OCS of these
signals is on the west-east dimension passing the forwarding OCS. Then the
dropped signals are transmitted to the (i − N)-th port of WSS4.

In DETOUR, the controller performs wavelength assignment algorithm,
which will be introduced in the next section. Given the wavelength configuration
demand, WSSes are configured to pass the desired wavelengths, and block the
others. For each destination OCS:

– If the source OCS is in the same south-north or west-east dimension, WSS3
selects the demand wavelengths from the input port associated with the source
OCS. As shown in Fig. 3, the optical channel from EPS1 to EPS2 is assigned
a green wavelength, and from EPS1 to EPS3 is assigned a orange wavelength.
So WSS3 of OCS2 passes the green wavelength from the (N +1)-th port and
WSS3 of OCS3 passes the orange wavelength from the 1-th port.

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 37

– If the source OCS are not in the same dimension, it needs jointly configure
WSSes of the forwarding OCS and destination OCS. WSS1 or WSS2 of the
forwarding OCS selects the demand wavelengths from the input port asso-
ciated with the source OCS and broadcasts it to the orthogonal dimension.
Then, WSS4 of the destination OCS passes the demand wavelengths from the
input port associated with the forwarding OCS. As shown in Fig. 3, the opti-
cal channel from EPS1 to EPS4 is assigned a red wavelength and forwarded
by OCS2. So WSS2 of OCS2 passes the red wavelength from the 1-th port
and forwards it to the south-north dimension, then WSS4 of OCS4 passes the
red wavelength from the 1-th port.

In the following, we will analyze the feasibility, scalability and cost of
DETOUR.

We will give a detailed analysis on the feasibility through theory. The key to
show the feasibility of DETOUR mainly focuses on two parts: (1) demonstrating
the feasibility of the optical components shown in Fig. 2, (2) guaranteeing the
receiving signals being correctly identified by DWDM transceivers.

The OCS in DETOUR uses existing commodity optical components, such as
N × 1 WSS, EDFA, Splitter, Coupler. And its architecture is similar to that of
OvS [25] without introducing any novel optical devices. Zhu et al. have imple-
mented a prototype of OvS and built a small testbed. The key difference between
DETOUR and OvS is that DETOUR optically forwards signals to orthogonal
dimensions by using the same WSS component. Therefore, the implementation
of OvS, as a side effect, has also demonstrated the feasibility of the optical
components in DETOUR.

Next, we will explore the Optical Signal Noise Ratio (OSNR) performance
and how many times the optical signals can be split while guaranteeing correct-
ness. To support a large scale, OCS adopts a bidirectional design, as shown in
Fig. 4. The source signals are broadcasted along each direction and decrease when
crossing one OCS. The signal specifications of optical components are listed in
Table 2. Let l denote the transmittance n/(m + n), which means the fraction of
signal passing and reflecting. For each source OCS:

Fig. 4. Bidirectional design

38 J. Bao et al.

Table 2. Optical component specifications

Contents Specifications

Transceiver [1] Output power −1 ∼ 3 dBm

Receiver sensitivity −7 ∼ −23 dBm

EDFA [2] Input power range −32 ∼ −1 dBm

Saturated output power 17.3 ± 0.3 dBm

1 × 2 splitter (m:n) Dropped (m) loss −10log(m/(m + n)) dB

Passed (n) loss −10log(n/(m + n)) dB

Connector loss 1 dB

WSS loss 4 dB

Coupler loss 1 dB

DeMux loss 2.5 dB

1 × 2 splitter/1 × 4 splitter 3.5 dB/7 dB

The signal loss SR
Loss for the receiving side of i-th switch is calculated as

follows:

SR
Loss = −10log(l) ∗ (i − 1) − 10log(1 − l) + i + 11

The signal loss SF
Loss for the forwarding side of i-th switch is calculated as

follows:

SF
Loss = −10log(l) ∗ (i − 1) − 10log(1 − l) + i + 11

And the forwarding signal loss SFR
Loss for the receiving side of i-th switch is

calculated as follows:

SFR
Loss = −10log(l) ∗ (i − 1) − 10log(1 − l) + i + 7.5

The source signals are firstly enhanced by EDFA up to 17.3 dBm. To be
correctly recovered by transceivers or enhanced by EDFA, the attenuated signals
should satisfy the input constraints of EDFA and the receiver sensitivity of
transceivers. Hence the signal loss should under the following constraints: SR

Loss,
SRF

Loss ≤ 40.3 dB and SF
Loss ≤ 49.3 dB. The signal loss is determined by the OCS

hops i and the splitter transmittance l. From the related work [6], the number
of optical splits increases with transmittance l. When the transmittance is up to
0.9, the number of i equals to 13. Thus, DETOUR can support up to 27 OCSes
in one dimension.

Through the above analysis, there are at most min(27, N + 1) OCSes at
each dimension to construct a non-blocking optical fabric. With state-of-the-art
technologies, the option N of a N × 1 WSS can be as high as 32 at reasonable
cost [25]. So DETOUR is scalable to connect 27 × 27 OCSes. A 27 × 27 2D-
Torus network is then achievable to connect up to 729 OCSes. As described in
the ITU-T G.692 standard, the C-band can be divided up to 96 wavelengths at

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 39

50 GHz channel spacing. By leveraging the standard 50 GHz wavelength spacing
of DWDM technology, DETOUR supports up to 729 racks and 69K+ ports with
each OCS supporting 96 wavelengths.

DETOUR has the advantage of high performance compared with OvS, but
with the cost of modest optical components, e.g. N × 1 WSS, Splitter, EDFA.
N × 1 WSS is the most expensive component compared with Splitter, EDFA
and Coupler. While, the digital Liquid Crystal (LC) based optical switching
technology used in the WSS has been proven to be a reliable and cost-effective
technology [25]. In the future, silicon photonics (e.g., matrix switch by ring
resonators) can further improve the integration level and reduce the cost.

3 The Control Loop

Inspired by most prior DCN designs [8,9,12,21,25], the hybrid DCN based on
DETOUR employs a centralized controller to manage EPSes and OCSes. The
controller maintains network information. And it performs demand estimation,
wavelength assignment, reconfiguration and so on.

3.1 Traffic Demand Estimation

There exists many traffic demand estimation solutions. For example, the con-
troller can periodically capture snapshots of the overall traffic demand. Hed-
era [5] and Helios [12] allocate bandwidth of elephant flows by guaranteeing
max-min fairness in an ideal non-blocking network. c-Through [21] increases the
socket buffer and uses large buffer occupancy to indicate the optical link demand.
Moreover, researchers have started to forecast traffic demands of scientific and
data-intensive parallel applications from diverse layers (e.g., application layer
[22], compiler layer [7,14]). And for clusters that are orchestrated by centralized
schedulers (e.g., MPICH2 Hydra, Hadoop YARN), the schedulers orchestrate
jobs to compute, storage nodes, and make traffic demand visible.

As the reconfiguration delay of DETOUR is about 10 ms, DETOUR is
suitable for the stable or predictable traffic demand which tolerates with the
reconfiguration overhead, or DETOUR is preallocated to specific jobs. Overall,
DETOUR is proposed to realize a fully reconfigurable interconnection with high
scalability, performance and flexibility. And it works as topology-on-demand net-
work resources to match with the upper demand.

3.2 Wavelength Assignment

Given a traffic demand matrix, the controller converts it into wavelength assign-
ments and pushes them into OCSes. The converting algorithm can be accom-
plished by using weighted b-matching [8], in which b represents the number
of ports connected with DETOUR at each ToR EPS. Through the weighted

40 J. Bao et al.

b-matching algorithm, we get a wavelength demand matrix Gw(Vw, Ew, φw),
in which φw(u, v) denotes the number of wavelengths assigned on directed
edge (u, v). We need to assign non-conflicting wavelengths to satisfy φw. Non-
conflicting refers that the same wavelengths can not coexist in the same fiber.
Due to the specific architecture of OCS shown in Fig. 2, a feasible assignment is
that no same wavelengths simultaneously exist in the sending fiber of one OCS,
the same as receiving fiber, forwarding fiber from x to y and forwarding fiber
from y to x. This problem is equivalent to edge-coloring problem on a multi-
graph with extra constraints of the forwarding nodes. And non-conflicting edge
coloring of multigraph Gb means that there are no same colors in each source
node, destination node, forwarding node fxy and fyx.

Figure 5 illustrates an example of wavelength assignment process. As shown
in Fig. 5(a), the OCSes are physically connected in a 3 * 3 2D-Torus topology, and
each OCS has 4 unique wavelengths. Figure 5(b) denotes a specified wavelength
demand matrix Gw. We transform it to a bipartite multigraph Gb, as shown
in Fig. 5(c). The number of edges between OCSes u and v equals to the entry
φw(u, v). We proceed to compute a wavelength assignment using existing edge-
coloring algorithms of bipartite multigraph [9], as shown in Fig. 5(d), (e). The
label fxy on edge (u, v) means that the wavelength is forwarded from x dimension

Fig. 5. Wavelength assignment

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 41

to y dimension by OCS f , and fyx does the opposite. Edge (4, 2) and edge (6,
8) are conflicting as they are assigned the same color and both forwarded from
x dimension to y dimension by OCS 5. To avoid the conflict, we use OCS 9 to
forward edge (6, 8), as shown in Fig. 5(e).

Considering the constraint of forwarding OCSes, we cast the wavelength
assignment problem into a constrained edge-coloring solution on a bipartite
multigraph. König’s theorem [23] states that any bipartite graph G has an edge-
coloring solution with Δ(G) (maximal degree) colors. The challenge in our situa-
tion is that whether the bipartite multigraph Gb converted from the wavelength
demand matrix Gw is Δ(Gb)-colorable. Since Δ(Gb) ≤ k, that φw can always be
satisfied if Gb is Δ(Gb)-colorable. We solve this problem by designing a conflict
avoiding algorithm which utilizes the properties of DETOUR.

Theorem 1: Given a wavelength demand matrix Gw(Vw, Ew, φw), we can
always satisfy φw (non-conflicting) using Δ(Gb) wavelengths.

The proof is motivated by Fig. 5. For bipartite multigraph Gb, we can always
get an edge-coloring solution with Δ(Gb) matchings, without considering the
forwarding constraints. Each source and destination port in matching M are
assigned the same wavelength. For each matching M , if we could reassign the
conflicting edges’ forwarding nodes (Fig. 5(e)) and get a non-conflicting match-
ing, we will finally get Δ(Gb) matchings and Theorem 1 will be proven.

We prove that a non-conflicting matching M always exists by recursively
adjusting the forwarding nodes. The proof procedure is shown in Algorithm 1.
dictxy and dictyx record the assigned forwarding nodes and the corresponding
edge, and each forwarding node can only be used once for non-conflicting (line
2). The algorithm only considers the edges (u, v) whose source node u and des-
tination node v are not in the same dimension (line 3–4). Edge (u, v) has two
forwarding nodes fx, fy and only uses one forwarding node at the same time.
Initially, the forwarding nodes are not assigned, and the previous edges of M
can choose one of the remaining forwarding nodes (line 6–9). When both for-
warding nodes of edge (u, v) are assigned, the algorithm recursively (line 11, 13,
25, 32) adjusts forwarding nodes with former conflicting edges until there is an
unassigned forwarding node (line 20–23, 28–30). Since the initial edges only use
one forwarding node, another forwarding node is unassigned. The algorithm will
always recursively find an unassigned forwarding node except one situation. If
the algorithm recursively runs to adjust edge (u1, v1) and (u2, v2). Edge (u1, v1)
is assigned forwarding node f12

x and another forwarding node is f12
y . By con-

trast edge (u2, v2) is assigned forwarding node f12
y and another forwarding node

is f12
x . This will cause a deadlock and can not find a solution. However, this

situation will not happen because there are no two edges having the same for-
warding nodes in the 2D-Torus topology. Thus, the algorithm can always find
an unassigned forwarding node to all the conflicting edges in matching M . Proof
of Theorem 1 is completed.

42 J. Bao et al.

Algorithm 1. Conflict Avoiding Algorithm
Input: Matching M
Output: Forwarding Set dictxy, dictyx

1: function Conflict Free(M)
2: dictxy = {}; dictyx = {} /*f : (u, v)*/
3: for (u, v) in M do
4: if not Is Same Dimension(u, v) then
5: fx, fy = get forward(u, v)
6: if fx not in dictxy then
7: dictxy[fx] = (u, v)
8: else if fy not in dictyx then
9: dictyx[fy] = (u, v)

10: else /*conflicting*/
11: Adjust(dictxy, dictyx, u, v, fx,‘xy’)
12: or
13: Adjust(dictxy, dictyx, u, v, fy,‘yx’)

return dictxy, dictyx

14: function Adjust(dictxy, dictyx, u, v, f, flag)
15: if flag ==‘xy’ then
16: (u1, v1) = dictxy[f]
17: else flag ==‘yx’
18: (u1, v1) = dictyx[f]
19: fx, fy = get forward(u1, v1)
20: if flag ==‘xy’ then
21: if fy not in dictyx then
22: dictyx[fy] = (u1, v1); dictxy[f] = (u, v)
23: Return
24: else
25: Adjust(dictxy, dictyx, u1, v1, fy,‘yx’)
26: dictyx[fy] = (u1, v1); dictxy[f] = (u, v)
27: else
28: if fx not in dictxy then
29: dictxy[fx] = (u1, v1); dictyx[f] = (u, v)
30: Return
31: else
32: Adjust(dictxy, dictyx, u1, v1, fx,‘xy’)
33: dictxy[fx] = (u1, v1); dictyx[f] = (u, v)

3.3 Reconfiguration

To instantiate the new topology, the controller needs to configure OCSes of
DETOUR and update the flow tables of EPSes. It may lead to network instable
during the reconfiguration. We adopt two strategies to minimize the influence
on network performance during reconfiguration.

Minimizing Wavelength Shifting. During the process of calculating new
wavelength matchings, we utilize current wavelengths distribution and the Gb

matchings to calculate new k-perfect matchings. Then we assign colors to the

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 43

k-perfect matchings based on Hungarian algorithm, which minimizes the overlap
of wavelength shifting to previous assignments. And for each colored matching,
we use Algorithm 1 to get the non-conflicting forwarding sets.

Seamless Reconfiguration. From the above minimizing wavelength shifting
algorithm, we will get a subset of wavelengths which does not need to adjust. And
each EPS also reserves m-k static wavelengths to ensure the network connectiv-
ity. So there exists a stable subnetwork during the reconfiguration. To seamlessly
reconfigure the network, each EPS maintains two flow tables: tablecom, tablemid.
tablecom is used for the complete network and tablemid is used for the intermedi-
ate subnetwork. The controller maintains topology informations and active flow
rules for each network.

Before adjusting the optical links, the controller updates flow rules of tablemid

based on the difference of new and old subnetwork. This way avoids forwarding
packets to a dynamical link, which will cause packet loss. During reconfigura-
tion, the controller enables tablemid and calculates new flow rules based on the
intermediate network. And it also deletes the flow rules affected by the adjusted
links. When the configuration of OCSes finished, the controller enables tablecom

and calculates flow rules based on the new network.

4 Evaluation

In this section, we evaluate the performance of DETOUR via flow-level sim-
ulation. We first introduce the simulation methodology and then analyze the
performance of DETOUR by conducting extensive simulations.

4.1 Simulation Setting

(1) Simulator: Because existing packet-level simulators (e.g., NS2, NS3) are
time consuming to simulate hundreds to thousands servers, and we are more
interested in network throughput rather than packet-level behaviors. There-
fore, we implemented a event-based flow-level simulator to perform simula-
tions at large scale. The simulator takes flows with start time, size, source
server and destination server as input. When the network status changes
(e.g., flow arrival, flow departure, EPS and OCS reconfiguration), it updates
the rate and remaining size of all active flows. The rate of each active flow
is calculated by the progressive filling algorithm [3], which allocates band-
width satisfying max-min fairness without considering the detailed transport
layer protocol behaviors. A flow transmission is finished when the receiver
receives all the data. In this simulator, we also realized a centralized con-
troller, which maintains a global view of the network and manages all the
EPSes and OCSes. It periodically (0.1 s in our simulation) predicts the traffic
demand between ToRs and assigns optical wavelengths to meet the demand.
The OCS reconfiguration and controller communication overhead is setted
to 10 ms.

44 J. Bao et al.

(2) Topology: We compare the performance of DETOUR against Jellyfish [20],
OvS [25] and non-blocking optical switching network. Jellyfish is a pure elec-
trical switching network and randomly connects ToR EPSes into a k-regular
topology. It has higher bisection bandwidth and lower mean path length
over other static network topologies. The typical optical solutions such as
MegaSwitch [10], Mordia [17] and OSA [8] all construct non-blocking optical
switching networks and support multiple wavelengths, but has limited scal-
ability. We will compare the performance gap between DETOUR and these
non-blocking solutions. OvS is a 2D-Torus optical switching fabric similar
with DETOUR but it is blocked with limited connections. In this experi-
ment, we simulate a 8 * 8 2D-Torus topology, each EPS has 18 ports with 10
ports connected with servers and the other 8 ports connected to the optical
switching networks. We reserve 2 ports static in each EPS and connect the
EPSes as base mesh, which ensures the network connectivity.

(3) Traffic Patterns: We synthetic the following traffic patterns used in [10]:
– Server-Level Stride. We index the servers from 1 to 640. In each round,

we randomly select the stride k and each servers i talks with (i + k) mod
640.

– ToR-Level Stride. We index the ToR from 1 to 64. In each round, we
randomly select the stride k, all the servers in ToR i talk to all the servers
in ToR i + k mod 64.

– Random. In each round, each server in ToR i talks to servers in up to 4
randomly selected ToRs. Each server randomly communicates with other
severs. In this pattern, many flows may select the same path, creating
sparse bottleneck links.

– MapReduce-Demand. We use the Hive/MapReduce trace collected from a
3000-server, 150-rack cluster, which contains many shuffle processes. And
we duplicate the traffic demands onto DETOUR using spatial replication.

(4) Metrics: We evaluate DETOUR from the following aspects. Firsty, we mea-
sure the network throughput under the above typical static traffic patterns.
Second, we quantify the effect on reducing FCT and energy consumption
under dynamic MapReduce traffic patterns. Third, we analyze the network
performance on reconfiguration.

4.2 Network Practical Throughput

Figure 6 illustrates the average (max/min) network throughput under server-
stride, ToR-stride and random workloads when running 10 instances. From the
figure, we find that DETOUR achieves the same performance as non-blocking
optical switching networks under all traffic patterns. And it increases the average
throughput by 1.34–2.14× and 2.28–5.7× compared to OvS and Jellyfish respec-
tively under all traffic patterns. The reason is that DETOUR can dynamically
allocate directly connected links to perfectly match the traffic demand. While
OvS needs multiple hops if the demand pair acrosses different dimensions. For-
warding high bandwidth traffic through multiple hops will consume bandwidth
per link and incur load on each EPS it traverses.

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 45

Fig. 6. Network practical throughput

4.3 Overall FCT and Energy Consumption

In this experiment, we evaluate the FCT and energy consumption performance
under the dynamic MapReduce traffic pattern. Figure 7(a) and (b) shows the
cumulative distribution function (CDF) of FCTs and the overall average FCT,
respectively. From Fig. 7, we find that DETOUR achieves the same FCT per-
formance as non-blocking switching networks. The FCTs for all the flows under
DETOUR are less than the FCTs under OvS and Jellyfish. And DETOUR
reduces the overall average FCT by ∼34% and ∼57% compared with OvS
and Jellyfish, respectively. The reason is that the large flows in DETOUR are
allocated directly connected links with demanded bandwidth, which reduces
the FCT of large flows. Meanwhile, it also reduces the bandwitch preemption
between small and large flows, which in trun reduces the FCT of small flows.

Compared with EPS, OCS delivers considerably less energy consumption
and avoids unnecessary optical-electrical-optical conversions. The typical per
port power values of commercially SFP+ transceivers, EPS switching and OCS
switching are 1 W, 8.75 W and 0.14 W, respectively. The energy consumption of
each flow is calculated based on per port power and transmission time. Figure 8
illustrates the average energy consumptions under the MapReduce workload.

(a) (b)

Fig. 7. (a) CDF distribution of FCT and (b) overall average FCT

46 J. Bao et al.

Fig. 8. Average energy consumption

From the figure, we find that DETOUR reduces the overall average energy con-
sumption by ∼21% and ∼30% compared with OvS and Jellyfish, respectively.
The reason is that flows in DETOUR traverse through less EPSes and OCSes
compared with OvS and Jellyfish.

4.4 Network Performance on Reconfiguration

Figure 9 illustrates the 10 ms reconfiguration impact on network throughput.
From the figure, we find that the throughput increases along time with the
flows’ injection. The throughput of DETOUR and non-blocking optical switch-
ing network increase to a relative higher value after each reconfiguration, which
are greater than OvS. The reason is that the controller calculates new wave-
length assignments to better match with traffic demands in each reconfigura-
tion. During each reconfiguration, the being adjusted optical links are unable
to use, and the network bisection bandwidth will temporarily degrades. So we
adopt seamless reconfiguration strategies, which ensures the minimal network
bisection bandwidth and minimize the reconfiguration impact on small flows.

Fig. 9. Network performance on reconfiguration

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 47

4.5 Overhead of the Central Controller

The centralized controller maintains network status, estimates traffic demand
and allocates wavelengths. In this experiment, we realized the simulator in
python language, and we used the existed maximum weight matching and maxi-
mum matching algorithms in the networkx package. The time complexity of max-
imum weight matching and maximum matching are O(n3) and O(n) respectively,
in which n represents the number of racks. We run this simulator on Intel(R)
Core(TM) i5-5257U CPU @ 2.70 GHz. We measure the time cost under 10 ran-
dom seleted traffic patterns. The total time is about 46 ms under 64 switches and
8 wavelengths, in which demand estimation and max-weight matching algorithm
consume the dominant. And when the network scales up to ∼700 switches, the
runtime increases up to hundreds to thousands microseconds. In order to reduce
the impact of the controller overhead to support large scale DCNs, the controller
on the one hand can use traffic predicting mechanism, on the other hand can
increase the demand estimation period. Moreover, our demand estimation and
wavelength reconfiguration algorithms are adopted from Hedera [5] and Wave-
Cube [9] respectively, which has been optimized to consume less than 100 ms for
large data centers via parallelization. This means that there is a large room to
speed up controller algorithms with advanced technologies to support large scale
DCNs.

5 Related Work

Our work is mostly inspired by prior solutions on reconfigurable DCN. We sum-
marize the existing reconfigurable techniques by three categories: Optical Circuit
Switching (OCS), 60 GHz Wireless and Free-Space Optics (FSO).

Most solutions (e.g., c-Through [21], Helios [12], and OSA [8]) rely on MEMS-
based optical switches, which has high reconfiguration latency and low port
counts. They leverage a single MEMS-based optical switch to establish optical
links between ToR EPSes. The DCN scalability is limited by the low port den-
sity of MEMS. Wavecube [9] removes the core MEMS and connects WSSes in
mesh topology. Although Wavecube is scalable to support unlimited racks, the
network diameter increases with the scalability as links are only reconfigured
between neighbors. Mordia [17], MegaSwitch [10] and OvS [25] are based on
the broadcast-and-select mechanism. Mordia takes microseconds switching tech-
nologies and establishes optical links with time-sharing. This is not efficient for
high-out and stable traffic patterns. OvS uses multi-fiber multiplexing and con-
nects OCSes into 2D-Torus topology. But it only supports establishing directly
optical circuits between OCSes in the same dimension.

Flyway [14] was firstly proposed to augment the traditional data center with
60 GHz wireless devices, which relieves hotspot traffic. In Mirror [24], beams
were bounded off the data center ceiling to eliminate the line-of-sight constraint.
Unlike optical technology, 60 GHz wireless suffers from limited throughput and
low distance, which is hard to use in large scale data centers.

48 J. Bao et al.

Firefly [15] equips ToR EPSes with free-space optics and uses Galvo or switch-
able mirrors to dynamically establish optical links. ProjecToR [16] combines dig-
ital micromirror device (DMD) and mirror assembly to construct a high-fanout
free-space topology. However, the beam of FSO is narrow and susceptible to
interferences.

6 Conclusion

We presented DETOUR, a large-scale non-blocking optical data center fabric,
which supports up to 700+ racks and 69K+ servers. We designed a recursive
wavelength assignment algorithm based on the architecture of DETOUR. And
We also implemented a flow-level simulator and realized the control algorithms.
Extensive evaluation results show that DETOUR delivers high performance com-
parable to a non-blocking switching fabric. It outperforms up to 2.14× higher
throughput, reduce 34% FCT and 21% energy consumption compared with the
state-of-the-art works.

Acknowledgments. The work is supported by the project of National Key Research
and Development Program of China under Grant No. 2016YFB0200400, and FANEDD
under Grant No. 201450.

References

1. Cisco DWDM SFP+ module. http://www.cisco.com/c/en/us/products/
collateral/interfaces-modules/dwdm-transceiver-modules/data sheet c78-711186.
html

2. Cisco ONS15501 erbium doped fiber amplifier. http://www.cisco.com/en/US/
products/hw/optical/ps2011/products data sheet09186a008008870d.html

3. Progressive filling algorithm. https://en.wikipedia.org/wiki/Max-min fairness
4. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network

architecture. In: ACM SIGCOMM (2008)
5. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera:

dynamic flow scheduling for data center networks. In: NSDI (2010)
6. Bao, J., Dong, D., Zhao, B., Luo, Z., Wu, C., Gong, Z.: FlyCast: free-space optics

accelerating multicast communications in physical layer. In: ACM SIGCOMM
(2015)

7. Barker, K.J., Benner, A., Hoare, R., Hoisie, A., Jones, A.K., Kerbyson, D.K., Li,
D., Melhem, R., Rajamony, R., Schenfeld, E., et al.: On the feasibility of optical
circuit switching for high performance computing systems. In: IEEE SC (2005)

8. Chen, K., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y., Wen, X.,
Chen, Y.: OSA: an optical switching architecture for data center networks with
unprecedented flexibility. In: NSDI (2012)

9. Chen, K., Wen, X., Ma, X., Chen, Y., Xia, Y., Hu, C., Dong, Q.: WaveCube:
a scalable, fault-tolerant, high-performance optical data center architecture. In:
IEEE INFOCOM (2015)

10. Chen, L., Chen, K., Zhu, Z., Yu, M., Porter, G., Qiao, C., Zhong, S.: Enabling
wide-spread communications on optical fabric with megaswitch. In: NSDI 2017,
Boston, MA, pp. 577–593 (2017)

http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/dwdm-transceiver-modules/data_sheet_c78-711186.html
http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/dwdm-transceiver-modules/data_sheet_c78-711186.html
http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/dwdm-transceiver-modules/data_sheet_c78-711186.html
http://www.cisco.com/en/US/products/hw/optical/ps2011/products_data_sheet09186a008008870d.html
http://www.cisco.com/en/US/products/hw/optical/ps2011/products_data_sheet09186a008008870d.html
https://en.wikipedia.org/wiki/Max-min_fairness

DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric 49

11. Chowdhury, M., Stoica, I.: Coflow: a networking abstraction for cluster applica-
tions. In: ACM HotNets (2012)

12. Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H.H., Subramanya, V.,
Fainman, Y., Papen, G., Vahdat, A.: Helios: a hybrid electrical/optical switch
architecture for modular data centers. In: ACM SIGCOMM (2010)

13. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.:
BCube: a high performance, server-centric network architecture for modular data
centers. In: ACM SIGCOMM (2009)

14. Halperin, D., Kandula, S., Padhye, J., Bahl, P., Wetherall, D.: Augmenting data
center networks with multi-gigabit wireless links. In: ACM SIGCOMM (2011)

15. Hamedazimi, N., Qazi, Z., Gupta, H., Sekar, V., Das, S.R., Longtin, J.P., Shah,
H., Tanwer, A.: Firefly: a reconfigurable wireless data center fabric using free-space
optics. In: ACM SIGCOMM (2015)

16. Monia (Manya), G., Ratul, M., Amar, P., Nikhil, R., Gireeja, R., Jana, K.: Pro-
jector: agile reconfigurable data center interconnect. In: ACM SIGCOMM (2016)

17. Porter, G., Strong, R., Farrington, N., Forencich, A., Chen-Sun, P., Rosing, T.,
Fainman, Y., Papen, G., Vahdat, A.: Integrating microsecond circuit switching
into the data center. In: ACM SIGCOMM (2013)

18. Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social network’s
(datacenter) network. In: ACM SIGCOMM (2015)

19. Singh, A., Ong, J., Agarwal, A., Anderson, G., Armistead, A., Bannon, R.,
Boving, S., Desai, G., Felderman, B., Germano, P., et al.: Jupiter rising: a decade
of clos topologies and centralized control in Google’s datacenter network. In: ACM
SIGCOMM (2015)

20. Singla, A., Hong, C.Y., Popa, L., Godfrey, P.B.: Jellyfish: networking data centers
randomly. In: NSDI (2012)

21. Wang, G., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Ng, T., Kozuch, M.,
Ryan, M.: c-Through: part-time optics in data centers. In: ACM SIGCOMM (2010)

22. Wang, H., Chen, L., Chen, K., Li, Z., Zhang, Y., Guan, H., Qi, Z., Li, D., Geng,
Y.: Flowprophet: generic and accurate traffic prediction for data-parallel cluster
computing. In: IEEE ICDCS (2015)

23. Wikipedia: König’s theorem (graph theory) – wikipedia, the free encyclopedia
(2015)

24. Zhou, X., Zhang, Z., Zhu, Y., Li, Y., Kumar, S., Vahdat, A., Zhao, B.Y., Zheng,
H.: Mirror mirror on the ceiling: flexible wireless links for data centers. In: ACM
SIGCOMM (2012)

25. Zhu, Z., Zhong, S., Chen, L., Chen, K.: Fully programmable and scalable optical
switching fabric for petabyte data center. Opt. express 23(3), 3563–3580 (2015)

50 J. Bao et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Querying Large Scientific Data Sets
with Adaptable IO System ADIOS

Junmin Gu1, Scott Klasky2, Norbert Podhorszki2, Ji Qiang1,
and Kesheng Wu1(B)

1 Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA
kwu@lbl.gov

2 Oak Ridge National Laboratory (ORNL), Oak Ridge, USA

Abstract. When working with a large dataset, a relatively small frac-
tion of data records are of interest in each analysis operation. For exam-
ple, while examining a billion-particle dataset from an accelerator model,
the scientists might focus on a few thousand fastest particles, or on the
particle farthest from the beam center. In general, this type of selective
data access is challenging because the selected data records could be any-
where in the dataset and require a significant amount of time to locate and
retrieve. In this paper, we report our experience of addressing this data
access challenge with the Adaptable IO System ADIOS. More specifically,
we design a query interface for ADIOS to allow arbitrary combinations
of range conditions on known variables, implement a number of different
mechanisms for resolving these selection conditions, and devise strategies
to reduce the time needed to retrieve the scattered data records. In many
cases, the query mechanism can retrieve the selected data records orders
of magnitude faster than the brute-force approach.

Our work relies heavily on the in situ data processing feature of ADIOS
to allow user functions to be executed in the data transport pipeline. This
feature allows us to build indexes for efficient query processing, and to per-
form other intricate analyses while the data is in memory.

1 Introduction

Modern scientific experiments such as large accelerators rely heavily on high-
performance simulations for design, calibration and data analysis [13,24]. These
simulation programs typically need to read and write a vast amount of data,
for example to read the definition of the complex geometry of an accelerator
design, to checkpoint the state of the simulation, and to produce analysis output
[23]. The output from these simulations is used to understand the experimental
observations and to guide the next experiment. Often, the critical information is
only a small fraction of a large data collection. Reading and writing the necessary
data records efficiently is the challenge we address in this work.

The rights of this work are transferred to the extent transferable according to title
17 § 105 U.S.C.

c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 51–69, 2018.
https://doi.org/10.1007/978-3-319-69953-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_4&domain=pdf

52 J. Gu et al.

Current high-performance computing systems are typically massively parallel
platforms consisting of millions of CPU cores and thousands of secondary storage
devices. A significant amount of programming effort is needed to make effective
uses of such a system. Programmers have to make difficult choices among avail-
able options. Take the checkpointing task as an example, an efficient solution
to write a large amount data is to have each process of the simulation program
write its own file. However, this option can create millions of files when millions
of processes are used. On some file systems, an attempt to list these files will
slow the metadata servers to a crawl, even crash the whole file system. Usually,
the checkpoint files are also used for data analyses. During a typical analysis
operation, only a fraction of the data records are needed for a specific analy-
sis operation. Locating these data records from a petabyte data collection is a
challenging task requiring auxiliary information such as indexes. It may be nec-
essary to restart the simulation program with a different number of processes,
for example, to reduce the computation time or to increase the fidelity of the
simulation. When there is one checkpoint file per process, these checkpoint files
may have to be combined in complex ways in order to restart the simulation
properly. For these reasons, many researchers have explored options to simplify
the IO operations for large simulation programs.

The process of locating and retrieving these selected records is typically
through a query interface. The best known querying tools do not support scien-
tific data, which is typically stored in large data files as numbers. For example,
internet search engines are widely used by primarily designed to process text
documents; and database systems could work on both numerical values and text
string, but require the data to be under its full control. Scientific projects usu-
ally does not have the budget to pay for the extra storage and software license
fee for database systems. The alternative we pursue is to add query interface to
high-level IO libraries.

A number of high-level IO libraries are in wide use, the most commonly
used are ADIOS [16], HDF5 [10], and netCDF [22]. Among these three popular
libraries, netCDF is primarily used by the climate community and it is in the
process of switching to use HDF5 as the backend storage layer. For this work, we
primarily consider choosing between HDF5 and ADIOS. Both ADIOS and HDF5
are used in a variety of large scientific applications, and the authors have first-
hand experience with both [5,7,16,26]. In this particular case, we plan to use
ADIOS because it offers a distinctive feature that is not available in any other IO
libraries. That is, ADIOS supports in situ processing, which allows us to build
the indexes while generating the data files. This has a distinct advantage of as
soon as the data files are available, the associated indexes are also available.
This should make it much more efficient to select a relatively small number
of critical data records from a large data collection. In addition, the in situ
processing capability would also enable dynamic analysis capability to improve
the usefulness of a simulation program. Thus, the core of this work is to develop
a query interface for ADIOS.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 53

The key contributions of this work are as follows:

– Design and develop a query interface for ADIOS.
– Evaluate strategies to minimize the time needed to retrieve scatter data

records from a ADIOS file.
– Exercise the query interface with a large application dataset.
– Introduce in situ processing feature to an application that does not yet have

this feature, and demonstrate the usefulness of this feature.
– Measure the performance of ADIOS in completing the checkpoint operations.

2 Related Work

In commercial applications, large datasets are typically managed by a data man-
agement system [15,18,25]. These systems take control of the user data and pro-
vide high-level languages for analysis tasks. In contrast, most scientific projects
store their data as files and use the file systems as the primary tools for data
management [24]. This file-based approach allows users full control of their data
and their analysis tasks; however, it also requires the users to spend much more
time to manage their data than using a data management system. In this work,
we combine a number of techniques to reduce the data management time, more
specifically the time to select a relatively small fraction of the data records. In
this section, we briefly review the key technologies involved.

2.1 High-Level IO Libraries

Scientific datasets are frequently organized as multidimensional arrays and the
commonly used IO libraries are designed to store and organize these arrays.
Earlier we mentioned three: HDF5 [10], netCDF [22] and ADIOS [16]. Next, we
provide a brief description for each of them.

HDF5 is a short-hand for Hierarchical Data Format version 51 [10,11]. It
is highly flexible, efficient, portable and extensible. Many application domains
have developed their own data organization standards based on HDF5 [10]. The
recent releases of HDF5 software exposes the Virtual Object Layer (VOL) to
make it even easier to extend the functionality of the software library, such as
to provide query services [8] and to work with Burst Buffers [9].

NetCDF is a short-hand for network common data format2 [22]. It is widely
in the climate modeling community, with many petabytes of data stored in this
format. Some of the largest collections are used to compile the assessment reports
commissioned by the Intergovernmental Panel on Climate Change3.

ADIOS is a short-hand for Adaptable IO System4 [16,17]. First released in
2008 [17], it is a new library among the commonly used scientific formats. How-
ever, it has attracted much attention because its simplicity and efficiency [16].
1 HDF5 software is available at https://support.hdfgroup.org/HDF5/.
2 NetCDF software is available at https://www.unidata.ucar.edu/software/netcdf/.
3 The most recent IPCC report AR5 is available at https://www.ipcc.ch/report/ar5/.
4 Software available at https://www.olcf.ornl.gov/center-projects/adios/.

https://support.hdfgroup.org/HDF5/
https://www.unidata.ucar.edu/software/netcdf/
https://www.ipcc.ch/report/ar5/
https://www.olcf.ornl.gov/center-projects/adios/

54 J. Gu et al.

For example, it accepts an XML configuration file for users to describe the vari-
ables, their types, and the path to take from memory to disk. This capability
allows the users to change how they process the data without changing the sim-
ulation program. This approach gives a level of adaptability that no other IO
system could match. A special feature created by this flexibility is the in situ
processing capability to be described next. To effectively support the query-
ing capability over ADIOS files, we also utilize this in situ capability to create
indexes, which reduces the effort required to generate indexes and ensures the
indexes are available as soon as the data is available.

2.2 In Situ Processing

Writing to disk is generally much slower than writing the same data to memory,
therefore, it is highly desirable to perform as many analysis operations as possible
while the data is still in memory. This type of in situ processing also makes
it possible to produce analysis results without storing the original data. On a
HPC system, the IO operations typically need to pass data among the compute
nodes, IO nodes, and disk systems. While the data is being transferred among
these subsystems, it is possible to perform a considerable amount of analysis
operations. ADIOS supports these options by separating API for data producers
from that for data consumers.

A data producer outputs the data following a set of API styled after the
familiar POSIX write interface. The content generated by the producer is sent
to the downstream processing code by the ADIOS transport system based on the
instructions provided by the user. The consumers of the data could be located
on the same CPU as the producer, or elsewhere on the network. The ADIOS
transport system will schedule the data movement in a reliable manner [17].

The benefits of in situ processing is widely recognized for large scientific sim-
ulations and a number of efforts are under way to develop alternatives to ADIOS.
Bauer et al. have produced an excellent review of the state of art in 2016 [1]. As
of this writing, ADIOS is the most mature system for in situ processing and has
extensive IO capability, therefore, we have selected to use ADIOS for this work.

2.3 Querying and Indexing

A data management system such as a DBMS typically provides a query interface
for accessing the data under its management. In contrast, the data access func-
tions for a file generally need to follow the structure of the file, such as, move
file pointer to a location and read the next 40 bytes. This structure-based access
functions require the user to know more details about the file organization than
most application users are familiar with, and therefore, not as user-friendly as
the query-based data access methods. A query on a scientific dataset might be
“finding all data records from collection A where temperature and pressure are
in the specified ranges.” In this example, the user only needs to know the name
of the variables and quantities of interest, thus a query interface is much easier
to use for an application scientist.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 55

To effectively support the queries, the system needs to create indexes [12],
such as, B-Tree [6], bitmap index [26], and hashing [28]. Because the scientific
data collections are typically analyzed without modification (or with infrequently
modifications), we plan to concentrate on indexing techniques that are designed
for query-intensive workloads. The queries on scientific data typically returns
a number of data records instead of a single record. Additionally, the users
often explore a large variety of combinations of query conditions. From research
literature, we see that bitmap indexes satisfy these requirements. To support
newly designed ADIOS query interface, we choose to use an open source bitmap
index library named FastBit5 [26]. At the same time, we are also exploring
additional indexing techniques that might be better suited for ADIOS [27].

2.4 Application Use Cases

In this work, we use a couple of large scientific applications to illustrate the
functionality we are developing. Next, we give a brief description of IMPACT
and S3D. They are selected as examples of large scientific simulation programs.
These large simulations produce a large amount of data and require complex data
analyses, where ADIOS indexing and querying capability could play important
roles.

IMPACT6 is a parallel particle-in-cell code designed to model the dynamics of
multiple charged particle beams in accelerators. This program uses longitudinal
position (z) as an independent variable and includes the effects of externally
applied fields from magnets and accelerating cavities as well as the effect of self-
fields (as space charge fields). It is written in Fortran 90 with MPI for interprocess
communication. It has been applied to studies of halo formation and coupling
resonance in high intensity beams, microbunching instability in high brightness
electron linac, beam dynamics in SNS linac, JARPC linac, RIA driver linac,
CERN superconducting linac, LEDA halo experiment, Proton Synchrotron at
CERN, and so on [19–21]. In this work, we primarily use IMPACT to exercise the
in situ processing capability because it is a capability not available in IMPACT
yet.

S3D is a high-performance direct numerical simulation (DNS) of combustion
with detailed chemistry [4,14]. It is designed to study the interaction between
turbulence and combustion chemistry. It is extensively used to understand the
flame characteristics of lean mixture flame in the next generation of diesel and
alternative fuel engines, as well as the flame stability features in large industrial
burners such as those for gas-fired power plants. A large run of this code typically
divides its simulation domain into billions of cells and then follow the evolution
of the combustion process for many thousands of time steps. The checkpoint
files and the in situ analysis output could easily be many terabytes per run [4].
Since extensive work on in situ processing has been performed before with S3D,
in this work we primarily use a set of S3D data to test the query processing
capability to be developed.
5 FastBit software is available at http://sdm.lbl.gov/fastbit/.
6 IMPACT Software available at http://amac.lbl.gov/∼jiqiang/IMPACT/.

http://sdm.lbl.gov/fastbit/
http://amac.lbl.gov/~jiqiang/IMPACT/

56 J. Gu et al.

3 ADIOS Overview

In the next three sections, we describe our work on ADIOS to address various
IO challenges. We start with the basic bulk IO operation of checkpointing, then
move on to in situ processing and querying in the next two sections.

ADIOS is known for its simple API and high performance. The core insight
guiding the ADIOS design is to separate the description of IO operations from
the IO strategies employed for the actual lower level operations. This allows
the application programming interface (API) to only describe what variables
to read or write, while leaving the responsibility of selecting the actual trans-
port operations to the ADIOS system. In particular, ADIOS has implemented
a variety of transport mechanisms [16]. Its ability to seamlessly select the best
transport mechanism is also at the root of its support for in situ operations.
Other important factors contributing the high-performance include log-based
file format, buffered writing, subfiling, asynchronous transport operations, and
so on [16].

ADIOS was designed in 2005 to reduce the IO time for a number of mission
critical applications [17]. Since then, ADIOS has been the leading software sys-
tem for in situ data processing on many of largest high-performance computers.
Some of the early success stories include improving the IO rate of S3D check-
point operation by more than a factor of 10 from 3 GB/s to over 30 GB/s [16].
The developers of ADIOS have published a number of studies showing the dra-
matic improvement of IO performance for various applications. Next, we add
our experience with the IMPACT code.

IMPACT employs the particle-in-cell paradigm to model the dynamics of
particles. Each particle has immutable properties such as rest mass and charge,
and dynamic properties such as position and momentum, recorded as x, y, z, px,
py, and pz. IMPACT produces two types of output for analyses: checkpoint files
and particle statistics. We describe our work on checkpointing in this section and
the work on utilizing in situ processing to accelerate the production of particle
statistics in the next section.

Because the particles on each processor are independent from other parti-
cles, IMPACT produces its checkpoint files by writing one file per processor.
This option has the advantage of minimizing the coordinate needed among the
processors and could significantly reduce the time spent on IO operations.

ADIOS offers a variety of IO options and the parallel file system (Lustre)
additionally offers a number of file system parameters; all of these parameters
could affect IO performance. Instead of providing an exhaustive exploration of
these parameters, in Fig. 1, we provide one set of performance measurements to
show that ADIOS is able to support very efficient IO operations. This particular
set of measurements was collected on Edison at NERSC. The measurements are
conducted on Lustre file system with 24 OST and a peak IO rate of 168 GB/s. To
avoid contention with other active jobs, we only used 16 OST for each ADIOS
file, which have a nominal peak IO rate of about 112 GB/s.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 57

(a) time (seconds) to write checkpoint files (b) time (seconds) to read checkpoint files

Fig. 1. Time to read and write checkpoint files with ADIOS.

The write tests were performed with a fixed number of particles on each MPI
process. The reported IO rates in Fig. 1 are computed using the median observed
IO time. The write operations reported in Fig. 1(a) all uses 16 OST and uses
about 2 million particles per MPI process. Up to 1024 processes, the average
write speeds rises to over 50 GB/s.

In Fig. 1(b), we reported the observed performance of reading the different
checkpoint files. Clearly, the number of OST used to store the files has a strong
influence on the observed read performance. One important feature we want to
demonstrate is the reading of the same checkpoint files with a different number
of processes. In this particular case, reading the same file with different number
of processes took about the same amount of time and producing about the same
aggregate IO speed.

4 In Situ Indexing

The checkpoint files capture the position and momentum of each particle peri-
odically, but infrequently. To capture more dynamic behavior of the parti-
cles, IMPACT also compute high-level statistics about the particles at a much
higher frequency. However, these statistics are programmed by the developers
of IMPACT code and is difficult for the end users to modify to suit their own
needs. The in situ processing capability of ADIOS is a flexible mechanism to
introduce these custom statistics. It can also be used to provide asynchronous
computation including index building, without blocking the main simulation
computation. Next we describe a simple test to compute histograms at every
simulation step to demonstrate the capability of ADIOS.

Using the ADIOS framework, IMPACT sends the positions and momentums
to the libsim system, and a histogram function from VTK is attached to produce
1-D and 2-D histograms for each of the six variables. The histogram functions
are instructed to divide the data records into 100 equal-width bins between the
minimum and maximum values.

58 J. Gu et al.

Fig. 2. Histogram of px and pz at time steps 0, 500, 1000, 1500 and 2000 of an IMPACT
run. Histogram of py is similar to that of px.

Fig. 3. Histogram of z and pz at time steps 500, 1000, 1500, and 2000 of an IMPACT
run (time progresses from left to right, top to bottom). The two tall peaks appear to
move to the right indicating the bulk of the particles are moving along the z direction
with increased momentum pz.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 59

Figure 2 shows a sample output from the histogram computation. In this
simulation, the particles travel in the z direction. From the histograms of px,
we see very sharp drop as momentums along x (and y) directions increase in
magnitude reflecting the fact that the accelerators are designed to limit the
motions perpendicular to z direction. In contrast, we see the histograms of pz

have a more gradual drop off as the momentum deviates from the center.
Figure 3 shows a series of 2D histograms of z and pz. In this case, as time

progresses (from left to right, top to bottom), we see that the peak of the curves
move to the right indicating the bulk of the particles are moving along z direc-
tion as designed. There appears to be two groups of particles following different
trajectories over time.

The above figures demonstrate two analysis options among many possible
particle statistics could be computed with in situ analysis capability. We note
two important ADIOS features in this use case. First, ADIOS in situ framework
can effectively support analysis tasks with zero-copy data transfers. This is an
important feature since the analysis task may require a large amount of data
and copying the data would require extra memory and computer time. Second,
we demonstrate that the ADIOS framework can easily work with a Fortran
program. This is a useful feature since a large number of popular science codes
are in Fortran.

Additionally, we have tested the options of the in situ processing capability of
ADIOS to compute all the built-in statistics on a small set of separate compute
nodes. Since the computation of the statistics involve a large number of global
reductions, reducing the number of processors involved also reduce the overall
cost of completing the simulation and the computation of the statistics. Using
the common measure of CPU-core-hour (number of CPU cores used multiply
the number of hours elapsed), the in situ processing option could reduce the
overall CPU-core-hour by as much as 20% by overlapping the main simulation
with the computation of the statistics.

Figure 4 shows a careful measurement of fraction of total execution time
devoted to I/O operations with the standard I/O option (of writing data to files
stored on a large parallel file system) and with the ADIOS in situ mechanism

Fig. 4. The fraction of total execution time spent on I/O operations: using File I/O vs
using ADIOS in situ capability to staging the output data before committing to disk.

60 J. Gu et al.

to stage the data away from the compute nodes before committing the data to
disk7. We note that the fraction of time spent on I/O operations is dramatically
reduced. More importantly, it is possible to attach an index generation function
and the above mentioned statistics computation to the in situ workflow without
delaying the main simulation computation.

5 Query API

A common query interface is web search box on a web browser, where user
enters a set of keywords to locate relevant pages on the web. A similar interface
for finding interesting data records in large scientific data collection would also
be very useful, however, this functionality is not widely available. An important
reason for this lack of querying function is that most scientific datasets are stored
as files. Because the POSIX file systems treat a file as a container of bytes, there
is no general way of extracting meaningful data records for querying. The first
step in breaking this limitation is to have a model to describe the data records.
In this work, we are using the ADIOS library and will follow the array data
model. In the remaining of this section, we will describe this data model and
the query use cases. The latest version of ADIOS release contains the query
interface and detailed description of how to use the functions is available in the
user’s manual8.

5.1 Array Data Model

In ADIOS, the bulk of data is expressed as multi-dimensional arrays. In Fig. 5,
we provide a simple illustration of a 3D array. Often such an array is produced
from a simulation program, and each element of the array corresponds to a point
or a cell from the 3D space being simulated. In such a case, there might be a
number of different variables associated with each point or cell in space, e.g.,

Fig. 5. Illustration of a 3D bounding box and a data record.

7 This time measurement was obtained with a large XGC simulation running on titan
at ORNL.

8 ADIOS source code and documentation could be found at https://www.olcf.ornl.
gov/center-projects/adios/.

https://www.olcf.ornl.gov/center-projects/adios/
https://www.olcf.ornl.gov/center-projects/adios/

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 61

temperature, pressure and humidity as shown in Fig. 5. We view all variables at
a single point as a data record, which allows us to ask for the temperature values
at points where pressure is between 20 and 40, and humidity is greater than 35.

On a parallel computer, a large multidimensional array is commonly divided
onto different processors in blocks that could be expressed as bounding boxes.
The existing ADIOS interface supports selective accesses to these bounding
boxes. For example, to divide the above 3D array onto 1000 processors, each
processor might have 1/1000th of the 3D array. A bounding box in ADIOS is
expressed as an offset and extent. Say the 3D array has 1000 element along
each of the three directions, then the bounding box for the entire array can be
expressed as offset = [0, 0, 0] and size = [1000, 1000, 1000]. One way to divide
this array into 1000 pieces might be to have each of the subarrays with the size
of [100, 100, 100]. In a simple case, we can view the 1000× 1000× 1000 array to
be defined on a 1000× 1000× 1000 mesh. To simplify the following discussion,
we assume this is the case. However, the elements of an array may have a much
more complex relationship with the underlying physical domain of the simula-
tion. For example, irregular mesh points are often packed into 1D arrays with
additional arrays used to describe the physical location of the mesh points and
how the mesh points are connected.

5.2 Query Use Cases

Case 1: Regular mesh data, all variables are named explicitly. Given a dataset
defined on m dimensions: D1,D2, . . . , Dm, the n physical properties such as tem-
perature, pressure and humidity, could be defined as separate m-dimensional
arrays: A1, A2, . . . , An. Each of these variables can be thought of as a column
of a relational table and each point of the mesh as a row of the same table.
Given this simple mapping between multidimensional data model and the rela-
tional data model, we can transplant all SQL queries to queries on mesh data.
For example, “select humidity from mesh data where temperature > 280 and
pressure > 100000” is meant to select all mesh points where temperature and
pressure values satisfy the specified conditions and then output the values of
humidity on those mesh points.

Case 2: using bounding boxes to partition arrays of the same shape and size.
Given a dataset defined on a 3-D mesh of size 10 × 20 × 30, we might divide
this mesh for 8 processors as a 2 × 2 × 2 blocks. To accommodate this use case,
we will define a set of 8 non-overlapping bounding boxes, one for each of the 8
processors. This would allow each processor to answer queries on 1/8th of the
data, corresponding to mesh size 5 × 10 × 15.

A query over this structure consists of 3 parts:

1. The selection box to limit the points considered,
2. The query conditions - in a form of query predicates connected with AND/OR

operators,
3. The query output - the values of variables for the points that qualify.

62 J. Gu et al.

An example of a query could be:

1. Selection box: starts = [5, 0, 15], sizes = [5, 10, 15]
2. Query conditions: temperature > 5 AND pressure < 40
3. Query output: humidity

Case 3: Composite array structures. Users sometimes combine multiple variables
into a single array. Continuing with the example involving temperature, pressure,
and humidity, assume the mesh size to be 10 × 20 × 30. The 3 dimensions could
be linearized into a single dimension with 6000 elements. The three variables
could then be put into a 6000 × 3 2D array illustrated in Fig. 6.

In such a case the individual variables could be specified with bounding
boxes. Assuming the overall array is named A, the same query from the previous
example could be expressed as follows, where temperature ≡ A[0 : 6000, 0 : 1],
pressure ≡ A[0 : 6000, 1 : 2], and humidity ≡ A[0 : 6000, 2 : 3]; and the query
specified in the previous use case could be expressed as,

SELECT A[0 : 6000, 2 : 3] WHERE A[0 : 6000, 0 : 1] > 5 AND A[0 : 6000,
1 : 2] < 40.

Note that the bounding boxes are associated with each variable in the query
expression separately, and the sizes of the bounding boxes must be the same;
but the offsets (the starting positions) could be different.

Case 4: A general array structure. It is possible that some of the variables are
packed together while others are not. More generally, the arrays may have more

Fig. 6. Illustration of a use case with different variables packed as another dimension
of the data array.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 63

Fig. 7. Illustration of a user query involving multiple arrays of different shapes and
sizes.

complex relationship than described above. For example, the values for tem-
perature, pressure, and humidity, could be produced from different measuring
instruments and recorded as different time resolutions in space and time, as
illustrated in Fig. 7.

Now if we want to compare values at a particular city, we will need to use
different bounding boxes on these arrays. This use case is similar to the previous
one, the key difference is that the array names would be different. Again, the
bounding boxes are required to be of the same size, i.e., having the same number
of data points.

5.3 Additional Design Considerations

Reading Multiple Variables. To start with, the current design of the ADIOS
query interface retrieves values from on variable at a time. If a use case requires
multiple output variables, the caller needs to repeat the invocation of the read
function. Introducing a mechanism to specify multiple output variables at once
will increase the likelihood of additional optimization in the implementation.
However, we choose to keep the interface relatively simple so that we can explore
the implementation challenges associated with the basic tasks of integrating
with indexing techniques. This and other performance optimization issues will
be considered in the future.

Expressing Query Conditions. To avoid the need to introducing a query parser,
we have opted to introduce a set of functions for users to compose query expres-
sions instead of allowing the user to specify the query conditions in the string
form, even though the string form is a more common form of query interface.
This choice also has the benefit of not imposing any restrictions on the variable
names. A typical database management system supports query in the SQL lan-
guage, which imposes a number of restrictions on the variable names, such as,
not allowing punctuations, which would introduce extra challenge is expressing
the bounding boxes.

64 J. Gu et al.

Integration with Indexing Software. An effective implementation of the query
interface would need to connect to an indexing capability. Our implementation
is designed to allow multiple indexing systems to be used. In later tests, we will
explore two different ones: a bitmap indexing software library named FastBit [26]
and a MinMax index capability built into the ADIOS software. A set of user
specified conditions may select data records that are scattered randomly in a
multidimensional array. Since reading randomly scattered values are much slower
than reading consecutive values, some optimization is necessary to reduce the
time needed to read the selected values. In our work, we have developed a set
of heuristics to combine small random read operations into large sequential read
operations.

6 Query Performance

The naive way of resolving a query would be to read through all data records to
find those satisfying the user specified conditions. This option is generally known
as scanning. In this work, we plan to use two different indexing techniques, Fast-
Bit index and block MinMax index, to accelerate the query answering process.

FastBit implements a number of different bitmap indexes that have been
shown to work well for a number of scientific use case [26]. The block MinMax
index is a structure that keeps the minimum and maximum for each variable in
a data block. It is a mechanism developed to take advantage of the metadata
already captured in the ADIOS BP file format. When processing a user query,
this mechanism first examine each data block’s header information to determine
whether there are any possible entries satisfying the specified conditions using
the minimum and maximum values. It only examines the data values in a block
if there are possible hits. The mechanism allows us to avoid some blocks. For
the data blocks with hits, since the minimum unit of an IO operation is a block,
this query answering mechanism is reading the minimum number of blocks and
performing the minimum amount of IO operations.

Figure 8 shows the time needed to resolve the queries with three different
mechanisms: scanning the raw data, using FastBit indexes, and using the Min-
Max mechanism. We see that using the two indexing schemes could dramatically
reduce the query processing time compared to scanning the raw data. Compared
these two indexing mechanisms, we see that the FastBit indexing is typically
faster, however, the FastBit indexes take up a lot more storage space than the
MinMax mechanism, which can be regarding as not using any extra space in
ADIOS BP format.

Another important observation from Fig. 8 is that the time needed to read the
selected values (i.e., the difference between “FastBit + read” and “FastBit”) is
significantly longer than resolving the query using one of the indexing techniques.
This is because the query results are typically randomly scattered in the data file.
Extracting these randomly scattered values takes a long time. Often, reading a
relatively small number of bounding boxes to encompass the randomly scattered
points and then extract the selected values could reduce the overall time need
to extract these values.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 65

1

10

100

1000

10000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Ti
m

e
(s

ec
)

Hits

Scan FastBit+Read FastBit minmax

Fig. 8. Query processing time with a set of S3D data (total number of records is
1.67 × 109, organized into a 3D array of 1100 × 1080 × 1408).

Fig. 9. Query processing time changes dramatically with the number of blocks.

When working with a large dataset, we typically employ multiple CPUs and
process each data blocks independently on each CPU core. However, the query
processing time could be dramatically affected by the number of blocks used
to generated the indexes. Figure 9 shows the query processing time of a small
number of queries when the FastBit indexes are generated on different number
of blocks. Clearly, the more blocks are used the longer it takes to resolve a query.
This is largely because the extra work needed to process each index block. On the
other hand, using more processors can significantly reduce the query response
time, as shown in Fig. 10. Additional studies are needed to further optimize these
and other parameters affecting the performance of indexing and query processing
techniques [27].

66 J. Gu et al.

Fig. 10. Using more processors reduces the query processing time.

7 Summary

This work reports our experience in designing and implementing a query inter-
face for ADIOS. We explored a number of different indexing data structures
for supporting such a query interface. We observe that for queries that select
a relatively small fraction of total number of records in a dataset, answering a
query with these indexing methods could be dramatically faster than reading
the whole data and then filtering the data records in memory.

In addition to using external indexing libraries, ADIOS also implements a
block MinMax mechanism to take advantage of the built-in blocking structure.
Tests show that it has the potential to significantly accelerate the query answer-
ing process. One challenge we have noticed is that the number of blocks has a
strong impact on the overall system performance. We have started exploring pos-
sible options to select this and other parameters affecting the query processing
time [27].

This work also demonstrates two useful capability of ADIOS in improving
the IO pipeline of a simulation program called IMPACT: checkpointing and cus-
tomizing analysis. In reading and writing of checkpoint files, ADIOS allows the
user to manage the IO operations more efficiently. We rely on the in situ pro-
cessing capability of ADIOS to enable IMPACT users to customize the particle
statistics during the simulation process.

The in situ mechanism is also used to generate the indexes needed to accel-
erate the query processing algorithms, without increasing the elapsed time used
by the simulation programs. It allows the indexes to be generated when the data
file is generated, which means the indexes are available when the data is ready.
This is very convenient for the users.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 67

In the future, we plan to more fully explore the two capabilities described
above. In addition, we plan to compare the query capability with well-known
systems such as RasdaMan [2] and SciDB [3].

Acknowledgment. This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231 (for LBNL) and DE-AC05-00OR22725 Mod 877 (for
ORNL). This research also used resources of the National Energy Research Scientific
Computing Center supported by the same funding agency.

References

1. Bauer, A.C., Abbasi, H., Ahrens, J., Childs, H., Geveci, B., Klasky, S., Moreland,
K., O’Leary, P., Vishwanath, V., Whitlock, B., Bethel, E.W.: In situ methods,
infrastructures, and applications on high performance computing platforms. Com-
put. Graph. Forum 35(3), 577–597 (2016)

2. Baumann, P.: rasdaman - raster data manager, January 2018. rasdaman.org
3. Brown, P.G.: Overview of sciDB: large scale array storage, processing and analysis.

In: Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2010, pp. 963–968. ACM, New York (2010)

4. Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E.R., Klasky,
S., Liao, W.-K., Ma, K.-L., Mellor-Crummey, J., Podhorszki, N., et al.: Terascale
direct numerical simulations of turbulent combustion using S3D. Comput. Sci.
Discov. 2(1), 015001 (2009)

5. Chou, J., Wu, K., Rübel, O., Howison, M., Qiang, J., Prabhat, Austin, B., Bethel,
E.W., Ryne, R.D., Shoshani, A.: Parallel index and query for large scale data
analysis. In: SC11 (2011)

6. Comer, D.: The ubiquitous B-tree. Comput. Surv. 11(2), 121–137 (1979)
7. Dong, B., Byna, S., Wu, K.: Expediting scientific data analysis with reorgani-

zation of data. In: 2013 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 1–8, September 2013. http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=6702675

8. Dong, B., Byna, S., Wu, K.: SDS: a framework for scientific data services. In:
Proceedings of the 8th Parallel Data Storage Workshop (2013). http://www.pdsw.
org/pdsw13/papers/p27-pdsw13-dong.pdf

9. Dong, B., Byna, S., Wu, K., Prabhat, Johansen, H., Johnson, J.N., Keen, N.: Data
elevator: low-contention data movement in hierarchical storage system. In: 2016
IEEE 23rd International Conference on High Performance Computing (HiPC), pp.
152–161, December 2016

10. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
HDF5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, pp. 36–47. ACM (2011). http://www.
hdfgroup.org/HDF5/

11. Gosink, L., Shalf, J., Stockinger, K., Wu, K., Bethel, W.: HDF5-FastQuery: acceler-
ating complex queries on HDF datasets using fast bitmap indices. In: SSDBM 2006,
Vienna, Austria, July 2006, pp. 149–158. IEEE Computer Society Press (2006)

12. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
(CSUR) 25(2), 73–169 (1993)

http://www.rasdaman.org
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6702675
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6702675
http://www.pdsw.org/pdsw13/papers/p27-pdsw13-dong.pdf
http://www.pdsw.org/pdsw13/papers/p27-pdsw13-dong.pdf
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

68 J. Gu et al.

13. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scien-
tific Discovery. Microsoft, Redmond (2009)

14. Im, H.G., Chen, J.H., Law, C.K.: Ignition of hydrogen/air mixing layer in tur-
bulent flows. In: Twenty-Seventh Symposium (International) on Combustion, The
Combustion Institute, pp. 1047–1056 (1998)

15. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing
with mapreduce: a survey. ACM SIGMOD Record 40(4), 11–20 (2012)

16. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S.,
Tchoua, R., Lofstead, J., Oldfield, R., Parashar, M., Samatova, N., Schwan, K.,
Shoshani, A., Wolf, M., Wu, K., Yu, W.: Hello ADIOS: the challenges and lessons
of developing leadership class I/O frameworks. Concurr. Comput. Pract. Exp. 26,
1453–1473 (2014). https://www.olcf.ornl.gov/center-projects/adios/

17. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In:
CLADE 2008, pp. 15–24. ACM, New York (2008)

18. Ozsu, M.T.: Principles of Distributed Database Systems, 3rd edn. Prentice Hall
Press, Upper Saddle River (2007)

19. Qiang, J., Lidia, S., Ryne, R.D., Limborg-Deprey, C.: Three-dimensional qua-
sistatic model for high brightness beam dynamics simulation. Phys. Rev. Spec.
Topics-Accel. Beams 9(4), 044204 (2006)

20. Qiang, J., Ryne, R.D., Habib, S., Decyk, V.: An object-oriented parallel particle-
in-cell code for beam dynamics simulation in linear accelerators. J. Comput. Phys.
163(2), 434–451 (2000)

21. Qiang, J., Ryne, R.D., Venturini, M., Zholents, A.A., Pogorelov, I.V.: High resolu-
tion simulation of beam dynamics in electron linacs for X-ray free electron lasers.
Phys. Rev. ST Accel. Beams 12, 100702 (2009)

22. Rew, R., Davis, G.: NetCDF: an interface for scientific data access. IEEE Com-
put. Graphics Appl. 10(4), 76–82 (1990). http://www.unidata.ucar.edu/software/
netcdf/

23. Roman, E.: A survey of checkpoint/restart implementations. Technical report,
Lawrence Berkeley National Laboratory (2002)

24. Shoshani, A., Rotem, D. (eds.): Scientific Data Management: Challenges, Technol-
ogy, and Deployment. Chapman & Hall/CRC Press, Boca Raton (2010)

25. White, T.: Hadoop - The Definitive Guide: MapReduce for the Cloud. O’Reilly,
Sebastopol (2009)

26. Wu, K., Ahern, S., Bethel, E.W., Chen, J., Childs, H., Cormier-Michel, E., Geddes,
C., Gu, J., Hagen, H., Hamann, B., Koegler, W., Lauret, J., Meredith, J., Messmer,
P., Otoo, E., Perevoztchikov, V., Poskanzer, A., Prabhat, Rübel, O., Shoshani, A.,
Sim, A., Stockinger, K., Weber, G., Zhang, W.-M.: FastBit: interactively searching
massive data. In: SciDAC 2009. LBNL-2164E (2009)

27. Wu, T., Chou, J., Podhorszki, N., Gu, J., Tian, Y., Klasky, S., Wu, K.: Apply
block index technique to scientific data analysis and I/O systems. In: Proceedings
of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2017, pp. 865–871. IEEE Press, Piscataway, May 2017

28. Zhang, H., Wen, Y., Xie, H., Yu, N.: Distributed Hash Table: Theory, Platforms
and Applications. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-
9008-1

https://www.olcf.ornl.gov/center-projects/adios/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
https://doi.org/10.1007/978-1-4614-9008-1
https://doi.org/10.1007/978-1-4614-9008-1

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 69

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

On the Performance of Spark on HPC
Systems: Towards a Complete Picture

Orcun Yildiz1 and Shadi Ibrahim2(B)

1 Inria, Univ Rennes, CNRS, IRISA, Rennes, France
2 Inria, IMT Atlantique, LS2N, Nantes, France

shadi.ibrahim@inria.fr

Abstract. Big Data analytics frameworks (e.g., Apache Hadoop and
Apache Spark) have been increasingly used by many companies and
research labs to facilitate large-scale data analysis.However,with the grow-
ing needs of users and size of data, commodity-based infrastructure will
strain under the heavy weight of Big Data. On the other hand, HPC sys-
tems offer a rich set of opportunities for Big Data processing. As first steps
toward Big Data processing on HPC systems, several research efforts have
been devoted to understanding the performance of Big Data applications
on these systems. Yet the HPC specific performance considerations have
not been fully investigated. In this work, we conduct an experimental cam-
paign to provide a clearer understanding of the performance of Spark, the
de facto in-memory data processing framework, on HPC systems. We ran
Spark using representative Big Data workloads on Grid’5000 testbed to
evaluate how the latency, contention and file system’s configuration can
influence the application performance. We discuss the implications of our
findings and draw attention to new ways (e.g., burst buffers) to improve
the performance of Spark on HPC systems.

Keywords: HPC · MapReduce · Spark · Parallel file systems
Contention

1 Introduction

Data is a driving power in almost every aspect of our lives and thus large amounts
of data generated everyday. For instance, International Data Research report [6]
estimates that the global data volume subject to data analysis will grow by a
factor of 50 to reach 5.2 zettabytes in 2025. This huge growth in the data volumes,
the deluge of Big Data, results in a big challenge in managing, processing and
analyzing these gigantic data volumes.

To benefit from this huge amount of data, different data processing models
have emerged [13,20]. Among these models, MapReduce [13,23] has stood out as
the most powerful Big Data processing model, in particular for batch processing.
MapReduce, and its open-source implementation Hadoop [3], is adopted in both
industry and academia due to its simplicity, transparent fault tolerance and scala-
bility. For instance, Yahoo! claimed to have the world’s largest Hadoop cluster [7]
with more than 100000 CPUs in over 40000 machines running MapReduce jobs.
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 70–89, 2018.
https://doi.org/10.1007/978-3-319-69953-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_5&domain=pdf

On the Performance of Spark on HPC Systems: Towards a Complete Picture 71

With the wide adoption of MapReduce in different domains, diverse Big
Data applications (e.g., stream data processing, graph processing, analysis of
large scale simulation data) have emerged where obtaining timely and accu-
rate responses is a must. This, on the one hand, motivates the introduction of
new Big Data analytic frameworks which extend the MapReduce programming
model [4,10,11,36]. Such frameworks keep data processing in memory and there-
fore try to efficiently exploit its high speed. Among these frameworks, Spark [36]
has become the de facto framework for in-memory Big Data analytics. Spark
is recently used to run diverse set of applications including machine learning,
stream processing and etc. For example, Netflix has a Spark cluster of over 8000
machines processing multiple petabytes of data in order to improve the customer
experience by providing better recommendations for their streaming services [5].
On the other hand, high performance computing (HPC) systems recently gained
a huge interest as a promising platform for performing fast Big Data processing
given their high performance nature [1,17]. HPC systems are equipped with low-
latency networks and thousands of nodes with many cores and therefore have
the potential to perform fast Big Data processing. For instance, PayPal recently
shipped its fraud detection software to HPC systems to be able to detect frauds
among millions of transactions in a timely manner [26].

However, when introducing Big Data processing to HPC systems, one should
be aware of the different architectural designs in current Big Data processing and
HPC systems. Big Data processing systems have shared nothing architecture and
nodes are equipped with individual disks, thus they can co-locate the data and
compute resources on the same machine (i.e., data-centric paradigm). On the
other hand, HPC systems employ a shared architecture (e.g., parallel file sys-
tems) [19] which results in separation of data resources from the compute nodes
(i.e., compute-centric paradigm). Figure 1 illustrates these differences in the
design of these two systems. These differences in the design of these two systems
introduce two major challenges: Big Data applications will face high latencies
when performing I/O due to the necessary data transfers between the parallel
file system and computation nodes. Moreover, I/O contention (i.e., performance
degradation observed by any single application/task running in contention with
other applications/tasks on the same platform [15,33]) is a well-known problem
in HPC systems which often detracts the performance of a single-application

(a) Data-centric paradigm. (b) Compute-centric paradigm.

Fig. 1. The different designs in Big Data and HPC systems.

72 O. Yildiz and S. Ibrahim

from the high performance offered by these systems due to their large sizes and
shared architecture [16,18,25,33].

In response, several efforts have been conducted to leverage Spark for fast
Big Data processing on HPC systems. These works have mainly tried to allevi-
ate the high latency problem by focusing on the intermediate data storage (i.e.,
map output for batch jobs and temporary output produced between stages for
iterative jobs) [12,21,28,32,34]. For example, Islam et al. [21] utilized NVRAM
as an intermediate storage layer (i.e., burst buffer) between compute nodes and
Lustre file system [14]. This brought 24% improvement to the application per-
formance by reducing the latency when reading/writing the intermediate data.
However, Big Data applications mostly run in batches and there is a continuous
interaction with the parallel file system for reading the input data and writing
the output data, thus it is important to study the impact of latency on the
performance of Big Data applications by considering the different phases of Big
Data applications as input, intermediate and output data. Moreover, none of
these efforts considered the contention problem which can contribute to a sig-
nificant performance degradation by up to 2.5x [33]. Hence, as we argue in this
paper, current efforts and solutions to adopt Spark on HPC systems may fail in
practice to achieve the desired performance and this may hinder such adoption.
Our Contributions. In an effort to complement existing efforts on understand-
ing the performance of Big Data applications on HPC systems, in this paper, we
perform an experimental study characterizing the performance of Spark [36] on
HPC systems. We use representative Big Data workloads on the Grid’5000 [22]
testbed to evaluate how the latency, contention, and file system’s configuration
impact the application performance. We make the following contributions:

– A quantitative analysis of the impact of latency on the application perfor-
mance. We find that resulting latency during the data movement between
compute nodes and parallel file system can degrade the application perfor-
mance seriously. Specifically, we show evidence that the high latency of read-
ing the input data and writing the output data to the parallel virtual file
system (PVFS) [27] have higher impact on performance degradation com-
pared to the intermediate data.

– The role of contention on the application performance. Our results show that
contention can result in severe performance penalties for Big Data applica-
tions on HPC systems due to employing a shared storage system.

– An analysis of the impact of the file system specific properties on the appli-
cation performance. Similar to [12] which shows that metadata operations in
Lustre file system [14] create a bottleneck for Spark applications, we demon-
strated that synchronization feature of PVFS [27], which can be necessary
for providing resilience, can reduce the application performance dramatically
by 14x.

– Towards an efficient adoption of Spark on HPC systems. We discuss the impli-
cations of our findings and draw attention to new ways (e.g., burst buffers)
to improve the performance of Spark on HPC systems.

On the Performance of Spark on HPC Systems: Towards a Complete Picture 73

The rest of the paper is organized as follows. Section 2 describes an overview
of our methodology and Sect. 3 presents different sets of experiments highlighting
the possible performance bottlenecks for Big Data applications on HPC systems.
We discuss the implications of our findings to the new ways (i.e., burst buffers)
to improve the performance of Big Data applications on HPC systems in Sect. 4.
In Sect. 5 we present related work. Finally, we conclude the paper and propose
our future work in Sect. 6.

2 Methodology

We conducted a series of experiments in order to assess the impact of the poten-
tial issues regarding HPC systems (i.e., latency, contention, file system’s con-
figuration) on the performance of Big Data applications. We further describe
the experimental environment: the platform, deployment setup, and Big Data
workloads.

2.1 Platform Description

The experiments were carried out on the Grid’5000 testbed. We used the Rennes
site; more specifically we employed nodes belonging to the parasilo and paravance
clusters. The nodes in these clusters are outfitted with two 8-core Intel Xeon
2.4 GHz CPUs and 128 GB of RAM. We leveraged the 10 Gbps Ethernet network
that connects all nodes of these two clusters. Grid’5000 allows us to create an
isolated environment in order to have full control over the experiments and
obtained results.

2.2 Spark Deployment

We used Spark version 1.6.1 working with Hadoop distributed file systems
(HDFS) version 1.2. We configured and deployed a Spark cluster using 51 nodes
on the paravance cluster. One node consists of the Spark master and the HDFS
NameNode, leaving 50 nodes to serve as both slaves of Spark and DataNodes.
We used the default value (number of available cores on the node) for the num-
ber of cores to use per each node. Therefore, the Spark cluster can allocate up to
800 tasks. We allocated 24 GB per node for the Spark instance and set Spark’s
default parallelism parameter (spark.default.parallelism) to 800 which refers to
the number of RDD partitions (i.e., number of reducers for batch jobs). At the
level of HDFS, we used a chunk size of 32 MB and set a replication factor of 2
for the input and output data.

The OrangeFS file system (a branch of PVFS2 [27]) version 2.8.3 was
deployed on 12 nodes of the parasilo cluster. We set the stripe size which defines
the data distribution policy in PVFS (i.e., analogous to block size in HDFS) to
32 MB in order to have a fair comparison with HDFS. Unless otherwise speci-
fied, we disabled the synchronization for PVFS (Sync OFF) which indicates that
the incoming data can stay in kernel-provided buffers. We opted for Sync OFF
configuration since Spark is also using the memory as a first storage level with
HDFS.

74 O. Yildiz and S. Ibrahim

2.3 Workloads

We selected three representative Big Data workloads including Sort, Wordcount
and PageRank which are part of HiBench [2], Big Data benchmarking suite.

Wordcount is a map-heavy workload which counts the number of occurrences of
each word in a data set. The map function splits the input data set into words
and produces the intermediate data for the reduce function as a key, value
pair with word being the key and 1 as the value to indicate the occurrence
of the word. The reduce function sums up these intermediate results and
outputs the final word counts. Wordcount has a light reduce phase due to
the small amount of the intermediate data.

Sort is a reduce-heavy workload with a large amount of intermediate data. This
workload sorts the data set and both map and reduce functions are simple
functions which take the input and produce its sorted version based on the
key. This workload has a heavy shuffling in the reduce phase due to the large
amount of intermediate data it produces.

PageRank is a graph algorithm which ranks elements according to the number
of links. This workload updates these rank values in multiple iterations until
they converge and therefore it represents the iterative set of applications.

For Sort and Wordcount workloads, we used 200 GB input data set generated
with RandomTextWriter in HiBench suite. For the PageRank workload, we also
used HiBench suite which uses the data generated from Web data with 25 million
edges as an input data set.

3 Experimental Results

In this section, we provide a detailed analysis of the experimental results we
obtained which highlights the implications of the potential performance bottle-
necks for Big Data applications on HPC systems.

3.1 How Does Latency Affect the Application Performance?

First, we try to understand the impact of the data location on the application
performance. While storage resources are co-located with Spark tasks under the
data-centric paradigm (i.e., when using Spark with HDFS), Spark tasks need to
communicate with the parallel file system either to fetch the input data or to
write the output data under the compute-centric paradigm (i.e., when Spark is
using PVFS as the storage space). This remote data access results in a higher
latency compared to the data-centric paradigm which leverages data locality (i.e.,
executing tasks on the machines where the input data resides). Figure 2 shows
how latency can affect the application performance. Note that, intermediate data
is stored locally on the aforementioned settings for Spark in order to focus on
the latency resulting from reading the input data in map phase. We explore the
intermediate data storage separately in the next subsection.

On the Performance of Spark on HPC Systems: Towards a Complete Picture 75

 0

 20

 40

 60

 80

 100

 120

Total Map Reduce

T
im

e
(s

)

Data-centric
Compute-centric

(a) Wordcount.

 0

 100

 200

 300

 400

 500

 600

 700

Total Map Reduce

T
im

e
(s

)

Data-centric
Compute-centric

(b) Sort.

 0

 50

 100

 150

 200

 250

Total S0 S1 S2 S3 S4 S5

T
im

e
(s

)

Data-centric
Compute-centric

(c) PageRank.

Fig. 2. Performance of Big Data workloads on Spark under data-centric and compute-
centric paradigms.

Figure 2(a) displays the execution time of the Wordcount workload for both
paradigms with a performance in map and reduce phases. Overall, Wordcount
performs 1.9x worse under the compute-centric paradigm compared to the data-
centric one. When we look at the performance in each phase, we observe that
the performance degradation contributed by the map phase (2.3x) is higher
compared to the reduce phase. This stems from the fact that Wordcount has a
light reduce phase and generates only a small amount of output data.

Similarly, in Fig. 2(b) we observe that the data-centric configuration out-
performs the compute-centric one by 4.9x for the Sort workload. In contrast
to Wordcount, the reduce phase is the major contributor to the performance
degradation. For the Sort workload, the amount of the output data is equal to
the input data thus it suffers from a higher latency in the reduce phase as data
is written to the parallel file system. As a result, having a higher latency on
both input and output phases led to higher performance degradation for the
compute-centric paradigm.

Lastly, we ran the PageRank workload in both settings for Spark and Fig. 2(c)
shows the results. Here, performance degradation with the compute-centric
paradigm is only 26%. The reason behind this is that I/O phases of the PageR-
ank workload (i.e., Stage 0 and Stage 5 (denoted as S0 and S5)) accounts for a
small fraction of PageRank execution time and Spark computes the iterations
(i.e., Stage 1, 2, 3 and 4) locally.

The Impact of the Input Data Sizes. We also investigated the impact
of the input data size on the application performance. To do so, we ran the
Wordcount workload with different input sizes as 2 GB, 20 GB and 200 GB.
Figure 3 displays the performance of the Wordcount workload in each phase for
data and compute-centric paradigms. Overall, we observe that the impact of I/O
latency is only visible in the map phase for the compute-centric paradigm with
increasing input sizes: there is a performance degradation for the map phase by
1.2x, 1.8x and 2.3x with 2 GB, 20 GB and 200 GB input sizes, respectively.
This is mainly due to the fact that Wordcount is a map-heavy workload which
generates a small amount of output data and therefore reduce phase results do
not vary significantly with respect to different data sizes. To further investigate

76 O. Yildiz and S. Ibrahim

 0

 10

 20

 30

 40

 50

 60

Total Map Reduce

T
im

e
(s

)

Data-centric
Compute-centric

(a) 2 GB.

 0

 10

 20

 30

 40

 50

 60

Total Map Reduce

T
im

e
(s

)

Data-centric
Compute-centric

(b) 20 GB.

 0

 20

 40

 60

 80

 100

 120

Total Map Reduce

T
im

e
(s

)

Data-centric
Compute-centric

(c) 200 GB.

Fig. 3. Performance of the Wordcount workload with different input sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3 3.5 4 4.5 5 5.5 6

C
D

F

Time(s)

Data-centric
Compute-centric

(a) 2 GB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22

C
D

F

Time(s)

Data-centric
Compute-centric

(b) 20 GB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

C
D

F

Time(s)

Data-centric
Compute-centric

(c) 200 GB.

Fig. 4. CDFs of running times of map tasks in the Wordcount workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

C
D

F

Time(s)

Data-centric
Compute-centric

(a) 2 GB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Time(s)

Data-centric
Compute-centric

(b) 20 GB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50 55

C
D

F

Time(s)

Data-centric
Compute-centric

(c) 200 GB.

Fig. 5. CDFs of running times of reduce tasks in the Wordcount workload.

these different behaviors in map and reduce phases, we display the CDF of map
and reduce task durations in Figs. 4 and 5.

Interestingly, Fig. 4(a) shows that some map task durations are smaller for
the compute-centric paradigm compared to the data-centric one. This is due to
the fact that Spark employs delay scheduling [35] to increase the chances of a
map task to be launched locally for the data-centric paradigm. This delay while
launching the map tasks, which results in a performance degradation for the
jobs with small input data sizes, is due to the default Spark configuration for
the maximum waiting time (i.e., 3 s) in scheduling the map tasks. This is only
valid for the data-centric paradigm since there is no data locality objective when
scheduling the tasks in the compute-centric paradigm where all the machines
have an equivalent distance to the parallel file system. On the other hand, we
observe an increase in the map task durations with larger input sizes for the
compute-centric paradigm. This results from the higher latency while fetching
the input data from parallel file system with larger input sizes.

On the Performance of Spark on HPC Systems: Towards a Complete Picture 77

Another interesting trend we observe is that the maximum map task duration
also increases with the increasing data sizes, especially with 200 GB input data
size in Fig. 4(c). We believe that this behavior is due to the higher contention
with the increased number of concurrent map tasks. It is important to note
that there are 33, 594 and 800 concurrent map tasks with 2 GB, 20 GB and
200 GB input sizes. Moreover, we see that this increase is much higher with
the compute-centric paradigm which can highlight the severity of the contention
problem for this paradigm. We will further explain the impact of the contention
on the application performance in Sect. 3.2.

In Fig. 5, we observe a similar trend for the reduce task durations for the
compute-centric paradigm. With larger data sizes, we observe an increase in
those durations too. This again stems from an increased amount of the remote
data transfer while writing the reducer outputs to the parallel file system. More-
over, we discover that there is a high performance variability in the reduce phase
and the maximum task duration is quite high even with 2 GB data size. This
is due to the static Spark configuration which employs 800 reducers regardless
of the input data size. These high number of reducers overload the parallel file
system and results in this performance variability. Hence, we do not see the
impact of latency in Fig. 3 for the reduce phase. However, when the output data
size is large enough as shown for the Sort workload in the previous experiment
(Fig. 2(b)), the impact of the I/O latency is quite clear as it results in a significant
performance degradation.

For the data-centric paradigm, this time we see that reduce task durations
are inlined with the data sizes, different from the map phase. While for the map
phase there is an increase in the maximum task duration due to the increased
number of concurrent map tasks, for the reduce phase the number of reduce
tasks is fixed and the increase in the reduce task durations is mainly due to the
increased amount of reducer output with larger input sizes.

Intermediate Data Storage. In Big Data processing systems, intermediate
data are typically stored locally. However, nodes in some of the HPC systems
may not have individual disks attached to themselves. This gives rise to the ques-
tion of how to store the intermediate data when running Big Data applications
on HPC systems. As a naive solution, we employed PVFS also for storing the
intermediate data as well as storage space for input and output data like in the
experiments so far. We ran the Sort workload with PVFS since it generates an
intermediate data equal to the input data size and thus it is a good fit for eval-
uating the intermediate data storage for HPC systems. Figure 6 compares the
performance of Sort depending on the intermediate data location: local storage
(on disk) or remote storage (on PVFS). We see that using PVFS also for storing
the intermediate data results in 9% performance degradation.

When we analyze the performance of the Sort workload in each phase, we
see that this performance degradation is 16% for the map phase which stems
from writing the intermediate data to the parallel file system. For the reduce

78 O. Yildiz and S. Ibrahim

 0

 100

 200

 300

 400

 500

 600

 700

 800

Total Map Reduce

T
im

e
(s

)

Local(Disk)
Remote(PVFS)

Fig. 6. Impact of the location of intermediate data on the performance of the Sort
workload.

phase, we observe that there is a 8% increase in the completion time due to the
additional I/O latency when fetching the intermediate data from PVFS.

Findings. In all of the workloads, we observe that the remote data access to the
parallel file system leads to a significant performance degradation, especially for
the input and output data. We also confirm that the degree of this performance
degradation depends on the characteristics of the workloads and on the input
data size.

3.2 The Role of Contention

Given the shared architecture of HPC systems, contention is likely to occur
when running Big Data applications on a HPC system. To assess the impact
of contention on the performance of Big Data applications, we designed the
following experiments:

Measuring the contention when running concurrent Big Data applications. Since
the storage system is shared by all the nodes, this can create a serious contention
problem on the storage path including network, server and storage devices. Here,
we ran two Wordcount workloads concurrently under compute and data-centric
paradigms by employing the Fair scheduler in Spark. The Fair scheduler allows
these workloads to have equal share of the resources in the Spark cluster (i.e.,
each workload employ 400 tasks which is equal to the half of the cluster capacity).
Figure 7 displays the execution times of the Wordcount workload when it runs
alone and together with the other identical Wordcount workload for data and
compute-centric paradigms. As shown in Fig. 7(a), the performance degradation
when running in contention with the other Wordcount workload is negligible
with the data-centric paradigm. In contrast, we observe that there is a 41%
performance degradation with the compute-centric paradigm when two work-
loads are running concurrently. This stems from sharing the same parallel file
system with compute-centric paradigm while these two workloads perform their
I/O operations on their individual storage devices in the data-centric paradigm.

On the Performance of Spark on HPC Systems: Towards a Complete Picture 79

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Total Map Reduce

T
im

e
(s

)
Alone

Interfering

(a) Performance of concurrent Wordcount
workloads under a data-centric paradigm.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Total Map Reduce

T
im

e
(s

)

Alone
Interfering

(b) Performance of concurrent Wordcount
workloads under a compute-centric paradigm.

Fig. 7. Performance of concurrent Wordcount workloads under different paradigms.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Total Map Reduce

T
im

e
(s

)

Alone
With IOR

Fig. 8. Performance of the Wordcount workload when running alone and together with
IOR workload.

In particular, Fig. 7(b) highlights that this performance degradation is mainly
due to the map phase. This is because Wordcount is a map-heavy workload and
therefore the number of I/O operations is quite large in the map phase compared
to the reduce phase.

Measuring the contention when co-locating HPC and Big Data applications. This
contention problem can even become more significant when we consider the ulti-
mate objective of the HPC and Big Data convergence which is co-locating sci-
entific and Big Data applications on a same platform. To emulate this objective,
we ran the Wordcount workload alone and together with the IOR workload.
IOR [29] is a popular I/O benchmark that allows users to specify different I/O
configurations and thus measures the I/O performance of HPC systems. For IOR
workload, we employed 224 processes (on a different set of nodes separated from
the ones running the Wordcount workload) where each process issues a 512 MB
write request in 32 MBs of chunks. Figure 8 shows the execution times of the
Wordcount workload for both cases. Due to resource sharing (file system and
network) with the IOR workload, there is a 1.4x performance degradation in the

80 O. Yildiz and S. Ibrahim

total execution time of the Wordcount workload. When we look at the perfor-
mance in each phase, we observe that this performance degradation is mainly due
to the reduce phase. This stems from the fact that reduce phase performs write
operations as the IOR workload and this results in a write/write contention.

Findings. We demonstrate that contention appears as a limiting factor for Big
Data applications on HPC systems due to employing a shared storage system.

3.3 Impact of the File System Configuration

Besides the generic problems of HPC systems as latency and contention, we can
also encounter performance issues with the file system specific problems when
running Big Data applications on HPC systems. For example, [12] reported that
metadata operations on Lustre create a bottleneck for Spark applications. Thus,
we wanted to investigate file system specific problems that Spark applications
can encounter. To this end, we configured PVFS with synchronization enabled
(Sync ON). This synchronization feature can be necessary for providing a better
reliability guarantee for the clients. To ensure this, each request is immediately
flushed to the disk before finalizing the request.

We ran the Wordcount workload with two different synchronization options
for PVFS: Sync ON and Sync OFF. Figure 9 shows that Wordcount performs
1.5x worse when synchronization is enabled. We observe that this significant
performance degradation mainly stems from the reduce phase. This is expected
since the output data is sent to the file system during the reduce phase and
each request is flushed to the disk thus resulting in a major bottleneck for the
application performance.

We also ran the Sort workload with two different configurations of PVFS and
Table 1 shows that Sort performs 4.5x worse when synchronization is enabled.
In contrast to Wordcount, we observe a much higher performance degradation
with the Sort workload. This is because while Sort is generating a large amount
of output data (200 GB as the input data size), Wordcount has a light reduce
phase and generates only a small amount of output data.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Total Map Reduce

T
im

e
(s

)

Sync OFF
Sync ON

Fig. 9. Performance of the Wordcount workload under different configurations of
PVFS.

On the Performance of Spark on HPC Systems: Towards a Complete Picture 81

Table 1. Execution time of the Sort workload and its phases under different configu-
rations of PVFS.

Configuration Execution time Map Reduce

Sync ON 2708.5 s 42.7 s 2665.8 s

Sync OFF 597.6 s 42.6 s 555.0 s

Findings. Parallel file systems are equipped with several features which are
important for HPC applications (i.e., synchronization feature in PVFS to provide
resiliency, distributed locking mechanism in Lustre to ensure file consistency).
However, as we demonstrated in our experiments and also reported earlier in
[12,32], these features may bring a significant performance degradation for Big
Data applications.

3.4 Burst Buffers: Impact of Their Capacities and Location

We believe that there is a significant potential for improving the performance
of Big Data applications using burst buffers. Although burst buffers promise a
large potential, leveraging them efficiently for Big Data processing is not trivial.
For example, there is a trade-off between the capacity and the throughput of
the storage devices that are used in the burst buffers. Although, storage devices
such as SSDs or NVRAMs can provide high throughput, they are limited in
the storage capacity. Moreover, we demonstrated in our experiments that we
should tackle all the I/O phases (i.e., input, intermediate and output data)
while addressing the latency problem. Therefore, the problem of having limited
capacity will be amplified when we try to use the burst buffer for all the I/O
phases. By analyzing the traces collected from a research cluster (i.e., M45) [8],
we observed that the amount of processed data was almost 900 TBs during
9 months. Hence, data management strategies for the burst buffers will play a
crucial role on their efficiency. Similarly, it is important to decide when and
which data to evict when running multiple concurrent applications.

Another challenge would be choosing the optimal deployment location for
the burst buffers. Some of the possible deployment locations are within the com-
pute nodes [32] or using a dedicated set of nodes [12] as burst buffers. While
co-locating burst buffers and compute nodes can prevent the aforementioned
capacity constraints since compute nodes are greater in size compared to ded-
icated nodes, this may result in a computational jitter due to sharing of the
resources as also reported in [9].

To find out the impact of the aforementioned factors on the application per-
formance when using burst buffers, we emulated a naive adoption of burst buffers
by using the ramdisk (e.g., /dev/shm/) as a storage space and performed the
following experiments:

Measuring the impact of the storage capacity on the application performance.
Here, we ran the Wordcount workload with two different storage capacities for

82 O. Yildiz and S. Ibrahim

 0

 5

 10

 15

 20

 25

 30

 35

Total Map Reduce

T
im

e
(s

)

40 GB
10 GB

Fig. 10. Impact of the memory capacity of the burst buffer on the performance of the
Wordcount workload.

the burst buffer as 40 GB and 10 GB memory. Note that, we used a smaller
input data size than previous experiments which has a data size of 20 GB.
The burst buffer is employing 5 dedicated nodes. Figure 10 shows the execution
time of the Wordcount workload for different burst buffer configurations. We
observe a 2.1x performance degradation when the burst buffer has 10 GB storage
capacity. When we look at the performance of the workload in each phase, we see
that this performance degradation is attributed to the map phase. This results
from not having enough space for storing the input data on the burst buffer.
Hence, compute nodes have to fetch the input data from the parallel file system
thus resulting in a high I/O latency in the map phase. On the contrary, all
I/O operations performed between burst buffer nodes and compute nodes when
there is enough storage capacity. For the reduce phase, we do not observe any
performance degradation since the output data to be written is small enough to
fit into the burst buffer storage space, for this workload.

Measuring the impact of the deployment location of the burst buffer. We ran the
Wordcount workload with the same configuration as in the previous experiment
and deployed the burst buffer in two scenarios: in the first one, the burst buffer
is deployed as a disjoint set of nodes and in the second one it is located as
a subset of the compute cluster. Figure 11 displays that Wordcount performs
better when burst buffer is deployed as a separate set of nodes. We hypothesize
the following explanation. When the burst buffer is using the subset of the nodes
of the compute cluster, I/O and compute tasks on those nodes conflict with each
other thus resulting in a significant performance degradation (38% slowdown).
This is in line with the observations reported in [9].

Findings. Our experiments show that the storage capacity and the location
of burst buffers can have a significant impact on the performance of Big Data
applications. With limited storage capacity, we demonstrate that burst buffers
can not mitigate the latency problem fully since compute nodes still need to fetch
most of the data from the parallel file system. For the deployment location, we

On the Performance of Spark on HPC Systems: Towards a Complete Picture 83

 0

 5

 10

 15

 20

Total Map Reduce

T
im

e
(s

)

Disjoint
Subset

Fig. 11. Impact of the location of the burst buffer on the performance of the Wordcount
workload.

observe that co-locating the burst buffer and compute resources on the same
node can not be appropriate due to the possible interference among them.

4 Discussion and Implications

Here, we summarize our findings and discuss their implications to the design
of burst buffer solutions. Our experiments reveal that Big Data applications
encounter serious performance issues when running on HPC systems. First, we
show that latency has a significant impact on the application performance and
this impact depends on the characteristics of the Big Data applications.

Implications (1). Prior studies [12,21,32] have focused on mitigating the
latency resulting from writing and reading intermediate data by introducing
an intermediate storage layer (i.e., burst buffer); which is a blind adoption of
burst buffers for HPC applications—burst buffers are used to store temporary
data (i.e., checkpoints). We observe that using burst buffers for intermediate
data can bring an improvement of at most 16%—when intermediate data have
the same size as input data. As a result, the latency introduced by intermediate
data is not really the bottleneck for a major fraction of Big Data applications:
by analyzing traces collected from three different research clusters we observe
that the amount of the intermediate data is less than 20% of the input data size
for 85% of the applications [8]. On the other hand, we find that the latencies
resulting from reading input data and writing output data significantly impact
the performance. Thus, it is very important to mitigate the high latency result-
ing from accessing those data when developing burst buffer solutions. More-
over, prefetching techniques and mechanisms to overlap I/O and computation
time could be adopted to further hide the high latency of remote data accesses
between compute nodes and the parallel file system.

Second, we demonstrate that contention can severely degrade the perfor-
mance of Big Data applications on HPC systems.

Implications (2). One could argue that using burst buffers would mitigate
the contention problem as well since they are equipped with high throughput

84 O. Yildiz and S. Ibrahim

storage devices. However, it is earlier demonstrated that contention is present
in the HPC I/O stack regardless of the storage device used (e.g., SSDs, local
memory or disk) [33]. In addition, burst buffers are shared by all the nodes
as in the parallel file system. Therefore, we believe that we must address the
contention problem when developing burst buffer solutions. For instance, we can
try to make distinct sets of compute nodes target distinct sets of burst buffer
nodes. Moreover, we can further employ well-known I/O aggregation techniques
to minimize the contention problem.

We also observe that file system specific features may bring a significant
performance degradation for Big Data applications.

Implications (3). Even burst buffers can improve the performance of Big Data
applications, they still rely on a parallel file system. Thus, we should tackle
the file system specific issues as well for efficient Big Data processing on HPC
systems.

Lastly, we confirm that an effective exploitation of burst buffers for Big data
applications in HPC systems strongly depends on the size and location settings
of burst buffers.

Implications (4). To tackle the limited storage capacity problem, we can
develop smarter data fetching techniques for the burst buffer. For instance,
instead of trying to fit all the input data set into the burst buffer storage space,
we can fetch a subset of the data set (i.e., one wave) as compute cluster computes
one wave at a time. For instance, cluster consists of 800 tasks in our experiments
and therefore they can only compute 25 GB data at one iteration. In this way,
compute tasks can fetch all the data from the burst buffer nodes and therefore
the latency problem can be mitigated.

5 Related Work

Several research efforts have been conducted to evaluate the performance of
Big Data analytics frameworks on HPC systems. Wang et al. [32] performed an
experimental study where they investigated the characteristics of Spark on a
HPC system with a special focus on the impact of the storage architecture and
locality-oriented task scheduling. Tous et al. [31] evaluated the Spark perfor-
mance on a MareNostrum supercomputer. In particular, they studied the impact
of different Spark configurations on the performance of Sort and K-means appli-
cations. In [30], the authors compared the performance of MapReduce applica-
tions on PVFS and HDFS file systems by using Hadoop framework and give
insights into how to emulate HDFS behavior by using PVFS. Li and Shen [24]
compared the performance of MapReduce applications on scale-up and scale-out
clusters and proposed a hybrid scale-up/out Hadoop architecture based on their
findings.

Aforementioned studies provide useful findings towards leveraging HPC sys-
tems for Big Data processing. However, they do not illustrate a complete analysis
of the potential performance issues (e.g., latency and contention). For the latency

On the Performance of Spark on HPC Systems: Towards a Complete Picture 85

problem, most of the studies focus on the intermediate data storage and ignore
the latencies which can occur in other I/O phases. We provide a detailed analysis
of the impact of latency on the application performance by giving a breakdown
of the latency problem into its different phases (i.e., input, intermediate and
output data). Although these studies mention contention as a problem, none
of them investigate its impact on the application performance. Hence, we aim
to complement those studies by providing a detailed analysis of the impact of
latency and contention on the performance of Spark applications. Furthermore,
we show potential performance issues specific to different PVFS configurations.

Some works proposed adoption of burst buffers for efficient Big Data process-
ing on HPC systems. Chaimov et al. [12] employed a dedicated set of nodes with
NVRAM as the storage space for the intermediate data of Big Data applications.
This in turn improved the scalability of the Spark framework compared to the
scenario when using Lustre file system as the storage space. Islam et al. [21] pro-
posed a novel design for HDFS which uses NVRAM-based burst buffer nodes on
top of a parallel file system for improving the performance of Spark applications.
Yildiz et al. [34] present Eley, a burst buffer solution that helps to accelerate
the performance of Big Data applications while guaranteeing the performance of
HPC applications. Eley employs a prefetching technique that fetches the input
data of these applications to be stored close to computing nodes thus reduc-
ing the latency of reading data inputs. Moreover, Eley is equipped with a full
delay operator to guarantee the performance of HPC applications. Similarly,
our findings illustrate that there is a need for burst buffer solutions to alleviate

Table 2. Our major findings on the characteristics of Big Data applications on HPC
systems.

The impact of I/O latency

We confirm that I/O latency resulting from the remote data access to the parallel
file system leads to a significant performance degradation for all the Big Data
workloads. However, in contrary to existing studies [12,21], we demonstrate that
intermediate data storage is not the major contributor to this latency problem. We
also observe that the impact of this latency problem depends on the characteristics
of the Big Data applications (e.g., map-heavy, iterative applications) and on the
input data size

The role of contention

We demonstrate that contention appears as a limiting factor for Big Data
applications on HPC systems due to employing a shared storage system

The impact of the file system configuration

Parallel file systems are equipped with several features which are important for
HPC applications (i.e., synchronization feature in PVFS to provide resiliency,
distributed locking mechanism in Lustre to ensure file consistency). However, as we
demonstrated in our experiments and also reported earlier in [12,32], these features
may bring a significant performance degradation for Big Data applications

86 O. Yildiz and S. Ibrahim

the latency problem. In addition, we give insights into designing efficient burst
buffer solutions. Specifically, we claim that future burst buffer implementations
should be aware of the contention problem and also try to eliminate the latency
problem for the input phase and output phase.

6 Conclusion and Future Work

We have recently witnessed an increasing trend toward leveraging HPC sys-
tems for Big Data processing. In this paper, we undertook an effort to provide
a detailed analysis of performance characteristics of Big Data applications on
HPC systems, as first steps towards efficient Big Data processing on HPC sys-
tems. Our findings demonstrate that one should carefully deal with HPC-specific
issues (e.g., latency, contention and file system configuration) when running Big
Data applications on these systems. An important outcome of our study is that
negative impact of latency on the application performance is present for all I/O
phases. We further show that contention is a limiting factor for the application
performance and thus Big Data solutions should be equipped with contention-
aware strategies. Lastly, we reveal that enabling synchronization for PVFS in
order to provide resilience can create a serious performance bottleneck for Big
Data applications.

We summarize our findings in Table 2. We believe that these findings can help
to motivate further research leveraging HPC systems for Big Data analytics by
providing a clearer understanding of the Big Data application characteristics on
these systems.

Acknowledgment. This work is supported by the ANR KerStream project (ANR-
16-CE25-0014-01). The experiments presented in this paper were carried out using
the Grid’5000/ALADDIN-G5K experimental testbed, an initiative from the French
Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and
RENATER and other contributing partners (see http://www.grid5000.fr/ for details).

References

1. Big Data and Extreme-scale Computing (BDEC) Workshop. http://www.exascale.
org/bdec/

2. HiBench Big Data microbenchmark suite. https://github.com/intel-hadoop/
HiBench

3. The Apache Hadoop Project. http://www.hadoop.org
4. Apache Storm (2012). https://storm.apache.org/
5. Apache Spark primer (2017). http://go.databricks.com/hubfs/pdfs/Apache

Spark Primer 170303.pdf
6. IDC’s Data Age 2025 study (2017). http://www.seagate.com/www-content/our-

story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
7. Powered by Hadoop (2017). http://wiki.apache.org/hadoop/PoweredBy/
8. Hadoop Workload Analysis. http://www.pdl.cmu.edu/HLA/index.shtml. Accessed

Jan 2017

http://www.grid5000.fr/
http://www.exascale.org/bdec/
http://www.exascale.org/bdec/
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench
http://www.hadoop.org
https://storm.apache.org/
http://go.databricks.com/hubfs/pdfs/Apache_Spark_Primer_170303.pdf
http://go.databricks.com/hubfs/pdfs/Apache_Spark_Primer_170303.pdf
http://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
http://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
http://wiki.apache.org/hadoop/PoweredBy/
http://www.pdl.cmu.edu/HLA/index.shtml

On the Performance of Spark on HPC Systems: Towards a Complete Picture 87

9. Bent, J., Faibish, S., Ahrens, J., Grider, G., Patchett, J., Tzelnic, P., Woodring, J.:
Jitter-free co-processing on a prototype exascale storage stack. In: 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–5. IEEE
(2012)

10. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data
processing on large clusters. Int. J. Very Large Databases 3(1–2), 285–296 (2010)

11. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flink: stream and batch processing in a single engine. Bull. IEEE Com-
put. Soc. Tech. Comm. Data Eng. 36(4), 28–38 (2015)

12. Chaimov, N., Malony, A., Canon, S., Iancu, C., Ibrahim, K.Z., Srinivasan, J.:
Scaling Spark on HPC systems. In: Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing, pp. 97–
110. ACM (2016)

13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

14. Donovan, S., Huizenga, G., Hutton, A.J., Ross, C.C., Petersen, M.K., Schwan, P.:
Lustre: building a file system for 1000-node clusters (2003)

15. Dorier, M., Antoniu, G., Cappello, F., Snir, M., Sisneros, R., Yildiz, O., Ibrahim,
S., Peterka, T., Orf, L.: Damaris: addressing performance variability in data man-
agement for post-petascale simulations. ACM Trans. Parallel Comput. (TOPC)
3(3), 15 (2016)

16. Dorier, M., Antoniu, G., Ross, R., Kimpe, D., Ibrahim, S.: CALCioM: mitigating
I/O interference in HPC systems through cross-application coordination. In: Pro-
ceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2014), Phoenix, AZ, USA, May 2014. http://hal.inria.fr/hal-00916091

17. Fox, G., Qiu, J., Jha, S., Ekanayake, S., Kamburugamuve, S.: Big data, simulations
and HPC convergence. In: Rabl, T., Nambiar, R., Baru, C., Bhandarkar, M., Poess,
M., Pyne, S. (eds.) WBDB -2015. LNCS, vol. 10044, pp. 3–17. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49748-8 1

18. Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir, M.: Schedul-
ing the I/O of HPC applications under congestion. In: International Parallel and
Distributed Processing Symposium, pp. 1013–1022. IEEE (2015)

19. Guo, Y., Bland, W., Balaji, P., Zhou, X.: Fault tolerant MapReduce-MPI for HPC
clusters. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, p. 34. ACM (2015)

20. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. In: Special Interest Group on
Operating Systems Review, vol. 41, pp. 59–72. ACM (2007)

21. Islam, N.S., Wasi-ur Rahman, M., Lu, X., Panda, D.K.: High performance design
for HDFS with byte-addressability of NVM and RDMA. In: Proceedings of the
2016 International Conference on Supercomputing, p. 8. ACM (2016)

22. Jégou, Y., Lantéri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P.,
Quetier, B., Richard, O., Talbi, E.G., Iréa, T.: Grid’5000: a large scale and highly
reconfigurable experimental grid testbed. Int. J. High Perform. Comput. Appl.
20(4), 481–494 (2006)

23. Jin, H., Ibrahim, S., Qi, L., Cao, H., Wu, S., Shi, X.: The MapReduce programming
model and implementations. In: Buyya, R., Broberg, J., Goscinski, A. (eds.) Cloud
Computing: Principles and Paradigms, pp. 373–390. Wiley, New York (2011)

24. Li, Z., Shen, H.: Designing a hybrid scale-up/out hadoop architecture based on
performance measurements for high application performance. In: 2015 44th Inter-
national Conference on Parallel Processing (ICPP), pp. 21–30. IEEE (2015)

http://hal.inria.fr/hal-00916091
https://doi.org/10.1007/978-3-319-49748-8_1

88 O. Yildiz and S. Ibrahim

25. Lofstead, J., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock, T., Schwan,
K., Wolf, M.: Managing variability in the I/O performance of petascale storage sys-
tems. In: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–12. IEEE (2010)

26. Lopez, I.: IDC talks convergence in high performance data analysis (2013). https://
www.datanami.com/2013/06/19/idc talks convergence in high performance
data analysis/

27. Ross, R.B., Thakur, R., et al.: PVFS: a parallel file system for Linux clusters. In:
Annual Linux Showcase and Conference, pp. 391–430 (2000)

28. Sato, K., Mohror, K., Moody, A., Gamblin, T., de Supinski, B.R., Maruyama, N.,
Matsuoka, S.: A user-level infiniband-based file system and checkpoint strategy
for burst buffers. In: 2014 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 21–30. IEEE (2014)

29. Shan, H., Shalf, J.: Using IOR to analyze the I/O performance for HPC platforms.
In: Cray User Group Conference 2007, Seattle, WA, USA (2007)

30. Tantisiriroj, W., Patil, S., Gibson, G.: Data-intensive file systems for internet
services: a rose by any other name. Parallel Data Laboratory, Technical report
UCB/EECS-2008-99 (2008)

31. Tous, R., Gounaris, A., Tripiana, C., Torres, J., Girona, S., Ayguadé, E., Labarta,
J., Becerra, Y., Carrera, D., Valero, M.: Spark deployment and performance evalua-
tion on the MareNostrum supercomputer. In: 2015 IEEE International Conference
on Big Data (Big Data), pp. 299–306. IEEE (2015)

32. Wang, Y., Goldstone, R., Yu, W., Wang, T.: Characterization and optimization of
memory-resident MapReduce on HPC systems. In: 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pp. 799–808. IEEE (2014)

33. Yildiz, O., Dorier, M., Ibrahim, S., Ross, R., Antoniu, G.: On the root causes
of cross-application I/O interference in HPC storage systems. In: IPDPS-
International Parallel and Distributed Processing Symposium (2016)

34. Yildiz, O., Zhou, A.C., Ibrahim, S.: Eley: on the effectiveness of burst buffers for
big data processing in HPC systems. In: 2017 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 87–91, September 2017

35. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: Proceedings of the 5th European Conference on Computer Systems,
pp. 265–278. ACM (2010)

36. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: HotCloud 2010, p. 10 (2010)

https://www.datanami.com/2013/06/19/idc_talks_convergence_in_high_performance_data_analysis/
https://www.datanami.com/2013/06/19/idc_talks_convergence_in_high_performance_data_analysis/
https://www.datanami.com/2013/06/19/idc_talks_convergence_in_high_performance_data_analysis/

On the Performance of Spark on HPC Systems: Towards a Complete Picture 89

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Experiences of Converging Big Data Analytics
Frameworks with High Performance

Computing Systems

Peng Cheng1,2(&), Yutong Lu3, Yunfei Du3, and Zhiguang Chen1,2

1 College of Computer, National University of Defense Technology,
Changsha, China

peng_cheng_13@163.com
2 State Key Laboratory of High Performance Computing, Changsha, China

3 National Supercomputer Center in Guangzhou (NSCC-GZ),
Guangzhou, China

Abstract. With the rapid development of big data analytics frameworks, many
existing high performance computing (HPC) facilities are evolving new capa-
bilities to support big data analytics workloads. However, due to the different
workload characteristics and optimization objectives of system architectures,
migrating data-intensive applications to HPC systems that are geared for tra-
ditional compute-intensive applications presents a new challenge. In this paper,
we address a critical question on how to accelerate complex application that
contains both data-intensive and compute-intensive workloads on the Tianhe-2
system by deploying an in-memory file system as data access middleware; we
characterize the impact of storage architecture on data-intensive MapReduce
workloads when using Lustre as the underlying file system. Based on our
characterization and findings of the performance behaviors, we propose shared
map output shuffle strategy and file metadata cache layer to alleviate the impact
of metadata bottleneck. The evaluation of these optimization techniques shows
up to 17% performance benefit for data-intensive workloads.

Keywords: High performance computing � Big data � Convergence
File system � Hadoop

1 Introduction

The strong need for increased computational performance has led to the rapid devel-
opment of high-performance computing (HPC) systems, including Sunway TaihuLight
[1], Tianhe-2 [2], Titan [3], etc. These HPC systems provide an indispensable com-
puting infrastructure for scientific and engineering modeling and simulations [4–6].
While HPC systems mostly focus on large computational workloads, the emerging big
data analytics frameworks target applications that need to handle very large and
complex data sets on commodity machines. Hadoop MapReduce [7] and Spark [8] are
the most commonly used frameworks for distributed large-scale data processing and
gained wide success in many fields over the past few years.

© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 90–106, 2018.
https://doi.org/10.1007/978-3-319-69953-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_6&domain=pdf

Recently, many researchers have predicted the trend of converging HPC and big
data analytics frameworks to address the requirements of complex applications that
contains both compute-intensive and data-intensive workloads [9, 10]. The motivation
behind this converging trend is twofold. Firstly, traditional data analytics applications
need to process more data in given time, but the dynamics of the network environment
and cloud services result in a performance bottleneck. Compared with normal
machines, HPC systems that equipped with better hardware and high performance
network can provide much higher capacity. Secondly, scientific applications are more
complex to fully utilize the computing capacity of the HPC systems and the high
resolution data from advanced sensors. For example, in the NASA Center for Climate
Simulation (NCCS), climate and weather simulations can create a few terabytes of
simulation data [11]. To visualize the data of interesting events such as hurricane center
and thunderstorms, part of these data need to be processed by a visualization tool under
Hadoop environment. These complex applications contain both compute-intensive and
data-intensive jobs and need to be processed in HPC environment.

However, the converging trend presents a new challenge when data-intensive
applications migrate to HPC systems that are geared for traditional compute-intensive
applications, mainly due to the different workload characteristics and optimization
objectives.

System architectures are designed to best support the typical workloads running on
the clusters. Traditional HPC systems are invented to solve compute-intensive work-
loads, such as scientific simulation, with the optimization goal of providing maximum
computational density and local bandwidth for given power/cost constraint. In contrast,
big data analytics systems aim to solve data-intensive workloads with the optimization
goal of providing maximum data capacity and global bandwidth for given power/cost
constraint. Consequently, big data analytics systems are different to HPC systems, as
shown in Fig. 1.

CN CN CN CN

…

Interconnect

MDS
OSS

OSS

OSS

OSS

Lustre

HDFS
Namenode

MapReduce
Scheduler

Datanode

Executor

Local disk

Datanode

Executor

Local disk

Datanode

Executor

Local disk

b. System architecture of big data
analytics systems

a. System architecture of typical HPC
systems

Fig. 1. System architecture comparison

Experiences of Converging Big Data Analytics Frameworks 91

Typical HPC systems consist of a large collection of compute nodes (CN), which are
connected through high-speed, low-latency interconnects (such as InfiniBand [12]).
Parallel file system (e.g. Lustre [13]) on top of disk array are used for persistent data
storage. In most HPC systems, the compute node is diskless and performs well for
compute-intensive workloads with high ratios of compute to data access. Parallel file
systems simplifydata sharingbetweencomputenodes, but its performance is bottlenecked
by metadata operations and fails to provide spatial data locality for computation tasks.

Big data processing frameworks like Hadoop and Spark utilize low-cost commodity
machines to solve data-intensive problems, where each machine co-locate processing
unit and local disks together. Hadoop distributed file system (HDFS [14]) is built on
top of these local disks to provide the ability of persistent storage. Computation tasks
are launched on physical machines where the data locality of required data can be
leveraged maximally.

On the one hand, these distinctions between HPC and big data analytics systems
have significant performance implications for different types of application workloads.
On the other hand, the converging trend of HPC and big data is imperative and
provides a lot of chance for researchers to make their attempt.

In this paper, we try to figure out three problems:

1. How to accelerate the complex application that contains both simulation and ana-
lytics jobs? The output data of HPC workloads are stored in parallel file systems,
while traditional big data analytics frameworks rely on HDFS to read or write data.
Hence, it is highly desirable to utilize a middleware that allows applications to
access data stored in different data source without redundant data movement.

2. What is the impact of using Lustre parallel file system as the underlying file system
of big data analytics frameworks since compute nodes in most HPC systems are
diskless?

3. How to reconcile and converge the architectural differences between the two
paradigms so that data-intensive MapReduce applications can be accelerated in
HPC environments?

Previous works in [15, 16] have analyzed the performance differences when
deploying Hadoop and Spark on HPC systems, but they did not provide optimizations
for complex applications. Many efforts have explored directly deploying Hadoop atop
of existing parallel file systems, such as Ceph [17], PVFS [18] and GPFS [19], but
these works are limited to the specific version of Hadoop. Compared with these works,
we deploy an in-memory file system, Alluxio [20], as data access middleware to
accelerate complex applications. We analyze its performance with intensive experi-
ments on the Tianhe-2 system and introduce shared map output file shuffle strategy and
file metadata cache layer targeting at compute-centric HPC systems to accelerate
data-intensive Hadoop applications.

Our contributions in this paper can be summarized as follows.

(1) We have utilized an in-memory file system on Tianhe-2 system to reconcile the
architectural differences and accelerate complex applications.

(2) We have evaluated the feasibility and performance impacts of in-memory file
system through different workloads.

92 P. Cheng et al.

(3) We proposed advanced acceleration techniques, including shared map output file
shuffle strategy and file metadata cache layer, to accelerate data-intensive
MapReduce applications on HPC systems.

Section 2 gives a brief background of this paper. Section 3 explore the feasibility of
data access middleware and analyze the performance impact. We propose our design of
shared map output file shuffle strategy and file metadata cache layer in Sect. 4. Sec-
tion 5 provides some related studies currently existing in the literature. We conclude
the paper and talk about the future work in Sect. 6.

2 Background

In this section, we give a direct comparison between HDFS and Lustre file system and
review the design of Alluxio.

2.1 HDFS vs Lustre

HDFS and Lustre file system is the representative underlying file system for big data
analytics frameworks and HPC applications, respectively. Table 1 summarizes their
key differences.

HDFS is a distributed file system designed to run on commodity hardware. HDFS
has a master/slave architecture, the namenode is the master that manages the file system
namespace and regulates access to files by clients, datanodes are the slaves that stores
data blocks and are responsible for serving read and write requests from the file
system’s clients. HDFS is highly fault tolerant since every data block is replicated three
times by default to minimize the impact of a data center catastrophe. All the data block
info are stored in the master node, which allow the computation tasks to launch on
physical machines where the data locality of required data can be leveraged maximally.
Because of the nature of big data analytics workloads that most data won’t be modified
once it is generated, HDFS relaxes consistency and provide a write once read many
access model to improve file access concurrency.

Lustre is a POSIX-compliant, open-source distributed parallel file system, and is
deployed in most modern HPC clusters due to the extremely scalable architecture.
Lustre is composed of three components: metadata servers (MDSs) manage file
metadata, such as file names, directory structures, and access permissions. Object
storage servers (OSSs) expose block devices and serves data. The clients issue the I/O
requests. To access a file, a client must send a request to MDS first to get the file

Table 1. Comparison between HDFS and Lustre

POSIX compliant Access model Data locality information

HDFS No Write once read many Yes
Lustre Yes Many write many read No

Experiences of Converging Big Data Analytics Frameworks 93

metadata, including file attributes, file permissions, and the layout of file objects in the
form of extended attributes (EA). With the EA, the client can communicate with
corresponding OSSs to get the file data.

2.2 Alluxio

Due to the growing I/O bandwidth gap between main memory and disk, the storage
layer became the bottleneck that limits the application scalability. To alleviate the
storage pressure, a variety of in-memory file systems that act as a fast, distributed cache
are developed to enhance I/O performance [21–23].

Alluxio is an open source memory speed virtual distributed storage system that sits
between the underlying storage systems and processing framework layers. It has the same
architecture as HDFS where a master is primarily responsible for managing the global
metadata of the system, Alluxio workers store data as blocks in local resources. These
resources could be local memory, SSD, or hard disk and are user configurable. Alluxio
provides Hadoop API, Java API and POSIX interface for user applications and compu-
tation frameworks while it can connect with different underlying storage systems such as
Amazon S3, Apache HDFS through encapsulated adapters. Because of the memory-
centric design and the outstanding compatibility with different computation frameworks
and storage systems, Alluxio plays an important role in the big data ecosystem.

We choose Alluxio as data access middleware to converge big data analytics
frameworks with HPC systems because of the compatibility to different kinds of
underlying file system and the POSIX-compliant interface it provides.

3 Experiment and Analysis

To explore an efficient way of accelerating complex applications on HPC systems and
analyze the performance impact of different architecture between big data analytics and
HPC, we use three benchmarks to cover the performance space: (1) IOZone benchmark
[24] and Mdtest benchmark [25] tests the basic file system performance of HDFS and
Lustre; (2) HiBench benchmark [26] evaluates the efficiency of big data analytics
frameworks through micro workloads, machine learning workloads, etc. (3) Simulation
of complex applications where RandomWriter simulates HPC workload and generates
10 GB data per node, Sorter simulates data analytic workload that analyzes the output
data of RandomWriter in Hadoop environment.

3.1 Experiment Setup

We used 64 nodes to conduct our experiments on the data analytics cluster of the
Tianhe-2 system at national supercomputer center in Guangzhou (NSCC-GZ), where
each node is equipped with two 2.20 GHz Intel Xeon E5-2692 processors (24 cores per
node) and 64 GB of RAM. We allocate 32 GB RAM for MapReduce jobs and reserve
32 GB for ramdisk. Besides, there is one HDD of 1 TB storage space mounted on each
node as the local disk. All nodes run Linux 3.10.0 kernels and are connected via Tianhe
high performance interconnects.

94 P. Cheng et al.

We used 32 nodes to simulate the typical data analytics environment where HDFS
is set on top of the local disk. Spark-2.1.0, Hadoop-2.7.3 and Oracle Java 1.8.0 are
used. The HDFS block size is set to 128 MB.

Another 32 nodes are used to simulate the typical HPC environment. We did not
utilize the local disk as underlying storage but mounted Lustre file system on these
nodes. In our test environments, the mounted Lustre file system contains 48 OSTs. To
enable Hadoop and Spark to read/write data from/to Lustre, we deployed Alluxio-1.4.0
on these nodes.

As mentioned, we evaluate IOZone, Mdtest, HiBench benchmark and a simulated
complex application on HPC and data analytics environment, where the underlying file
system is Lustre and HDFS respectively. Each benchmark has been executed at least
three times and we report the mean performance.

3.2 Data Access Middleware

As discussed in the introduction, the converging trend of big data analytics and HPC is
imperative, it’s important to give a feasible solution that can allow Hadoop or Spark to
access data stored in Lustre. A straightforward way to use Hadoop or Spark in HPC
environment is to copy data from Lustre to HDFS. However, this will result in
tremendous data movement cost and is a waste of storage space.

After considering these issues, we deploy Alluxio in HPC systems and compare its
performance against Hadoop adapter for Lustre (HAL) [27]. HAL, which is developed
by the Intel high performance data division, is used to make Hadoop work on Lustre,
instead of HDFS, without any Lustre changes. HAL modifies Hadoop’s built-in
LocalFileSystem class to add the Lustre file system support by extending and over-
riding default file system behavior. Moreover, HAL optimizes the shuffle strategy by
avoiding repetitive data movements. In the default implementation of Hadoop shuffle
strategy, reduce tasks send the data fetch requests to remote servers which in turn
retrieve the data from their local directories and send them back across the network.
Because of Lustre can provide a shared file system view for reduce tasks, default
shuffle strategy will result in repetitive data movements, HAL reimplements the shuffle
phase so that each reduce task can accesses Lustre to retrieve the data written by remote
nodes directly.

HAL is packaged as a single Java library, Hadoop and Spark applications can
access Lustre without modifying their code after HAL library is added to the Hadoop
classpath and the configuration files are updated. What’s important for users to know is
that HAL-Lustre is not compatible with HDFS, which means the applications can
access only Lustre file system after changing the configuration files. Besides, HAL
cannot provide data locality information for map/reduce tasks.

We allocate 20 GB ramdisk for Alluxio worker to store data blocks on each node.
Alluxio acts as an in-memory HDFS while communicating with different underlying
storage systems like S3 or Lustre simultaneously. Compared with HAL, Alluxio pro-
vides data locality information if data were stored in Alluxio worker. Moreover, it
allows the applications to access HDFS or Lustre file system by mounting them to
Alluxio namespace without modifying configuration files.

Experiences of Converging Big Data Analytics Frameworks 95

We compare the performance of HAL and Alluxio via HiBench benchmark. All
input data are stored in Lustre and we run each workload in data analytics environment
where each node can write the intermediate data to local disk. We did not use the
shuffle strategy implemented in HAL because of the existence of local disk. Figure 2
shows the performance comparison of different data access strategy where hdfs-put
means copy data from Lustre to HDFS before running the workload, hadoop-hdfs
represents Hadoop workload read input data from HDFS and hadoop-alluxio represents
Hadoop workload read input data from Lustre directly via Alluxio by such analogy. All
the intermediate data are stored in the local disk. Obviously, both Alluxio and HAL
provide an efficient way for Hadoop and Spark workloads to read data stored in Lustre
without redundant data movement.

It is worth mentioning that Hadoop/Sprak over HAL run faster than over Alluxio.
The reason behind this phenomenon is that Alluxio provides HDFS view for user
application which in turn makes a more complicated data access process than HAL. In
Fig. 3, to access a file that stored in underlying file system, a client requests the Alluxio
master to get file metadata. After receiving the metadata request, the master will create
an inode object and generate file metadata in HDFS metadata format according to the
information from underlying file system and sent back to the client. According to the
metadata, the client will construct the underlying file system info and sent to Alluxio
worker if the file is not stored in Alluxio and the block locations info is null. After
receiving the data requests from the client, Alluxio worker will create a packet reader
and act as a client of underlying file system to read file data and sent them back. Data
access in HAL is much simpler because each client sent data access request to
underlying Lustre file system directly without providing HDFS function for user
application.

0

20

40

60

80

100

120

140

160 spark-hal spark-alluxio spark-hdfs

hadoop-hal hadoop-alluxio hadoop-hdfs

hdfs-put

Workloads

Ex
ec

ut
io

n
tim

e
(s

)

Fig. 2. HiBench benchmark performance

96 P. Cheng et al.

Although the data access performance of HAL is better, Alluxio can provide a
memory-centric distributed storage space and is compatible with different underlying
file system simultaneously. We believe that Alluxio is a better choice for complicated
applications. To validate our assumption, we define a complex application that consists
of RandomWriter and Sorter. RandomWriter simulates HPC workload, which is exe-
cuted in HPC environment and generates 10 GB data per node. Sorter simulates data
analytic workload that analyzes the output data of RandomWriter in Hadoop envi-
ronment. The results are shown in Fig. 4. We scale the number of nodes from 1 to 32,
RandomWriter-HAL indicates that RandomWriter writes data into Lustre and
Sort-HAL read data from Lustre via HAL. RandomWriter-Alluxio represents the
output data of RandomWriter are stored in Alluxio and Sort-Alluxio can read data from
Alluxio directly. Obviously, Sort-Alluxio spent less time than Sort-HAL since the
output data are stored in memory and can be accessed directly while Sort-HAL needs to
read data from underlying Lustre file system.

2. Load metadata from
UFS and create inode

Alluxio
Master

Alluxio
Client

1. Metadata request

3.Metadata

5. Packet readder

4. Data request

Alluxio
Worker

Underlying file system

6. Data

7. Data

Fig. 3. Reading a file stored in underlying file system in Alluxio

0

100

200

300

400

500

600

1 1 4 4 8 8 16 16 32 32

Sort-Alluxio

RandomWriter-
Alluxio
Sort-HAL

RandomWriter-
HAL

Number of nodes

Ex
ec

ut
io

n
tim

e
(s

)

Fig. 4. Simulation of complex application

Experiences of Converging Big Data Analytics Frameworks 97

3.3 The Impact of Storage Architecture

Alluxio provides a feasible solution for big data analytics frameworks like Hadoop and
Spark to access data stored in Lustre rather than HDFS. However, the key distinction
between HPC and data analytics environment is the storage architecture. In data ana-
lytics environment, the intermediate data generated during shuffle phase can be stored
in the local file system on top of the local disk, while in HPC environments, these data
need to be stored in underlying parallel file system. The location of intermediate data is
a critical factor that influences shuffling performance, which will further dominate a
MapReduce job execution time. In this section, we characterize the impact of storage
architecture on data-intensive MapReduce jobs when using Lustre as the underlying file
system.

First of all, we run IOZone benchmark on Lustre and local disk to analyze the basic
file system performance. The results are shown in Fig. 5: In our test environments,
Lustre provides a much higher read or write bandwidth than local disk because files
stored in Lustre are broken into stripes, which are typically stored on multiple object
storage targets (OSTs), allowing parallel read and write access to different parts of the
file. In contrast, the bandwidth of local disk is limited and may become the bottleneck
of HDFS that build on it.

Secondly, to investigate the influence of metadata latency, we run Mdtest bench-
mark, a MPI-coordinated metadata benchmark that performs open/stat/close operations
on files and directories and then reports the performance. Figure 6 shows the result of
Mdtest, local file system performs much better than Lustre as expected. Local file
system can perform 32397 file create operations and 240534 file read operations per
second while Lustre can perform only 880 file create operations and 1578 file read
operations per second. Lustre file system uses a limited number of MDSs to manage the
file metadata, the centralized metadata management is a potential bottleneck and will
result in serious performance loss when gigantic metadata requests need to be pro-
cessed during shuffle phase.

0

100

200

300

400

500

600

700

800

write rewrite read reread

Lustre

LocalDisk

B
an

dw
id

th
 (M

B
/s

)

Read/write Bandwidth

Fig. 5. IOZone benchmark performance

98 P. Cheng et al.

To validate the speculation, we run the terasort workload of HiBench benchmark in
both HPC and data analytics environment where the intermediate data are stored in
Lustre file system and local disk respectively. During the evaluation, terasort workload
reads the input data from Lustre via HAL or Alluxio and writes the output back to
Lustre, the generated intermediate data size is equal to the input size. Figure 7 illus-
trates the performance of terasort when intermediate data resides in different storage
architectures. HAL-Local disk means that terasort workload read data from Lustre via
HAL and stored intermediate data in local disk, while HAL-Lustre means intermediate
data are stored in Lustre. In general, as data size grows, Lustre-based intermediate data
storage results in serious performance loss and HAL-Lustre performs even worse than
Alluxio-Lustre. The reason of performance differences can be ascribed to the charac-
teristic of shuffle phase and the metadata operation bottleneck of Lustre.

1

10

100

1000

10000

100000

1000000

Directory
creation

Directory
stat

Directory
removal

 File
creation

File read File
removal

Local file system
Lustre

Th
ro

ug
hp

ut
(O

p/
s)

Operation

Fig. 6. Metadata operation throughput of Lustre and local file system

0

100

200

300

400

500

600

700

30 150 300

Alluxio-Local disk

HAL-Local disk

Alluxio-Lustre

HAL-Lustre

Intermediate data size (GB)

Ex
ec

ut
io

n
tim

e
(s

)

Fig. 7. Impact of intermediate data location

Experiences of Converging Big Data Analytics Frameworks 99

The shuffle phase of MapReduce jobs is shown in Fig. 8: (1) each map task is
assigned a portion of the input file and applies the user-defined map function on each
key-value pair. The processed key-value data are stored in a memory buffer named
kvbuffer first and will be spill to the intermediate data directory every time the available
space of kvbuffer is less than 20%. These spill files will be sorted and merged into one
output file before each map task finished. (2) Reduce tasks starts fetching these inter-
mediate data that stored in local disk form each node after all map tasks finished. These
data from different map output files are sorted and merged again to generate one final
input data for each reduce task. Overall, the shuffle phase contains gigantic file create
and read/write operations and is sensitive to network latency and disk bandwidth.

During the shuffle phase, each map/reduce task sent file create/open requests to local
file system to write/read intermediate data in data analytics environment with local disk,
and its performance is subject to network latency and disk latency. In HPC environment,
however, these requests will be sent to the underlying parallel file system, and its
performance is subject to metadata latency along with network latency and disk latency.

The reason why HAL-Lustre performs worse than Alluxio-Lustre is that the shuffle
strategy in HAL will generate more intermediate data. To prevent repetitive data
movements, HAL reimplements the shuffle phase to allow each reduce task retrieve
data from Lustre directly. In default shuffle strategy, each map task will generate one
intermediate file for all reduce tasks every time the kvbuffer spill the data to local disk.
These intermediate files generated from the same map task will be merged into one
final output file and is fetched by reduce tasks. The total number of intermediate files
will be n * M, where n represents the number of spill operations and M represents the
number of map tasks. However, in HAL shuffle strategy, each map task will generate
one intermediate file for each reduce task and all the intermediate files that belong to
one reduce task are stored in one directory. The total number of intermediate files will
be n * M * R, where R represents the number of reduce tasks. HAL shuffle strategy
can avoid the merge phase of map tasks and prevent the repetitive data movements
cost, but the metadata operation cost to gigantic intermediate files result in the per-
formance loss.

HDFS

Split-1

Split-2

…
Split-M

MapTask-1
KV

buffer
ReduceTask-1

Map output files Spill and sort

MapTask-M
KV

buffer

…

ReduceTask-R

…

Input Data

Fig. 8. The shuffle phase of MapReduce jobs

100 P. Cheng et al.

In summary, when using Lustre as the underlying file system of big data analytics
frameworks, Lustre can provide higher aggregate bandwidth than traditional HDFS that
build on top of the local disk, but the costly metadata operation may result in serious
performance loss if massive intermediate data were stored in Lustre.

4 Optimization and Evaluation

To support data analytics frameworks on compute-centric HPC systems effectively,
there are two performance issues that need to be addressed based on the characteri-
zation of Sect. 3.3. Firstly, the total number of intermediate files that generated in
shuffle phase need to be reduced. Secondly, the costly metadata operations need to be
accelerated. Accordingly, we propose two optimizations: shared map output shuffle
strategy and file metadata cache layer.

4.1 Shared Map Output Shuffle Strategy

Shared map output shuffle strategy is intended to reduce the total number of inter-
mediate files while utilizing the shared file system view provided by Lustre. The design
of this shuffle strategy is shown in Fig. 9.

Firstly, each map task generates one intermediate file every time the kvbuffer spill
the data to underlying Lustre file system. Each spill file contains multiple partitions and
every partition stores the data that corresponding to one reduce task. Secondly, all the
spill files generated by each map task are retrieved and sorted. Due to the effect of large
memory space in a compute node, it is likely that those spill files still reside in local
memory and can be retrieved quickly. Finally, the sorted map output data are stored in
multiple intermediate files where each intermediate file contains the data that belongs to
one reduce task. In other words, each map task generates R intermediate files no matter
how many spill operations it went through, where R is the number of reduce tasks. The
intermediate files that will be processed by the same reduce task are stored in the same
directory.

Mapper A
Map

(key, value) Merge

Reducer 1

Reduce

Lustre

Input split A Map A: partition 1 Output 1
Spill file

Partition 1
…

Partition n

Fig. 9. Shared map output shuffle strategy

Experiences of Converging Big Data Analytics Frameworks 101

The proposed shuffle strategy has several advantages: (1) It can utilize the effect of
large memory space in a compute node and reduce the time of retrieving spill files.
(2) Compared with the shuffle strategy of HAL described in Sect. 3.3, the proposed
shuffle strategy can reduce the total number of intermediate files form n * M * R to
M * R, where n represents the number of spill operations, M represents the number of
map tasks and R represents the number of reduce tasks. Therefore, the number of costly
metadata operations can be reduced. (3) Compared with default shuffle strategy, each
reduce task can fetch the map output files from the corresponding directory via Lustre
directly without repetitive data movements cost.

4.2 File Metadata Cache Layer

We introduce file metadata cache layer to facilitate metadata operations. During the
shuffle phase, each map task creates multiple segments to fetch data partition by
partition, where a segment represents a partition of a spill file. The spill file will be
opened every time a segment is created and closed after each segment is closed. As a
result, each spill file will be opened and read multiple times. In data analytics envi-
ronments, file open and read requests can be processed quickly, while in HPC systems
that deployed a parallel file system, these requests would take more time because of the
centralized metadata bottleneck.

To alleviate the stress of metadata server, we implement a file metadata cache layer.
Each map task initiates a key-value data structure, where the key is the path of the file
and the value is the corresponding file descriptor. Once a file is opened, the file
descriptor is cached in the pool and subsequent file open requests can retrieve the file
descriptor and create a new file input stream. To keep the original file read operations
unchanged, we initiate the file metadata cache layer only in shuffle phase and disable it
as soon as the merging of spill files is finished. If file metadata cache layer was enabled,
file open operation will query this pool to get corresponding file descriptor based on file
name. If the response is not null, a new file input stream will be created based on the
retrieved file descriptor. If the response is null, which means this file has not been
opened before, this file will be opened via Java FileInputStream and the file descriptor
will be cached.

In the current implementation, the capacity of the key-value data structure is set to
20 based on experiments. Besides, we use the first in first out (FIFO) eviction policies
to solve capacity conflicts.

4.3 Evaluation

To validate the effectiveness of our proposed optimizations, we run the terasort
workload of HiBench benchmark in the HPC environment, and the results are shown in
Fig. 10. Default strategy represents the default shuffle strategy of Hadoop. HAL rep-
resents the original HAL shuffle strategy without optimizations. Shared shuffle repre-
sents the proposed shared map output shuffle strategy and file metadata cache
represents using file metadata cache layer with shared map output shuffle strategy
together. We vary the data size from 300 GB to 1500 GB and all the intermediate data
are stored in Lustre file system.

102 P. Cheng et al.

When intermediate data size is less than 1200 GB, the default shuffle strategy
performs the best since the data server that serves the requests of reduce tasks can fetch
the intermediate data from local memory due to the effect of large buffer cache in a
compute node. As intermediate data size grows, the memory space of compute node is
insufficient to store all the intermediate data, data servers need to fetch data from Lustre
and sent them back to reduce tasks. The repetitive data movement cost in default shuffle
strategy results in the performance loss.

In contrast, our proposed optimizations allow reduce tasks to fetch data from
underlying Lustre file system directly without repetitive data movement cost. More-
over, it reduces the total number of intermediate files and shows obvious performance
benefit compared to original HAL shuffle strategy. For 1500 GB data size, shared map
output shuffle strategy has a performance benefit of 11% compared to HAL and it can
provide 17% benefit when file metadata cache layer is used together.

5 Related Work

In recent years, big data analytics has gained great success in different fields. Previous
work [9, 28–30] has identified and analyzed the characteristic of bid data and discussed
the big data challenges, including data storage and transfer, data security, scalability of
data analytics systems etc.

Many efforts have been conducted to integrate big data analytics frameworks with
HPC infrastructure. Chaimov et al. [15] ported Spark on Cray XC systems and evaluate
a configuration with SSDs attached closer to compute nodes for I/O acceleration. Wang
et al. [16] characterizes the performance impact of key differences between
compute-centric and data-centric paradigms and then provides optimizations to enable
a dual-purpose HPC system that can efficiently support conventional HPC applications
and new data analytics applications. Wasi-ur-Rahman et al. [31] proposed a
high-performance design for running YARN MapReduce on HPC clusters by utilizing

0

1000

2000

3000

4000

5000

6000

7000

8000

300 600 900 1200 1500

Shared shuffle

Shared shuffle +
file metadata cache

Default strategy

HAL

Intermediate data size (GB)

Ex
ec

ut
io

n
tim

e
(s

)

Fig. 10. Performance of HiBench-Terasort

Experiences of Converging Big Data Analytics Frameworks 103

Lustre as the storage provider for intermediate data and introduced RDMA-based
shuffle approach. These works analyzed the performance differences when deployed
Hadoop and Spark on HPC systems, but they were lacking in providing optimizations
for complex applications.

In-memory file systems like MemFS [21], FusionFS [22] and AMFS [23] are
developed to alleviate the storage pressure, but they provide limited compatibility with
underlying file systems. Two-level storage [32] is the closest research work that
integrates an upper-level in-memory file system with a lower-level parallel file system
for accelerating Hadoop/Spark workloads on HPC clusters. However, it lacks an
in-depth discussion on the performance impact of data-intensive analytics workloads
when using Lustre as underlying file system. In this paper, we make a detailed com-
parison of system architectures and provide two optimizations to alleviate the metadata
bottleneck of Lustre.

There are also many research works that directly deployed big data analytics
frameworks atop of existing parallel file systems. Maltzahn et al. [17] describe Ceph
and its elements and provide instructions for installing a demonstration system that can
be used with Hadoop. Yang et al. [18] propose PortHadoop, an enhanced Hadoop
architecture that enables MapReduce applications reading data directly from HPC
parallel file systems. Xuan et al. [32] present a two-level storage system that integrates
an upper-level in-memory file system with a lower-level parallel file system. Com-
paring with previous works, this paper presents our experiences of converging big data
analytics frameworks with the Tianhe-2 system. We aim at the growing need of
complex applications and provide a feasible solution to accelerate it by utilizing an
in-memory file system.

6 Conclusion

In this paper, we deployed an in-memory file system as data access middleware to
reconcile the differences of system architectures between HPC systems and big data
analytics systems. We characterized the impact of storage architecture on big data
analytics frameworks when using Lustre as underlying file system. The result of
experiments shows that the centralized metadata management of Lustre is a potential
bottleneck and can result in serious performance loss when gigantic intermediate data
are stored in Lustre. To alleviate the impact of metadata bottleneck and accelerate
data-intensive MapReduce applications in HPC environments, we proposed shared
map output shuffle strategy and file metadata cache layer. Our results ensure up to 17%
performance benefit for data-intensive workloads.

Overall, it’s critical to find a solution that can accelerate complex applications
under the converging trend of HPC and big data analytics. Our work provides useful
experience and gives a feasible solution. In the future, we plan to investigate the
performance impact of big data analytics frameworks when high-capacity NVM is
equipped in compute nodes and provide better data management strategy based on the
results.

104 P. Cheng et al.

Acknowledgment. This work was supported by National Nature Science Foundation of China
under Grant No. U1611261 and No. 61433019, the National Key R&D Program of China
2017YFB0202201, and the Program for Guangdong Introducing Innovative and Entrepreneurial
Teams under Grant No. 2016ZT06D211.

References

1. Fu, H.H., Liao, J.F., Yang, J.Z., Wang, L.N., Song, Z.Y., Huang, X.M., et al.: The Sunway
TaihuLight supercomputer: system and applications. Sci. China Inf. Sci. 59(7), 1–16 (2016)

2. Liao, X.K., Xiao, L.Q., Yang, C.Q., Lu, Y.T.: Milkyway-2 supercomputer: system and
application. Front. Comput. Sci. 8(3), 345–356 (2014)

3. Titan - Cray XK7 (2017). https://www.olcf.ornl.gov/titan/
4. Wang, F., Yang, C.Q., Du, Y.F., Chen, J., Yi, H.Z., Xu, W.X.: Optimizing Linpack

benchmark on GPU-accelerated petascale supercomputer. J. Comput. Sci. Technol. 26(5),
854–865 (2011)

5. Yang, C., Wu, Q., Tang, T., Wang, F., Xue, J.: Programming for scientific computing on
peta-scale heterogeneous parallel systems. J. Cent. South Univ. 20(5), 1189–1203 (2013)

6. French, S., Zheng, Y., Romanowicz, B., Yelick, K.: Parallel Hessian assembly for seismic
waveform inversion using global updates. In: IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 753–762. IEEE (2015)

7. Bhandarkar, M.: MapReduce programming with apache Hadoop. In: IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), p. 1 (2010)

8. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mccauley, M.: Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster computing. In: USENIX
Conference on Networked Systems Design and Implementation, p. 2 (2012)

9. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J. Parallel
Distrib. Comput. 74(7), 2561–2573 (2014)

10. Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM 58(7), 56–68
(2015)

11. NASA Center for Climate Simulation (2017). http://www.nasa.gov/topics/earth/features/
climate-sim-center.html

12. InfiniBand Homepage (2017). http://www.infinibandta.org/
13. Donovan, S., Kleen, A., Wilcox, M., Huizenga, G., Hutton, A.J.: Lustre: building a file

system for 1,000-node clusters. In: Proceedings of the Linux Symposium, p. 9 (2003)
14. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:

MASS Storage Systems and Technologies, pp. 1–10 (2010)
15. Chaimov, N., Malony, A., Canon, S., Iancu, C., Ibrahim, K.Z., Srinivasan, J.: Scaling Spark

on HPC systems. In: Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC), pp. 97–110 (2016)

16. Wang, Y., Goldstone, R., Yu, W., Wang, T.: Characterization and optimization of
memory-resident MapReduce on HPC systems. In: IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), pp. 799–808 (2014)

17. Maltzahn, C., Molinaestolano, E., Khurana, A., Nelson, A.J., Brandt, S.A., Weil, S.: Ceph as
a scalable alternative to the Hadoop distributed file system. The Magazine of USENIX and
SAGE, pp. 38–49 (2010)

18. Yang, X., Liu, N., Feng, B., Sun, X.H., Zhou, S.: PortHadoop: support direct HPC data
processing in Hadoop. In: IEEE International Conference on Big Data, pp. 223–232 (2015)

Experiences of Converging Big Data Analytics Frameworks 105

https://www.olcf.ornl.gov/titan/
http://www.nasa.gov/topics/earth/features/climate-sim-center.html
http://www.nasa.gov/topics/earth/features/climate-sim-center.html
http://www.infinibandta.org/

19. Fadika, Z., Dede, E., Govindaraju, M., Ramakrishnan, L.: MARIANE: MApReduce
implementation adapted for HPC environments. In: International Conference on Grid
Computing, pp. 82–89 (2011)

20. Li, H., Ghodsi, A., Zaharia, M., Shenker, S., Stoica, I.: Tachyon: reliable, memory speed
storage for cluster computing frameworks. In: Proceedings of the ACM Symposium on
Cloud Computing, pp. 1–15. (2014)

21. Uta, A., Sandu, A., Costache, S., Kielmann, T.: Scalable in-memory computing. In:
International Symposium on Cluster, Cloud and Grid Computing, pp. 805–810 (2015)

22. Zhao, D., Zhang, Z., Zhou, X., Li, T.: FusionFS: toward supporting data-intensive scientific
applications on extreme-scale high-performance computing systems. In: IEEE International
Conference on Big Data, pp. 61–70 (2014)

23. Zhang, Z., Katz, D.S., Wozniak, J.M., Espinosa, A.: Design and analysis of data
management in scalable parallel scripting. In: International Conference on
High PERFORMANCE Computing, Networking, Storage and Analysis, pp. 1–11 (2012)

24. IOzone Filesystem Benchmark (2017). http://www.iozone.org/
25. MDTest Metadata Benchmark (2017). https://github.com/MDTEST-LANL/mdtest
26. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:

characterization of the MapReduce-based data analysis. In: International Conference on Data
Engineering Workshops, pp. 41–51 (2010)

27. Hadoop Adapter for Lustre (HAL) (2017). https://github.com/intel-hpdd/lustre-connector-
for-hadoop

28. Hu, H., Wen, Y., Chua, T.S., Li, X.: Toward scalable systems for big data analytics: a
technology tutorial. IEEE Access 2(1), 652–687 (2017)

29. Brohi, S.N., Bamiah, M.A., Brohi, M.N.: Identifying and analyzing the transient and
permanent barriers for big data. J. Eng. Sci. Technol. 11(12), 1793–1807 (2016)

30. Tolle, K.M., Tansley, D.S.W., Hey, A.J.G.: The fourth paradigm: data-intensive scientific
discovery [point of view]. Proc. IEEE 99(8), 1334–1337 (2011)

31. Wasi-ur-Rahman, M., Lu, X., Islam, N.S., Rajachandrasekar, R., Panda, D.K.:
High-performance design of YARN MapReduce on modern HPC clusters with Lustre and
RDMA. In: IEEE International Symposium on Parallel and Distributed Processing (IPDPS),
pp. 291–300 (2015)

32. Xuan, P., Ligon, W.B., Srimani, P.K., Ge, R., Luo, F.: Accelerating big data analytics on
HPC clusters using two-level storage. Parallel Comput. 61, 18–34 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

106 P. Cheng et al.

http://www.iozone.org/
https://github.com/MDTEST-LANL/mdtest
https://github.com/intel-hpdd/lustre-connector-for-hadoop
https://github.com/intel-hpdd/lustre-connector-for-hadoop
http://creativecommons.org/licenses/by/4.0/

GPU/FPGA

MACC: An OpenACC Transpiler
for Automatic Multi-GPU Use

Kazuaki Matsumura1,2(B), Mitsuhisa Sato3,4, Taisuke Boku4, Artur Podobas1,
and Satoshi Matsuoka1,2

1 Tokyo Institute of Technology, Tokyo, Japan
{matsumura.k.ak,podobas.a.aa,matsu}@m.titech.ac.jp

2 AIST-Tokyo Tech Real World Big-Data Computation
Open Innovation Laboratory, Tokyo, Japan

3 RIKEN Advanced Institute for Computational Science, Kobe, Japan
msato@riken.jp

4 University of Tsukuba, Tsukuba, Japan
taisuke@cs.tsukuba.ac.jp

Abstract. Graphics Processing Units (GPUs) perform the majority of
computations in state-of-the-art supercomputers. Programming these
GPUs is often assisted using a programming model such as (amongst
others) the directive-driven OpenACC. Unfortunately, OpenACC (and
other similar models) are incapable of automatically targeting and dis-
tributing work across several GPUs, which decreases productivity and
forces needless manual labor upon programmers. We propose a method
that enables OpenACC applications to target multi-GPU. Workload dis-
tribution, data transfer and inter-GPU communication (including mod-
ern GPU-to-GPU links) are automatically and transparently handled by
our compiler with no user intervention and no changes to the program
code. Our method leverages existing OpenMP and OpenACC backends,
ensuring easy integration into existing HPC infrastructure. Empirically
we quantify performance gains and losses in our data coherence method
compared to similar approaches, and also show that our approach can
compete with the performance of hand-written MPI code.

Keywords: Programming language · Compiler · Multi-GPU

1 Introduction

Graphics Processors Units (GPUs) are the workhorse of modern, state-of-the-
art, supercomputers. Each node in a supercomputer node often consists of sev-
eral GPUs, each carrying its own distributed memory and each being capable
of executing asynchronously to one another. Due to GPU’s high performance
and compute-to-power ratio (FLOPs/Watt), modern supercomputers such as
TSUBAME3.0 [1], DGX SATURNV [2] and the upcoming SUMMIT [3] include
multiple GPUs per supercomputing node.

Programming GPUs has historically been done through low-level program-
ming languages (often derivatives or dialects of C) such as CUDA [4] and
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 109–127, 2018.
https://doi.org/10.1007/978-3-319-69953-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_7&domain=pdf

110 K. Matsumura et al.

OpenCL [5]. Here the programmer is responsible for both creating the program
code, and — in cases where multiple GPUs are involved — orchestrating the
concurrent execution of multiple GPUs; an often non-trivial task.

A better (and arguably more portable) way is to use compiler directives to
indicate sources of potential parallelism in the application. A compiler can then
use these directives to abstract the complex architectural details away from the
programmer and instead automatically generated device-specific program code.
One example of such directive-driven approach is OpenACC [6] and OpenMP [7].

While models such as OpenACC increase productivity through raised pro-
gramming abstraction, they are currently limited in targeting only a single GPU
device. The user is still responsible for manually orchestrating the multi-GPU
execution.

We propose a method to enable OpenACC-annotated applications to exploit
multiple GPUs. We implemented a source-to-source compiler (transpiler) that
analyzes and optimizes OpenACC applications. Our transpiler is transparent
to the user— kernel scheduling, data-movement and inter-GPU communication
(including the recent GPU-to-GPU links) are automatically done.

Our contributions in short:

(1) A transpiler that extends the OpenACC programming model to allow appli-
cations to seamlessly use multiple GPUs.

(2) A novel communication algorithm that preserves data coherency across
GPUs by extracting source-code information.

(3) An empirical evaluation of above contributions using well-known HPC
benchmark, positioning the performance against hand-written MPI code and
the recent Unified Memory abstraction layer.

The remaining of this paper is organized as follows. Section 2 discusses related
work. Section 3 provides an overview of OpenACC. Section 4 describes our pro-
posed method. Section 5 describes our experimental methodology. In Sect. 6, we
evaluate our transpiler. Finally, Sect. 7 concludes this paper.

2 Related Work

NVIDIA provides Unified Memory [8], which allows multiple NVIDIA GPUs
to share the global address space between each other. Unified Memory recently
supports coherence through the NVLink interconnect [9], and allows GPUs to
effortlessly communicate between each other. Unlike Unified Memory, which is
very architecture dependent, our approach is more general and oblivious of which
accelerator is being targeted as long as compilers’ OpenACC backend supports
it. Moreover, our method is able to accelerate GPU-to-GPU communications
using GPU interconnects. We also see performance benefits using our method
as compared to Unified Memory in Sect. 6.

Komada et al. [10] used a compiler to distribute OpenACC fairly across GPUs
and execute them in parallel. Their approach is to divide loop iterations into
chunks of equal size and also keep these chunks coherent across different GPUs.

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 111

Their coherence mechanism is similar to that of Unified Memory, except that the
chunk size can be changed manually by the user and the chunks are prepared for
each array. Unlike Komada et al., we focus on identifying where communication
needs to happen between GPUs through data-flow analysis inside the transpiler.

Rameshekar et al. [11] propose to execute parts of application (written in
C) on multiple GPUs by analyzing loops using the polyhedral model. The poly-
hedral compilation precisely detects necessary communication between GPUs
using superpositions of fine regions and a buffer management. However, their
approach is only applicable to loops with affine iteration and array accesses. We
(unlike Rameshekar et al.) build and extend upon OpenACC, which allows us to
have more information regarding the sources of parallelism, increasing generality
as long as the application uses OpenACC. However, we complement their study
and show how the polyhedral compilation can enhance our method in certain
cases.

HYDRA [12] is a compiler system for distributed environments that use a
single GPU per node. We both share a similar system of determining commu-
nication patterns between GPUs. Unlike HYDRA, which takes as input simple
directives and generates a distributed application, our method leverages Ope-
nACC and OpenMP and hence focuses parallelism within a single “shared” node.
The output of our transpiler uses both OpenACC and OpenMP, and thus can
further use existing OpenACC and OpenMP profiling tools to further improve
performance. In evaluation, we compare hand-written MPI code with our tran-
spiled code.

Scogland et al. [13] combine a well-designed task-based runtime with
directive-driven model to facilitate efficient work-sharing in heterogeneous sys-
tems. They provide new directives that help to identify data dependency. We
consider extending our work to leverage existing task-based runtime systems to
perform the load-balancing.

Xu et al. [14] present new directives to extend OpenACC to support multiple
accelerators. The proposal is based on an evaluation using the hybrid model of
OpenACC and OpenMP.

Accelerate [15] is a purely-functional domain-specific language for array pro-
cessing. Accelerate has a potential to utilize multi-GPU [16].

Also, programming models targeting accelerator clusters are proposed [17,18].
These models provide explicit functions to distribute computations over multiple
accelerators.

3 Overview of OpenACC

Introduced in 2011, OpenACC aims to bridge accelerator programmability gaps
by leveraging compiler directives. Rather than programming with vendor-specific
languages, the programmers instead focus on exposing available parallelism in
his/her source-code. A compiler uses these directives to automatically generate
device-specific application code.

112 K. Matsumura et al.

3.1 Execution Model

Programmers are responsible for specifying which regions of the OpenACC appli-
cation are offloaded onto accelerators. A programmer, when using OpenACC to
parallelize the application, must enclose regions to-be accelerated on the device
using the parallel and kernels construct. Each construct is specified by its
directive.

A region enclosed by the parallel construct is called a parallel region
and will be executed on an accelerator. Controlling the granularity of loops
found within the parallel region is done using the loop construct. The loop
construct allows various controls of computation, including collective opera-
tions (by reduction clause), loop-carried dependency (by independent or seq
clause), coarse-grained parallelism (called gang), fine-grained parallelism (called
worker), and SIMD-level parallelism (called vector). These granularities repre-
sent the naturally forms of parallelism found in modern accelerators.

A nested loop executed parallely on an accelerator is called kernel. A region
enclosed by the kernels construct will treat each of the subsequent loops in the
region as accelerator kernels.

3.2 Memory Model

Prior to execution, accelerators with local memory (often called device memory)
must receive the data they operate on from the host. Similarly, when accelerators
finish computing using some data as the result, that data must be transferred
back to the host.

OpenACC allows data on the device to be explicitly controlled using the data
construct. Any region enclosed by the data construct will place specified data
on-to the accelerator and insert proper transfers between host and accelerator
according to specified clauses. Although OpenACC can automatically deduce
where to place data, using the data clause is often encouraged for the prevention
of incomplete or inefficient data transfers. A present clause of the data construct
indicates that the data already is defined in the region, to prevent duplicated
data transfers.

OpenACC defines the update directive that allows programmers to change
data shared between host and accelerator. In the case of update, the OpenACC
runtime system can reflect the recent changes to the variable on both the accel-
erator and the host.

3.3 A Motivational Example

We show an example which utilizes multi-GPU. In OpenACC, several efforts are
required even to distribute a simple kernel over multiple GPUs.

OpenACC Single-GPU Example. We illustrate the needless and error-prone
(manual) effort of re-purposing an OpenACC application into targeting multi-
GPUs using a simple vector-multiplication example, seen in Fig. 1(a). For clarity

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 113

Fig. 1. Two examples illustrating the difference in OpenACC code that targets (a)
single-GPU use, and (b) multi-GPU use through mixed OpenMP/OpenACC

purposes, we leave out non-trivial optimizations such as deducing (and minimiz-
ing) inter-GPU communication and coherence; such optimizations further com-
plicate the manual re-targeting process (which is automatically handled by our
proposed transpiler).

Figure 1(a) shows OpenACC directives in for a simple vector-multiplication.
The programmer — knowing that the loop is inherently parallel — annotates the
region with a kernels construct and also informs the compiler that he expects
the host’s memory to be updated after the loop has finished (copyout). The
compiler will use these directives to offload the parallelized loop onto a single
device.

OpenACC Multi-GPU Example. OpenACC only provides functionality for
exposing parallelism onto a single accelerator. To use multiple GPUs, the pro-
grammer must manually orchestrate the execution, distribution and data trans-
fers between the GPUs. This includes ensuring that data are coherent between
the GPUs that work on similar sets of data.

Figure 1(b) shows the earlier vector multiplication example but with man-
ual augmentation for multi-GPU execution. Here we use OpenMP (a related
directive-driven model) to launch a team of threads and have each thread com-
putation which subset of the loop’s iteration-space it should execute. Finally,
each thread encounters the OpenACC directives, which each launch the kernel
onto the earlier (acc set device num()) specified accelerator.

We can see that there is significant effort of code rewriting between Fig. 1(a)
and (b), which further motivates the need for our work. Furthermore, in case of
real applications, data dependencies between multiple OpenACC kernels must
be considered.

114 K. Matsumura et al.

4 MACC: A OpenACC Transpiler for Multi-GPU Use

We present MACC — a transpiler that eliminates the effort of using OpenACC in
multi-GPU environments. Our transpiler allows OpenACC (which traditionally
targets a single GPU) to run on multiple GPUs without changing the source
code. Our approach is to source-to-source transform the OpenACC application
into post source-code that exploits both OpenACC and OpenMP.

The operations performed by MACC can be condensed down to three steps:

(1) The source code is parsed and OpenACC directive understood and abbre-
viated notation (e.g. "parallel loop", "kernels copy(..)") flattened.
Tightly-nested (which has just one loop inside except for the innermost) or
loop-directive-specified loops within a kernels construct are transformed
to use an OpenACC parallel construct (and loop directives with the
reduction clause if any collective operation is found and the independent
clause if our basic checker statically finds no loop-carried dependency
between iterations).

(2) Array reference expressions are extracted using our data-flow analysis
(described in Subsect. 4.3) and code to dynamically find data dependencies
at runtime are constructed.

(3) MACC outputs post source-code, which effectively is hybrid OpenMP and
OpenACC version of the original code but capable of multi-GPU execution
(described in Subsect. 4.4).

The final output can then be compiled with any compiler supporting Ope-
nACC and OpenMP. Our compiler pass is generic and thus untied to any specific
compiler backend. Host-to/from-GPU and GPU-to-GPU communication in the
post source-code are automatically generated based on our communication algo-
rithm to resolve data dependencies, leveraging shared host memory and GPU
interconnects (described in Subsect. 4.2).

We have deliberately chosen to have the transpiled source-code use a hybrid
OpenACC and OpenMP approach. There are no formal requirements behind
using OpenMP and our methodology can be extended to use less abstract mod-
els such as POSIX Threads. However, by leveraging OpenMP we can more easily
use existing infrastructure (such as) to debug or analyze the performance. Fur-
thermore, future work of ours includes code multi-versioning to enable hybrid
execution of single-/multi-GPU and general purpose processor accelerators; it is
here we expect our design decision to bear fruit as OpenMP traditionally (prior
to the 4.0 accelerator directives) target general purpose processors.

4.1 Execution on Multi-GPU Environments

Since OpenACC primarily target loop-level parallelism of the outermost loop, we
need to make sure to avoid data dependencies on the memory accesses happening
between processors executing the parallelized loop.

In MACC, we divide and distribute the outermost loop of OpenACC kernels
equally for each GPU. We only enable multiple GPUs when all writes in the

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 115

kernel are affine with respect to the loop counters and the write-section does
not intersect with the write-section of other GPUs; we fall back on single GPU
execution if the state condition does not hold. Switching between single- and
multi-GPU execution occurs at runtime. Also, the number of GPUs used can
dynamically be decided and changed, leaving room for autotuners.

4.2 Generating Host-to/from-GPU and GPU-to-GPU
Communcation Patterns

Understanding what data-regions a GPU will work on is crucial when paralleliz-
ing loop constructs to execute over multiple GPUs. A too optimistic approach
can fail to fully include all data, leading to incorrect execution; a too pessimistic
approach will on the other hand lead to unnecessary transfer and maintenance
overheads.

Algorithm 1. Generate copyin
1: Create DIRTY
2: for each gpu i ∈ GPUs do
3: Communicate specified array from Host to GPU i
4: DIRTY[i].valid ← false
5: end for

Identifying the data-regions needed for the GPUs is difficult because the
order of kernel executions is dynamically decided. Therefore, we replicate Host-
to-GPU communications according to data constructs (copyin) for all GPUs
(Algorithm 1).

When multiple GPUs are used, it is important to resolve the data depen-
dencies between the GPUs because each GPU is (often) a discrete device with
its own distributed memory. We have adopted Kwon et al. [19] ’s method (from
distributed-memory programming) to identify the necessary communication ac-
ross GPUs. Our implementation calculates the section of the read (called USE)
and the write (called DEF) for each combination of parallel regions, GPUs and
data (arrays). We apply data-flow analysis (described in Subsect. 4.3) to derive
necessary information.

Before each execution of parallel regions, we compute the necessary commu-
nication among GPUs based on the superpositions of the calculated sections;
after that, we update the section (called DIRTY) for each combination of GPUs
and data/arrays. Here, we call the section whose master is a GPU, as DIRTY.
Algorithm 2 describes this process.

All sections contain an upper- and a lower-bound. Communication between
GPUs is performed either through host memory (CPU-to-GPU) or — if sup-
ported — using the interconnected (GPU-to-GPU or P2P). MACC also removes
any duplicated transfers in order to reduce the amount of communication needed.

116 K. Matsumura et al.

Algorithm 2. Generate communications before an execution of a parallel region
1: for each gpu i ∈ GPUs do
2: if DIRTY[i] ∩ DEF[i] = ∅ or ∃ d ∈ (DEF \ DEF[i]); DIRTY[i] ∩ d �= ∅ then
3: Communiate DIRTY[i] from GPU i to Host and all other GPUs
4: DIRTY[i] ← ∅
5: else if P2P IS ENABLED then
6: for each gpu j ∈ GPUs; j �= i do
7: COMM[j] ← DIRTY[i] ∩ USE[j]
8: Communicate COMM[j] from GPU i to GPU j
9: end for

10: else
11: for each gpu j ∈ GPUs; j �= i do
12: COMM[j] ← DIRTY[i] ∩ USE[j]
13: end for
14: GHs ← BIND(COMM) /* Optimize GPU-to-Host communication */
15: Communicate GHs from GPU i to Host
16: if ∃ gh ∈ GHs; DIRTY[i] ⊂ gh then
17: DIRTY[i].valid ← false
18: end if
19: for each gpu j ∈ GPUs; j �= i do
20: Communiate COMM[j] from Host to GPU j
21: end for
22: end if
23: DIRTY[i] ← DIRTY[i] ∪ DEF[i]
24: end for

Algorithm 3. Generate copyout
1: for each gpu i ∈ GPUs do
2: Communicate DIRTY[i] from GPU i to Host
3: end for
4: Delete DIRTY

Algorithm 4. Generate update of GPU-to-Host
1: US ← the update section
2: for each gpu i ∈ GPUs do
3: Communicate DIRTY[i] ∩ US from GPU i to Host
4: end for

When encountering GPU-to-Host communication of the data constructs
(copyout), only the data constructs that fail meeting coherence are transferred.
Hence, each GPU will execute a copyout transfer of its own DIRTY section
(Algorithm 3).

When encountering a update directive for Host-to-GPU communication, the
host will update all GPUs with the new data. If update directive for a GPU-
to-Host communication is encountered, only the sections overlapping the DIRTY-
section (Algorithm 4) will be transferred.

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 117

4.3 Data-Flow Analysis

MACC uses data-flow analysis to identify USE and DEF sections of parallel
regions. Data-flow analysis is invoked on every parallel region to extract array
references/indices for read and write accesses. Array references are composed
of constants and loop iterator variables, as well as variables defined outside the
parallel region. Note that MACC only synthesize the code for automatically
analyzing the USE and DEF sections; the actual analysis is performed at runtime
during execution before every parallel region.

During data-flow analysis, we collect array references/indices as well as
extracting variables that are defined or overwritten in the parallel region. We
iteratively analyze the parallel region to account for all paths of the control-flow
graph as long as the collected array references/indices change (so-called Iterative
Data-Flow Analysis [20]).

In MACC, we do these through the following two steps:

(1) We transform source-code into static single assignment form (SSA [20]).
(2) Array indices are collected and all variables (except the loop counter) are

extracted.

A variable represented by an expression using the variable itself and other
values, is considered to have indefinite value. A section that is calculated using a
non-affine index, when regarding variables other than loop counters as constants,
or indefinite value will force the section to pessimistically contain the whole tar-
get array. For indices that are affine we can compute the sections by substi-
tuting upper- and lower-limits of the affected loop counters into them owing to
convexity.

In the final generated post source-code we execute the parallel region on
multi-GPU when:

(1) all write accesses for each array are affine and definite,
(2) the outermost loop of the kernel in the parallel region is dividable (which

statically-or-dynamically has an affine range and statically has no loop-
carried dependency), and

(3) the write-sections are not duplicated among GPUs.

Single-GPU execution is invoked if above conditions do not hold.

4.4 Output Formats

In MACC, each OpenACC directive will be transformed to use a combination of
OpenMP and OpenACC. To realize the communication generation (described in
Subsect. 4.2), we wrap the existing OpenACC communication routines around
our own. These wrapper maintains the DIRTY section for each the {GPU:Array}
combinations and also generates the communications. We use and link-against
vendor-supplied libraries (in this case NVIDIA CUDA libraries) only when P2P
(GPU-to-GPU) communication is available.

118 K. Matsumura et al.

The data construct and update directive are converted into corresponding
concurrent versions using OpenMP’s parallel construct, seen in Fig. 2(a) and
(b) respectively. When transforming data-constructs, MACC will always append
appropriate present clause to parallel sections within data construct in order
to specify that the data are already on the GPUs.

Figure 2(c) shows how we transpile OpenACC’s parallel constructs. We
start by identifying the loop ranges by calculating USE and DEF sections. Once
we know the loop ranges, we spawn one OpenMP thread for each GPU device.
Each thread then continues to generate the needed communication based on
the algorithm described in Subsect. 4.2; a barrier is inserted to synchronize all
threads before entering the compute part. Finally, the parallel region is executed
by all the threads and the GPU they orchestrate.

If the parallel region satisfies the conditions described in Subsect. 4.3, the
outermost loop is divided and the execution is distributed to each GPU. An
actual example of the transpilating is shown in Fig. 3. At section calculations,

Fig. 2. This mapping illustrating how MACC transpiles each directive including con-
struct (left) into combined OpenMP/OpenACC code (right)

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 119

Fig. 3. This actual example showing how OpenACC kernel is transpiled and where
MACC inserts section calculation, communication and parallel region

120 K. Matsumura et al.

the last result is used as long as all component values are not changed from the
last calculation. Since variables defined outside the parallel region are shared
among threads, our multi-GPU execution can overwrite them. As an exception,
variables used as loop counters are duplicated on every thread by private clauses
of OpenMP. Reductions are firstly calculated for each GPU by OpenACC, then
the overall results are computed among threads by OpenMP’s reduction clause.

4.5 Polyhedral Extension

It is important for transpilers (such as the one we present) to easily be integrated
into existing tool-chains, frameworks and compilations techniques.

To show this, we show that MACC can be complemented with other tech-
niques to further the performance benefits. One such extension we support is
the polyhedral compilation, here materialized using PLUTO [21].

By using PLUTO prior to MACC invocation, we can automatically split
OpenACC kernels through loop fission, and thus extract the parallelism that
MACC can exploit over multiple GPUs by just appending the directive of the
kernels construct.

5 Experimental Methodology

5.1 Implementation

MACC was implemented as a prototype coupled with the Omni [22] compiler’s
C frontend/backend using XcodeML [23]. Currently, MACC only support Ope-
nACC applications written using the C language (and not, for example, FOR-
TRAN). This is a minor limitation (and resolving it is more of an engineering
effort), since the methods and techniques introduced in this paper is general
enough to not be tied to any specific programming language.

MACC also requires that arrays copied to GPU devices are contiguous, as
multidimensional arrays are converted into singledimensional arrays. The size of
coarse-grain parallelism gang specified in input is divided for each GPU equally,
and other parallelisms (worker, vector) are kept.

We evaluated the three versions of MACC: baseline which conducts GPU-
to-GPU communications through shared host memory, MACC with NVIDIA
Unified Memory (UM) which entrusts data coherency to UM, and MACC with
P2P. We also leveraged PLUTO together with MACC where applicable (for one
of the benchmarks). We compared transpiled code against the original version
of the benchmark, and also against MPI + ACC versions that we prepared by
appending OpenACC directives to the official MPI code.

Each benchmark was executed 10 times and we used the average to represent
the performance. We report performance with respect to computational perfor-
mance or execution time (OP/s, FLOP/s or seconds depending on benchmark)
as well as speedup over the original version (speedup = toriginal/tmulti−GPU).

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 121

5.2 Topology Options

MACC allows the user to specify a topology mapping, which dictates what
OpenMP thread handles what GPU device. Such information can be crucial
in system with non-homogeneous links between the GPU devices.

While not the primary focus of the present study, we found that by re-
assigning the thread-to-GPU mapping on P2P-enabled GPUs (NVIDIA’s to be
precise), we can get a performance increase. The topology mapping is conveyed
to MACC through an environmental variable.

5.3 Environment

We evaluated the performance using a single node on the new TSUBAME3.0
supercomputer at the Global Scientific Information and Computing Center
(GSIC), Tokyo Institute of Technology. A node in the TSUBAME3.0 super-
computer contains 4 NVIDIA P100 GPUs [24]. The GPUs are interconnected in
an all-to-all fashion using NVLink technology; note, however, that the links are
heterogeneous and different: two of the links (GPU0 ↔ GPU2, GPU1 ↔ GPU3) have
80 GB/s bidirectional bandwidth and the remaining links have 40 GB/s bidirec-
tional bandwidth. Each TSUBAME 3 node also contain two CPUs (Intel Xeon
E5-2680v4) with a total of 28 general-purpose x86-64 cores. Table 1 provides
more detailed system information.

For all experiments, we used PGI Compiler version 17.10 and NVIDIA CUDA
version 9.0. Inside MACC we have OpenMP threads each orchestrate individual
GPU; more specifically, the mapping is as follows: {thread0, GPU0}, {thread1,
GPU2}, {thread2, GPU1}, {thread3, GPU3}. Our mapping follows the heteroge-
neous links of the GPU interconnect.

PGI Compiler supports UM only for dynamically allocated memory. We
implemented an extension in MACC to force static allocations to be dynam-
ically allocated.

Table 1. Specifications of TSUBAME3.0

CPU Intel Xeon E5-2680 V4 (Broadwell-EP, 14 core, 2.4GHz) × 2

CPU memory 256 GiB

GPU NVIDIA Tesla P100 for NVLink-Optimized Servers × 4

GPU memory 16 GB HBM2@732 GB/s / GPU

OS SUSE Linux Enterprise Server 12 SP1

Compiler PGI Compiler 17.10

Compiler option -O4 -fastsse -ta=tesla,cuda9.0 -acc -mp

-Munsafe par align -Mmovnt -mcmodel=medium

CUDA CUDA 9.0

122 K. Matsumura et al.

5.4 Benchmarks

We selected four benchmarks to evaluate our transpiler.
Himeno Benchmark [25] is a benchmark which solves a 3-D Poisson’s equa-

tion by Jacobi method. We created an OpenACC version of this benchmark by
adding directives to the official code. In the baseline OpenACC version of code,
the calculation part and the substitution part are executed on an accelerator,
and they are repeated for certain time-steps. Each part consists of three loops,
and they are tightly nested and have no loop-carried dependency between the
iteration. The baseline code collapses three-nested loops into single loops. The
loop has SIMD parallelism vector (the size is 256), and coarse-grain parallelism
gang and fine-grain parallelism worker are not specified (their size is decided by
compiler’s runtime). In multi-GPU execution by MACC, halo communications
between GPUs are inserted for each execution of the calculation part. As the
problem size, we chose Large (i × j × k) = (256 × 256 × 512).

NAS Parallel Benchmarks CG (NPB-CG) [26] is a benchmark which calcu-
lates the minimum eigenvalue of a sparse symmetric positive matrix. We used an
OpenACC version of this benchmark, created by Xu et al. [27]. In the baseline
program, sparse matrix multiplications (SpMV) and eigenvalue calculations are
offloaded to an accelerator and they are repeated for certain times. The SpMV
execution applies gang to the iteration over each row, and applies both worker
and vector to the inner loop over each non-zero element of the row. The gang
size is equal to the row size of the matrix, worker size 4, and vector size 32.
In multi-GPU execution by MACC, a communication of the row size from each
GPU to all other GPUs are generated for each execution of SpVM. We chose
the problem Class C (rowsize = 150, 000) for the evaluation.

For comparison, we prepared hand-coded MPI code (MPI+ACC) of Himeno
Benchmark and NPB-CG by adding OpenACC directives to the official MPI
code in same parallelization style as above. Regarding only NPB-CG, the official
code is written by Fortran and the number of process is limited to N2.

The Scalable Heterogeneous Computing Benchmark Suite MD (SHOC-MD)
[28] is a benchmark which performs an N-body computation (the Lennard-Jones
potential from molecular dynamics) using a neighbor-list algorithm. In evalua-
tion, the N-body computation against 73,728 atoms is performed 512 times in
double precision. There is no data dependency between the 512 computations.
We obtained SHOC-MD’s OpenACC source-code from the official repository.
The source-code has one OpenACC kernel which is just enclosed by the kernels
construct to execute one-time N-body computation.

PolyBench/ACC [29] is a polyhedral benchmark suite targeting accelerators.
We chose the covariance code (COVAR) from PolyBench/ACC to test MACC’s
polyhedral extension. We used the OpenACC source-code of the official repos-
itory. In evaluation, a large covariance matrix (16, 384 × 16, 384) is calculated.
The one compute-bound kernel is originally not parallelizable by MACC due to
a symmetric-matrix creation while calculating covariances.

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 123

6 Results

The performance with respect to the number of GPUs is seen in Fig. 4. Overall,
we see that our transpiler do provide the means to increase the performance of
the application by multi-GPU. However, depending on the application charac-
teristics, different behaviors are observed.

Using MACC, we measured the performance of two data coherence imple-
mentations: our own described in Sect. 4 (with and without P2P support), and
using NVIDIA Unified Memory (UM). Despite the fact that UM internally use
P2P, we find that our implementation without P2P outperforms it in all but one
case; enabling P2P in our implementation always executes faster than UM.

We also find that for applications whose data patterns require plenty inter-
GPU communication (e.g. NPB-CG and in-parts the Himeno benchmark),
enabling the P2P acceleration inside MACC can have significant performance
increases. For applications that MACC’s transform is inadequate, we show that
we can leverage other optimization techniques (the polyhedral compilation in
case of this evaluation) to overcome bottlenecks otherwise hard to deal with.
Finally, we also find that MACC can automatically generate multi-GPU code
that is performance comparable to handwritten MPI+OpenACC code.

The remaining section continues to in-detail provide the analysis on a per-
benchmark basis.

Himeno Benchmark. The speedup for the Himeno benchmark is shown in
Fig. 4 (a). Using only the MACC compiler yields an average speedup of 2.55×
with four GPUs activated without P2P; further performance can be reached
by allowing MACC to exploit the P2P communication between GPUs, which
can yield an up-to 32.1% performance increase (3.36× speedup) on average.
Using UM yields performance similar to MACC without the P2P addition. One
MPI version (N × 1 × 1) which divides the i, j and k dimension by N , 1 and 1
respectively as with baseline MACC, and another MPI version (2×2×1) which is
minimizing communications between processes yield slightly lower performance
(−12.6% and −1.6% respectively) compared to baseline MACC.

NPB-CG. Performance results for the NPB-CG is shown in Fig. 4(b). We see
that MACC (with and without P2P) scales with the given GPUs, yielding a
2.16× and 1.54× performance speedup respectively. MACC with P2P enabled
scales stably better (19.9%, 34.9% and 40.9% when using 2 ∼ 4 GPUs respec-
tively). Direct data transfer between MPI processes incurs a large 72.9% over-
head when using 4 GPUs, which limits scalability; the average increase in perfor-
mance experienced by the MPI version is 1.09×. Note that our version that use
UM experience a loss of application performance (negative scaling) when increas-
ing the number of GPUs. We found that UM thashes the memory (by thrashes
we mean that it frequent causes page faults and page migrations), which leads
to large performance losses.

124 K. Matsumura et al.

1 2 3 4

ORIGINAL
MACC (UM)
MACC
MACC (+ P2P)
MPI + ACC (N x 1 x 1)
MPI + ACC (2 x 2 x 1)

(a) Himeno Benchmark

GPUs

G
F

L
O

P
S

0
10

0
30

0
50

0
70

0

0
0.

5
1

1.
5

2
2.

5
3

3.
5

S
P

E
E

D
U

P

1 2 3 4

ORIGINAL
MACC (UM)
MACC
MACC (+ P2P)
MPI + ACC

(b) NPB−CG

GPUs

G
o

p
/s

0
20

40
60

80
10

0

0
0.

5
1

1.
5

2
2.

5

S
P

E
E

D
U

P

1 2 3 4

ORIGINAL
MACC (UM)
MACC
MACC (+ P2P)

(c) SHOC−MD

GPUs

T
F

L
O

P
S

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

0
1

2
3

4
5

S
P

E
E

D
U

P

ORIGINAL
MACC (UM)
MACC (+ P2P)
MACC (+ P2P + PLUTO)
MACC (+ P2P + PLUTO + HAND−OPT)

1 2 3 4

ORIGINAL
MACC (UM)
MACC (+ P2P)
MACC (+ P2P + PLUTO)
MACC (+ P2P + PLUTO + HAND−OPT)

(d) PolyBench/ACC COVAR

GPUs

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

0
20

60
10

0
14

0

0
0.

5
1

1.
5

2
2.

5

S
P

E
E

D
U

P

Fig. 4. This result with respect to number of GPUs displaying computational perfor-
mance or execution time as well as speedup against original version

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 125

SHOC-MD. Performance results for the SHOC-MD benchmark is shown in
Fig. 4(c). Unlike the other benchmarks, SHOC-MD do not benefit from P2P
communication, since the application is inherently parallel. The cause for the
observed superlinearity when moving from one to two GPUs (2.78× speedup on
average) is not known (and it is kept even if we manually set the parallelism sizes
prior to transpiling). The UM version again thrashes memory, which significantly
reduced application scalability.

PolyBench/ACC COVAR. The result for the COVER benchmark is shown
in Fig. 4(d). By our proposed method, the benchmark does not scale at all
due to the most computation is done by a single GPU. On the other hand,
by combining MACC with PLUTO, the symmetric-matrix creation (SC) and
the covariance calculation (CC) are separated. This allows the application to
exploit multiple GPUs on the CC. However, the SC becomes executed sequen-
tially due to both MACC’s and PGI Compiler’s inability to resolve the loop-
carried dependency, which drastically reduces the performance. We overcome
this problem by manually adding a single directive of loop construct to make
sure the SC loop parallelizable (HAND-OPT in Fig. 4(d)). This manual opti-
mization can be automated by a direct operation of the polyhedral model (we
consider this future work). The HAND-OPT code (SC is still performed on
single-GPU though) reaches a performance of 2.20× speedup on average. Using
UM drastically reduces performance— again due to memory thrashing.

7 Conclusion

In this paper, we proposed MACC — an OpenACC transpiler to automatically
use multiple GPUs. We described and revealed how our transpiler performs the
transformations, how data are kept coherent and how multiple GPUs are used.
We showed that our proposed framework can transparently use or easily be
integrated into existing infrastructure by leveraging architecture-specific P2P
support (NVLink), external polyhedral compiler passes (PLUTO), and Unified
Memory— an alternative to our custom data coherence protocol.

We evaluated our implementation with respect to four, well-know and impor-
tant benchmarks. We quantified the performance of our transpiler. We found
that our custom data coherence protocol outperforms that of Unified Memory
and that using P2P communication can drastically improve scalability. We also
illustrated a case where our transpiler can use external compilation strategies to
overcome bottlenecks otherwise impossible to overcome. Finally, we also showed
that for some applications we can compete with handwritten MPI code.

In the future, we plan to continue developing the transpiler to include more
optimizations and evaluate more benchmarks. Moreover, we do plan to support
a more variety of accelerators, such as FPGAs or many-core accelerators (Xeon
Phis).

126 K. Matsumura et al.

Acknowledgements. This work was supported by JST-CREST under Grant Num-
ber JPMJCR1303 and JPMJCR1687, and JSPS KAKENHI under Grant Number
JP16F16764.

References

1. Global Scientific Information and Computing Center, Tokyo Institute of Technol-
ogy. TSUBAME. http://www.gsic.titech.ac.jp/en/tsubame

2. NVIDIA: DGX SATURNV Supercomputer for AI and Deep Learning. https://
www.cscs.ch/computers/piz-daint/

3. Oak Ridge Leadership Computing Facility. Summit. https://www.olcf.ornl.gov/
summit/

4. NVIDIA: About CUDA. https://developer.nvidia.com/about-cuda
5. The Khronos Group Inc.: OpenCL Overview. https://jp.khronos.org/opencl/
6. OpenACC-standard.org. OpenACC. https://www.openacc.org/
7. The OpenMP ARB: The OpenMP API specification for parallel programming.

http://www.openmp.org
8. Unified Memory in CUDA 6: NVIDIA. https://devblogs.nvidia.com/parallelforall/

unified-memory-in-cuda-6/
9. NVIDIA NVLink High-Speed Interconnect. NVIDIA. http://www.nvidia.com/

object/nvlink.html
10. Komoda, T., Miwa, S., Nakamura, H., Maruyama, N.: Integrating multi-GPU exe-

cution in an OpenACC compiler. In: The 42nd International Conference on Parallel
Processing (ICPP) (2013)

11. Ramashekar, T., Bondhugula, U.: Automatic data allocation and buffer manage-
ment for multi-GPU machines. ACM Trans. Architect. Code Optim. (TACO) 10(4)
(2013)

12. Sakdhnagool, P., Sabne, A., Eigenmann, R.: HYDRA: extending shared address
programming for accelerator clusters. In: Shen, X., Mueller, F., Tuck, J. (eds.)
LCPC 2015. LNCS, vol. 9519, pp. 140–155. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29778-1 9

13. Scogland, T.R.W., Feng, W.-C., Rountree, B., de Supinski, B.R.: CoreTSAR: core
task-size adapting runtime. IEEE Trans. Parallel Distrib. Syst. (TPDS) 26(11),
2970–2983 (2015)

14. Xu, R., Tian, X., Chandrasekaran, S., Chapman, B.: Multi-GPU support on single
node using directive-based programming model. In: Scientific Programming (2015)

15. Chakravarty, M.M.T., Keller, G., Lee, S., McDonel, T.L., Grover, V.: Accelerating
haskell array codes with multicore GPUs. In: The Sixth Workshop on Declarative
Aspects of Multicore Programming (DAMP) (2011)

16. Svensson, B.J., Vollmer, M., Holk, E., McDonell, T.L., Newton, R.R.: Converting
data-parallelism to task-parallelism by rewrites. In: 4th ACM SIGPLAN Workshop
on Functional High-Performance Computing (FHPC) (2015)

17. Nakao, M., Murai, H., Shimosaka, T., Tabuchi, A., Hanawa, T., Kodama, Y.,
Boku, T., Sato, M.: XcalableACC: extension of XcalableMP PGAS language using
OpenACC for accelerator clusters. In: 2014 First Workshop on Accelerator Pro-
gramming using Directives (WACCPD) (2014)

18. Kim, J., Lee, S., Vetter, J.S.: An OpenACC-based unified programming model
for multi-accelerator systems. In: The 20th ACM symposium on Principles and
Practice of Parallel Programming (PPoPP) (2015)

http://www.gsic.titech.ac.jp/en/tsubame
https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/computers/piz-daint/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://developer.nvidia.com/about-cuda
https://jp.khronos.org/opencl/
https://www.openacc.org/
http://www.openmp.org
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/nvlink.html
https://doi.org/10.1007/978-3-319-29778-1_9
https://doi.org/10.1007/978-3-319-29778-1_9

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 127

19. Kwon, O., Jubair, F., Min, S.-J., Bae, H., Eigenmann, R., Midkiff, S.P.: Automatic
scaling of OpenMP beyond shared memory. In: Rajopadhye, S., Mills Strout, M.
(eds.) LCPC 2011. LNCS, vol. 7146, pp. 1–15. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36036-7 1

20. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley, Reading (2006)

21. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: ACM SIGPLAN Pro-
gramming Languages Design and Implementation (PLDI) (2008). http://pluto-
compiler.sourceforge.net

22. Omni Compiler Project: Omni Compiler. http://omni-compiler.org
23. Omni Compiler Project: XcodeML. http://omni-compiler.org/xcodeml.html
24. NVIDIA: Tesla P100 Most Advanced Data Center Accelerator. http://www.nvidia.

com/object/tesla-p100.html
25. ACCC: RIKEN. Himeno benchmark. http://accc.riken.jp/en/supercom/hime

nobmt/
26. NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. https://

www.nas.nasa.gov/publications/npb.html
27. Xu, R., Tian, X., Chandrasekaran, S., Yan, Y., Chapman, B.: NAS paral-

lel benchmarks for GPGPUs using a directive-based programming model. In:
Brodman, J., Tu, P. (eds.) LCPC 2014. LNCS, vol. 8967, pp. 67–81. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17473-0 5. https://github.com/
uhhpctools/openacc-npb

28. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K.,
Tipparaju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) bench-
mark suite. In: Third Workshop on General-Purpose Computation on Graph-
ics Processing Units (GPGPU-3) (2010). https://github.com/vetter/shoc/tree/
openacc

29. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a high-level language targeted to GPU codes. In: Proceedings of Innovative Parallel
Computing (InPar) (2012). https://cavazos-lab.github.io/PolyBench-ACC/

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-36036-7_1
https://doi.org/10.1007/978-3-642-36036-7_1
http://pluto-compiler.sourceforge.net
http://pluto-compiler.sourceforge.net
http://omni-compiler.org
http://omni-compiler.org/xcodeml.html
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-p100.html
http://accc.riken.jp/en/supercom/himenobmt/
http://accc.riken.jp/en/supercom/himenobmt/
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://doi.org/10.1007/978-3-319-17473-0_5
https://github.com/uhhpctools/openacc-npb
https://github.com/uhhpctools/openacc-npb
https://github.com/vetter/shoc/tree/openacc
https://github.com/vetter/shoc/tree/openacc
https://cavazos-lab.github.io/PolyBench-ACC/
http://creativecommons.org/licenses/by/4.0/

Acceleration of Wind Simulation Using Locally
Mesh-Refined Lattice Boltzmann Method

on GPU-Rich Supercomputers

Naoyuki Onodera(&) and Yasuhiro Idomura

Japan Atomic Energy Agency, Chiba, Japan
onodera.naoyuki@jaea.go.jp

Abstract. A real-time simulation of the environmental dynamics of radioactive
substances is very important from the viewpoint of nuclear security. Since
airflows in large cities are turbulent with Reynolds numbers of several million,
large-scale CFD simulations are needed. We developed a CFD code based on
the adaptive mesh-refined Lattice Boltzmann Method (AMR-LBM). AMR
method arranges fine grids in a necessary region, so that we can realize a
high-resolution analysis including a global simulation area. The code is devel-
oped on the GPU-rich supercomputer TSUBAME3.0 at the Tokyo Tech, and the
GPU kernel functions are tuned to achieve high performance on the Pascal GPU
architecture. The code is validated against a wind tunnel experiment which was
released from the National Institute of Advanced Industrial Science and Tech-
nology in Japan Thanks to the AMR method, the total number of grid points is
reduced to less than 10% compared to the fine uniform grid system. The per-
formances of weak scaling from 1 nodes to 36 nodes are examined. The GPUs
(NVIDIA TESLA P100) achieved more than 10 times higher node performance
than that of CPUs (Broadwell).

Keywords: High performance computing � GPU � Lattice boltzmann method
Adaptive mesh refinement � Real-time wind simulation

1 Introduction

A real-time simulation of the environmental dynamics of radioactive substances is very
important from the viewpoint of nuclear security. In particular, high resolution analysis
is required for resident areas or urban cities, where the concentration of buildings
makes the air flow turbulent. In order to understand the details of the air flow there, it is
necessary to carry out large-scale Computational Fluid Dynamics (CFD) simulations.
Since air flows behave as almost incompressible fluids, CFD simulations based on an
incompressible Navier-Stokes equation are widely developed. The LOcal-scale
High-resolution atmospheric DIspersion Model using Large-Eddy Simulation
(LOHDIM-LES [1]) has been developed in Japan atomic energy agency (JAEA). The
LOHDIM-LES can solve turbulent wind simulation with Reynolds numbers of several
million. However, an incompressible formulation sets the speed of sound to infinity,
and thus, the pressure Poisson equation has to be solved iteratively with sparse matrix
solvers. In such large-scale problems, it is rather difficult for sparse matrix solvers to

© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 128–145, 2018.
https://doi.org/10.1007/978-3-319-69953-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_8&domain=pdf

converge efficiently because the problem becomes ill-conditioned with increasing the
problem size and the overhead of node-to-node inter-communication increases with the
number of nodes.

The Lattice Boltzmann Method (LBM) [2–5] is a class of CFD method that solves
the discrete-velocity Boltzmann equation. Since the LBM is based on a weak com-
pressible formulation, the time integration is explicit and we do not need to solve the
pressure Poisson equation. This makes the LBM scalable, and thus, suitable for
large-scale computation. As an example, researches performing large-scale calculation
using the LBM were nominated for the Gordon Bell prize in SC10 [6] and SC15 [7].
However, it is difficult to calculate multi-scale analysis with a uniform grid from the
viewpoint of computational resources and calculation time. In this work, we address
this issue based on two approaches, one is the development of an adaptive mesh
refinement (AMR) method for the LBM, and the other is optimization of the
AMR-LBM on the latest Pascal GPU architecture.

The AMR method was proposed to overcome this kind of problem [8, 9]. Since the
AMR method arranges fine grids only in a necessary region, we can realize a
high-resolution multi-scale analysis covering global simulation areas. AMR algorithms
for the LBM have been proposed, and they have achieved successful results [10, 11].

Recently, GPU based simulations have been emerging as an effective technique to
accelerate many important classes of scientific applications including CFD applications
[12–14]. Studies on LBM have also been reported on implementation of GPU [15, 16].
Since there are not many examples of AMR-based applications on the latest GPU
architectures, there is a room for research and development of such advanced appli-
cations. In this work, we implement an AMR-based LBM code to solve multi-scale air
flows. The code is developed on the GPU-rich supercomputer TSUBAME3.0 at the
Tokyo Institute of Technology, and the GPU kernel functions are tuned to realize a
real-time simulation of the environmental dynamics of radioactive substances.

This paper reports implementation strategies of the AMR-LBM on the latest Pas-
cal GPU architectures and its performance results. The code is written in CUDA 8.0
and CUDA-aware MPI. The Host/Device memory is managed by using Unified
memory, and the GPU/CPU buffers are directly passed to a MPI function. We
demonstrate the performance of both CPU and GPU on the TSUBAME3.0. A single
GPU process (a single NVIDIA TESLA P100 processor) achieves 383.3 mega-lattice
update per second (MLUPS) when leaf size equals to 43 in single precision. The
performance is about 16 times higher than that of a single CPU process (two
Broadwell-EP processors, 14 � 2 cores, 2.4 GHz). Regarding the weak scalability
results, the AMR-LBM code achieves 22535 MLUPS using 36 GPU nodes, which is
85% efficiency compared with the performance on a single GPU node.

2 Lattice Boltzmann Method

The LBM solves the discrete Boltzmann equation to simulate the flow of a weakly
compressible fluid. The flow field is expressed by a limited number of pseudo particles,
which evolve through streaming and collision processes. The configuration space is
discretized by uniform grids. Since pseudo particles move onto the neighbor lattice

Acceleration of Wind Simulation 129

points after one time step in the streaming process, this process is completed without
any error. The macroscopic diffusion and the pressure gradient are expressed by the
local collisional process. The time evolution of the discretized velocity function is

fi xþ ciDt; tþDtð Þ ¼ fi x; tð ÞþXi x; tð Þ: ð1Þ

Here, Dt is the time interval, ci is the lattice vectors of pseudo particles, and Xi is the
collision operator.

It is important to choose a proper lattice velocity (vector) model by taking account
of the tradeoff between efficiency and accuracy. Since their low computational cost and
high efficiency, the D3Q15 and D3Q19 models are popular. Recently, it was pointed
out that these velocity models do not have enough accuracy at high Reynolds number
with complex geometries [17]. On the other hand, the D3Q27 model is suitable model
for a weakly compressible flow at high Reynolds number.

Figure 1 shows schematic figures of the above velocity vector models. Since air-
flows in urban cities are turbulent with high Reynolds number, we adapt the D3Q27
model. The components of the velocity vector are defined as

ci ¼

0; 0; 0ð Þ
�c; 0; 0ð Þ; 0;�c; 0ð Þ; 0; 0;�cð Þ

�c;�c; 0ð Þ; 0;�c;�cð Þ; �c; 0;�cð Þ
�c;�c;�cð Þ

8>>><
>>>:

i ¼ 0

i ¼ 1� 6

i ¼ 7� 18
i ¼ 19� 26

ð2Þ

Here, c is sound speed, and is normalized as c = 1. Each velocity refers the pre-
determined upwind quantity. Since memory accesses are simple and continuous, the
streaming process is suitable for high performance computing.

Fig. 1. Components of the velocity vector of (a) D3Q15, (b) D3Q19, and (c) D3Q27 models.

130 N. Onodera and Y. Idomura

2.1 Single Relaxation Time Model

The macroscopic diffusion and the pressure gradient are expressed by the collisional
process. The lattice BGK model [18] is widely used in most of the previous studies
because of its simplicity. A collision operator of a single relaxation time (SRT) model
are defined as

Xi x;tð Þ ¼ � 1
s

fi x; tð Þ � f eqi ðx; tÞð Þ; ð3Þ

where s is relaxation time, and f eqi is a local equilibrium distribution function. The
relaxation time in the collisional process is determined using the dynamic viscosity and
the sound speed

s ¼ 1
2
þ 3m

c2Dt
: ð4Þ

In this wind simulation, since the Mach number is less than 0.3, the flow can be
regarded as incompressible. The equilibrium distribution function f eqi of incompressible
model is given as

f eqi ðx; tÞ ¼ xi 1þ 3ci �~u
c2

þ 9ðci �~uÞ2
2c4

� 3~u2

2c2

 !
: ð5Þ

Here, q is the density and~u is the macroscopic velocity vector. The collision operator is
equivalent to the viscous term in the Navier-Stokes equation. The corresponding
weighting factors of the D3Q27 model are given by

xi ¼
64=216
16=216
4=216
1=216

8><
>:

i ¼ 0
i ¼ 1� 6
i ¼ 7� 18
i ¼ 19� 26

: ð6Þ

Since the SRT model is unstable at high Reynolds number, a Large-Eddy Simu-
lation (LES) model has to be used to solve the LBM equation. The dynamic
Smagorinsky model [19, 20] is often used, but it requires an averaging process over a
wide area to determine the model constant. This is a huge overhead for large-scale
computations, and it will negate the simplicity of the SRT model.

2.2 Cumulant Relaxation Time Model

The cumulant relaxation time model [21, 22] is a promising approach to solve the
above problems. This model realizes turbulent simulation without LES model, and we
can determine the equilibrium distribution function locally. Unlike the SRT model, the
collisional process is not determined in the momentum space. We redefine physical

Acceleration of Wind Simulation 131

quantities in the following. We take the two-sided Laplace transform of distribution
function as

F ~N
� �

¼ L f ~n
� �n o

¼
Z 1

�1
f ~n
� �

e�~N �n
!

d~n: ð7Þ

Here, ~N is the velocity frequency variable.~n ¼ n; t; fð Þ are the microscopic velocities.
The coefficients of the series as countable cumulants cabc are written as

cabc ¼ c�a�b�c @a@b@c

@aN@b�@cZ
ln FðN;!;ZÞð Þ: ð8Þ

Here, the subscripts a, b, and c are indices of the cumulant. All decay processes are
computed by

c�abc ¼ ceqabc þð1� xabcÞcabc: ð9Þ

The asterisk � is the post collision cumulant, and xabc is the relaxation frequency.
The Maxwellian equilibrium is expressed as a finite Taylor expansion.

ln FeqðN; � ;ZÞð Þ ¼ ln
q
q0

� �
� Nu� � v� Zwþ c2h

2
N2 þ!2 þZ2Þ� �

: ð10Þ

The velocities u, v, and w are the components of macroscopic velocity vector~u, and h is
a parameter. Cumulants are calculated by using local quantities as discretized velocity
function fi and macroscopic velocities ~u. Since this model is a computationally
intensive algorithm with local memory access, it should be well suited to achieve high
efficiency for GPU computing.

2.3 Boundary Treatment

The LBM is suitable for modeling boundary conditions with complex shapes. The
bounce-back (BB) scheme and the interpolated bounce-back (IBB) scheme make it
easy to implement the no-slip velocity condition. Immersed boundary methods
(IBM) [23, 24] are also able to handle complex boundary conditions by adding external
forces in the LBM.

In this work, we applied the IBB scheme [25, 26] because of their flexibility and
compute efficiency. Figure 2 shows schematic figures of the IBB scheme. The IBB
scheme directly applies the following conditions to the velocity distribution function
depending on a distance function D

f �i; �1ð Þ x; tð Þ ¼
2Dfi; þ 1ð Þ x; tð Þþ 1� 2Dð Þfi; þ 1ð Þ x� ciDt; tð ÞþFi; �1ð Þ D\ 1

2

1
2D fi; þ 1ð Þ x; tð Þþ 2D�1ð Þ

2D fi; �1ð Þ x; tð Þþ 1
2DFi; �1ð Þ D� 1

2

;

(
ð11Þ

132 N. Onodera and Y. Idomura

where subscript ð�1Þ is the direction of each velocity component, and Fi is force on the
solid boundary given as

Fi;ð�1Þ ¼ �3xiq
ci � ub!
c2

: ð12Þ

Here ub
! is a velocity vector of the boundary. Since each velocity function refers the

predetermined neighbor upwind and downwind quantities, it is more suitable for high
performance computing than the IBM [23, 24].

3 Adaptive Mesh Refinement (AMR) Method

3.1 Block-Structured AMR Method

Since a lot of buildings and complex structures make the air flow turbulent in large
urban areas, it is necessary to carry out multi-scale CFD simulations. However, it is
difficult to perform such a multi-scale analysis with uniform grids from the viewpoint
of computational resources and calculation time. The AMR method [8, 27] is a grid
generation method, which can arrange high-resolution grids only in a necessary region.
In the AMR methods based on a forest-of-octrees approach [16, 28], one domain
named a leaf is subdivided into four leaves in two dimensions (quadtree) and eight
leaves in three dimensions (octree). Since the leaf is recursively subdivided into half, it
is easy to implement the algorithm for parallel computing, and the same number of
leaves are assigned to each process.

The block-structured AMR method [29, 30] is an efficient method suitable for
multithread computation. Since a leaf contains N3 grid points and these memory
accesses are continuous, it is suitable for GPU computation. Figure 3(a) shows a
schematic figure of computational leaves at the interface of leaves at different levels,
where each level needs the halo region across the interface. In such halo leaves, data is
constructed from data on another level. Figure 3(b) shows an example of the leaf
arrangement in 2D case, where the calculation region at each level is surrounded by the
halo region, which is constructed from the data on leaves at the next level. Therefore,
only one level difference is allowed at the interface of leaves at different levels.

Fig. 2. Interpolated bounce-back boundary conditions of (a) D\ 1
2 and (b) D� 1

2. The velocity
distribution function f � is computed by a linear interpolation in the upwind cell.

Acceleration of Wind Simulation 133

The AMR method is applied to resolve the boundary layer near the buildings. The
octree is initialized at the beginning of the simulation and does not dynamically change
the mesh during the time step.

3.2 LBM with AMR

The LBM is a dimensionless method in time and space. It is necessary to arrange these
parameters according to the resolution of AMR grids [5]. The kinematic viscosity,
defined in the LBM, depends on the time step size with

m ¼ 1
3

s� 1
2

� �
c2Dt ð13Þ

To keep a constant viscosity on coarse and fine grids, the relaxation time s satisfies the
following expression

sf � 1
2

� �
¼ m sc � 1

2

� �
: ð14Þ

Here the super- and sub-scripts c and f denote the value of the coarse and fine grids,
respectively. The coefficient m is the refinement factor. The time step is also redefined
for each resolution as Dtf ¼ Dtcð Þ=m. To take account of the continuity of hydrody-
namic variables and their derivatives on the interface between two resolutions, the
distribution functions satisfy the following equations

f ci ¼ f eq;fi þm
sc � 1
sf � 1

f fi � f eq;fi

� �
; ð15Þ

f fi ¼ f eq;ci þ 1
m
sf � 1
sc � 1

f ci � f eq;ci

� �
: ð16Þ

Fig. 3. Schematic figures of computational leaves: (a) Interpolating operations of (red) linear
interpolation, (green) exchange values between coarse and fine grids, (blue) copy values from
fine to coarse grid in 1D case. (b) An example of leaf arrangement in 2D case. Calculation region
is surrounded by the halo (boundary) region of the same refined level. (Color figure online)

134 N. Onodera and Y. Idomura

The refinement factor m is set to 2 for stability and simplicity reasons.
Figure 4 illustrates the flowchart of the computational procedure on coarse grid and

fine grid. At first, streaming and collision terms are calculated on each grid. Before the
fine grid calculation starts at time tþDt=2, boundary values around the fine grid are
interpolated from the coarse grid. MPI communications are executed after the com-
putational procedures ① and ③. Temporal and spatial interpolations in halo region are
executed at ② and ④.

4 Implementation and Optimization

4.1 CPU and GPU Implementation

In this section, we describe implementation of wind simulation code. The code is
written in CUDA 8.0. We adopted the Array of Structures (AoS) memory layout to
optimize multi-threaded performance. Each array is allocated by using the CUDA
runtime API “cudaMallocManaged” which defines CPU and GPU memory space in the
same address space. The CUDA system software automatically migrates data between
CPU and GPU, so that it keeps the portability.

Figure 5 shows pseudocodes for stencil computation on CPU and GPU. The cal-
culation code consists of a calling function (Fig. 5 top), loop functions (Fig. 5 middle),
and a kernel function (Fig. 5 bottom). The calling function and the kernel function are
shared by CPU and GPU. The loop functions generate indices for multi-threaded
computation. CUDA threads are assigned to grid points in the leaf, and thread blocks
are assigned to leaves.

The code is parallelized by the MPI library. OpenMPI 2.1.1 is CUDA-aware MPI
that enables to send and receive CUDA device memory directly. OpenMPI 2.1.1 also
supports Unified Memory, and the GPU/CPU buffers can be directly passed to a MPI
function. MPI communications are executed in each leaf unit, and the leaf unit is
transferred by one-sided communication of “MPI_Put” function implemented by
MPI-2.

Fig. 4. Flowchart of the computational procedure on coarse grid ðLv:0Þ and fine grid: ðLv:1Þ ①
Streaming and collision on each grid, ② time and space interpolation, ③ streaming and collision
on fine grid, and ④ space interpolation on each level. Processes ② and ④ are executed in halo
region.

Acceleration of Wind Simulation 135

4.2 Optimization for GPU Computation

In our GPU implementation, the streaming and collision processes are fused to reduce
global memory accesses. In order to achieve high performance, it is also necessary to
use thousands of cores in GPUs. The upper limit of the number of threads is limited by
the usage of registers per streaming multiprocessor (SM), and it is determined at
compile time. For example, according to the GP100 Pa whitepaper of NVIDIA [32],
the Pascal GP100 provides 65536 32-bit registers on each SM. If one thread requires
128 registers, only 512 threads are executed on SM simultaneously. On the other hand,
if one thread requires 32 registers, 2048 threads are executed and that is the upper limit
of the Pascal GP100. Since the D3Q27 model and its cumulant collision operator need
a lot of register memories on GPUs, the number of threads executed is limited by the
lack of registers.

As a simple solution to reduce the amount of registers, it is effective to create a
kernel function for each conditional branch. The main conditional branch of the
streaming and collision function is the boundary condition on the object. The IBB
scheme (Eq. (13)) requires a level-set function and velocity vector of boundary, and
this branch requests more memory read/write and registers. In this research, since the

Fig. 5. Pseudocodes for stencil computation as (top) function to call CPU or GPU instruction,
(middle left) function executed on the CPU, (middle right) function executed on the GPU, and
(bottom) common function of both CPU and GPU.

136 N. Onodera and Y. Idomura

boundary objects are fixed, optimal kernel functions are created at the beginning of
calculation. We show the PTX information generated by NVIDIA CUDA Compiler
8.0.61 in single precision.

As described above, the function without boundary conditions (Func1) can reduce
the number of registers compared to the original function (Func2). By executing two
functions asynchronously, it is possible to use more threads than the original calcu-
lation. Details of computational performance are discussed in Sect. 6.1 below.

5 Numerical Verification and Validation

5.1 Lid-Driven Cavity Flow

The validity of the adopted local grid refinement was verified by simulating the clas-
sical problem of lid-driven cavity flow in two-dimensions [33]. The computational
domain is surrounded by walls, and its top boundary wall moves in the horizontal
direction (left to right). Table 1 shows the discretization parameters. The whole
computational domain is divided into 8 � 8 sub-domains. The coarse-resolution leaves
are located in 6 � 6 sub-domains of the center part, and the middle-resolution leaves
are located around coarse-resolution leaves, and the fine-resolution leaves are located
near the walls. Each leaf contains 8 � 8 grid points. The total number of grid points in
2D-surface is 20992. It is equivalent to 32% grid points compared to the finest uniform
grids in the whole domain.

Figure 6 shows velocity profiles of velocities along a vertical line and a horizontal
line passing through the center of the cavity at (a) Re = 1000, (b) Re = 3200,
(c) Re = 5000, and (d) Re = 10000. Calculation results are in good agreement with the

Table 1. Discretization parameters for 2D lid-driven cavity flow.

AMR lv. Dleaf Dx # of leaves # of grid points

0 L/8 L/64 36 = 62 2304
1 L/16 L/128 52 ¼ 142 � 122 3328

2 L/32 L/256 240 ¼ 322 � 282 15360

Total – – 328 20992

Acceleration of Wind Simulation 137

reference results. If we used the SRT model, calculation was diverged at a high
Reynolds number such as 3200. We conclude that our simulation is robust against high
Reynolds number, and physical phenomena can be reproduced with few grid points.

5.2 Wind Tunnel Test

The code is validated against a wind tunnel test, which was released from the National
Institute of Advanced Industrial Science and Technology (AIST) in Japan [34].
Figure 7 shows schematic figures of a wind tunnel test. A cube is placed on the center
of the floor. Inflow and outflow boundary conditions are applied in the streamwise
direction. Periodic boundary conditions are assumed in the spanwise direction.
A non-slip condition is imposed on the ground, and a moving boundary condition is
given on the top in the vertical direction. The inlet velocity is set to be

uðzÞ ¼ us
z
zs

� �1
7

; ð17Þ

Fig. 6. Velocity profiles of u along a vertical line (green solid line) and v along a horizontal line
(orange solid line) passing through the center of the cavity at (a) Re = 1000, (b) Re = 3200,
(c) Re = 5000, and (d) Re = 10000. Each axis is normalized by the half-length of computational
domain and the velocity of the moving wall. (Color figure online)

138 N. Onodera and Y. Idomura

where the ground roughness is zs = 0.5 m and wind velocity coefficient is us =
2.14 m/s. The Reynolds number, which is evaluated from the inlet velocity and
physical properties of the air, is about 14000 at the top of the cube (z = 0.1 m).

Table 2 shows the discretization parameters for wind tunnel test. The computa-
tional domain size is from (−19.2, −1.2, −0.2) to (19.2, 1.2, 2.2) corresponding to the
streamwise, spanwize and vertical direction, respectively. The bottom boundary con-
dition is given at z = 0.0, and the top boundary condition is given at z = 2.0.

We compute a simulation with three refinement levels. Fine-resolution leaves are
located near the cube, and middle-resolution leaves are surrounding the fine-resolution
leaves, and coarse-resolution leaves are used in the outer region. The total number of
grid points is 3.78 � 107, which corresponds to 4.2% compared to the finest uniform
grids in the whole domain.

Figure 8 shows mean velocity profiles in the stream wise direction. Red solid lines
show calculation results and blue dots show experimental data. Figure 8(a) shows
mean velocity profiles horizontal plane at the center of the cube (z = H/2). Calculation
results are smooth around a cube and in good agreement with the reference results.
Figure 8(b) shows mean velocity profiles in vertical plane at the center of the cube
(y = 0). The flow behind the cube is captured well, and calculation results are also in
good agreement with the reference results. We conclude that our simulation can
reproduce the wind tunnel experiment with an optimal number of grid points.

Fig. 7. Schematic figures of the wind tunnel test: (a) top view and (b) side view. A cube is
placed on the center of the floor.

Table 2. Discretization parameters for wind tunnel test.

AMR lv. Dx H ¼ 0:1mð Þ Domain size
Xmin;max=Ymin;max=Zmin;max
� � # of leaves # of grid

points
�106
� �

0 H=4 −1.5, 1.5/−0.5, 0.5/−0.2, 0.75 24048 12.31
1 H=8 −4.0, 4.0/−1.0, 1.0/−0.2, 1.5 25800 13.21
2 H=16 −19.2, 19.2/−1.2, 1.2/−0.2,

2.2
24000 12.29

Total – – 73848 37.81

Acceleration of Wind Simulation 139

6 Performance on the TSUBAME 3 Supercomputer

The TSUBAME 3.0 supercomputer at the Tokyo Institute of Technology is equipped
with more than 2,000 GPUs (NVIDIA TESLA P100). The peak performance is
12.15/24.3 PFLOPS in double/single precision, respectively, and has achieved 8.125
PFLOPS on the Linpack benchmark. Table 3 shows the specification of TSUBAME
3.0. A compute node consists of two Intel Xeon E5-2680 V4 Processor (Broadwell-EP,
14 cores, 2.4 GHz) and four NVIDIA TESLA P100 processors. We measured the
performance of our LBM code on TSUBAME 3.0.

6.1 Performance on a Single Process

We show the performance results of the application on a single process by comparing
three versions as follows. A CPU version is the original code parallelized by using
OpenMP library, and executed on a single node (two CPU sockets). A GPU version is
written in CUDA, and executed on a single GPU. An Optimal GPU version is opti-
mized by using a boundary separate technique described Sect. 4.2 above. CPU and
GPU codes are compiled with the NVIDIA CUDA Compiler 8.0.61 (-O3 -use_-
fast_math -restrict -Xcompiler fopenmp –gpu-architecture = sm_60 -std = C++ 11).
As for OpenMP parallelization, we use 28 threads on two Intel Xeon E5-2680 V4
Processor, while for GPU computation, the number of threads is set to minðNLeaf ; 256Þ.

Fig. 8. Mean velocity profiles (m/s) in stream wise direction: (a) in horizontal plane at the center
of the cube (z = 1/2H), and (b) in vertical plane at the center of the cube (y = 0). Red solid lines
show calculation results and blue dots show experiment data as uplot ¼ 0:02umean þ xline.
Simulation and experiment data have been measured along the lines: xline ¼ ð�50; 0; 65; 100;
150; 200; 250mmÞ. (Color figure online)

Table 3. TSUBAME 3.0 specification of a node.

Architecture Bandwidth/node (GB/s)

CPU Intel Xeon E5-2680 V4 (14 cores) � 2 153.6 (76.8 � 2)
GPU NVIDIA TESLA P100 (16 GB, SXM2) � 4 2928 (732 � 4)
Network Intel Omni-Path HFI 100 Gbps � 4 50 (12.5 � 4)
Memory DDR4-2400 DIMM 256 GB –

PCI Express PCI Express Gen3 � 16 –

140 N. Onodera and Y. Idomura

Table 4 shows the benchmark parameters and the single process performance on
TSUBAME 3.0. Here, the single process performance is estimated by subtracting the
communication cost from the total cost. We scan the number of grid points in a leaf
(Nleaf), while the total number of grid point are set to be equal. The performances in
mega-lattice update per second (MLUPS) are measured in single precision. Table 4
shows the performances of the GPU version are about 10 times higher than those of the
CPU version under various leaf size. It is unclear why the GPU performance is much
higher than the ratio of GPU and CPU memory bandwidth. We estimate that the main
kernel is compute intensive, and the NVIDIA CUDA compiler may not generate the
SIMD-optimized CPU code. There is a possibility that the Intel compiler can generate
faster CPU code.

The performances of the Optimal GPU version are about 1.5 times higher than
those of the GPU version under the conditions of NLeaf ¼ ð43; 83; 163Þ. Since the
benchmark is executed including the whole AMR leaves, the boundary separate
technique works well under the condition with a small leaf size.

6.2 Performance on Multiple Processes in a Single Node

We show the performance results of the application on multiple processes in a single
node. A communication cost of GPU based applications becomes a large overhead
compared with that of CPU based ones. Table 3 shows that the memory bandwidth of
GPUs is 19 times higher than that of CPUs in a single node. In other words, an impact
of the communications cost on GPUs are 19 times larger than that on CPUs.

Table 5 shows the performance the Optimal GPU version with 4 MPI processes in
a single node. The total number of leaves is 4 times larger than the condition used in
Table 4. Although the performances in a single node is higher than those in a single
GPU, the communication time occupies most of the total calculation time particularly
when leaf size equals to 43. Since MPI communications are executed in each leaf unit,
it is difficult to obtain high network bandwidth with a small message size. Unfortu-
nately, MPI communications using Unified memory in OpenMPI 2.1.2 are slower than
using Device or Host memory. This may be resolved by using GPUDirect RDMA or
NVLink. We will address this issue in future work.

Table 4. Performance on a single process in a single node of TSUBAME 3.0.

Nleaf # of leaves in each level (Lv. = 0/1/2) CPU (2 sockets)
MLUPS

GPU
MLUPS

Optimal GPU
MLUPS

43 19008 /73728 /294912 23.3 231.6 383.5
83 2448 /9216 /36864 17.4 237.4 369.7
163 324 /1152 /4608 18.0 229.0 342.7
323 45 /144 /576 13.2 184.4 243.5

Acceleration of Wind Simulation 141

(Note: OpenMPI 2.1.2 supports GPUDirect RDMA, which enables a direct P2P
(Peer-to-Peer) data transfer between GPUs. However, we do not succeed in MPI
communications using the GPUDirect RDMA in TSUBAME 3.0.)

6.3 Performance on Multiple Nodes

We show the performance results of the application in multiple nodes. The leaf size is
set to 83 considering the performance and applicability to real problems. The number of
leaves in a node is the same as that in Sect. 6.2 above.

Figure 9 presents weak scalabilities of CPU and GPU performances on TSUBAME
3.0. In these figures, the horizontal axis indicates the number of nodes, and the vertical
axis indicates the MLUPS per step respectively.

In the weak scaling tests, the parallel efficiencies from 1 node to 36 nodes of CPUs
and GPUs are 98% and 85%, respectively. Although CPUs show better scalability, the
performance on a single GPU node (733MLUPS) is comparable to that on 36 CPU
nodes (767MLUPS).

6.4 Estimation of Performance in Wind Simulation

Our final goal is to develop a real-time simulation of the environmental dynamics of
radioactive substances. We estimate the minimum mesh resolution Dxreal time, at which a
wind simulation can be executed in real time. The mesh resolution can be easily
estimated from the Courant–Friedrichs–Lewy (CFL) condition as

Table 5. Performance of GPU computation in a single node.

Nleaf # of leaves in each process (Lv. = 0/1/2) MLUPS
(4 GPUs)

MPI cost
%

43 19008/73728/294912 261.0 88.2
83 2448/9216/36864 729.5 65.4
163 324/1152/4608 840.6 48.8

Fig. 9. Weak scaling results of the LBM simulation on (a) GPUs and (b) CPUs. 4 MPI
processes are executed in each node.

142 N. Onodera and Y. Idomura

Dxrealtime ¼ Utarget

CFLtarget
� Dtcal: ð18Þ

Here Utarget is a wind velocity, and CFLtarget is the CFL number at Utarget, and Dtcal is
the elapse time per step.

We estimate the mesh resolution under the condition of ðUtarget;CFLtargetÞ
¼ ð5:0m=s; 0:2Þ. The computational condition is based on a single GPU node case in
the previous Subsect. 6.3. The fine leaves are placed near the ground surface, and the
resolution changes in the height direction. The leaves are arranged with 24� 24� 17
at Lv. 0, 48� 48� 16 at Lv. 1, and 96� 96� 16 at Lv. 2. The computational per-
formance is achieved 733MLUPS using a single GPU node. The minimum mesh
resolution becomes Dxrealtime ¼ m that corresponds to the whole computation domain
size of Lx; Ly; Lz

� � ¼ 2:8 km; 2:8 km; 3:3 kmð Þ. The above estimation shows that a
detailed real-time wind simulation is realized by GPU computing.

7 Summary and Conclusions

This paper presented the GPU implementation of air flow simulations on the envi-
ronmental dynamics of radioactive substances. We have successfully implemented the
AMR-based LBM with a state-of-the-art cumulant collision operator. Our code is
written in CUDA 8.0, and executed both on CPUs and GPUs by using the CUDA
runtime API “cudaMallocManaged”. Since the LBM kernel needs a lot of register
memories on GPUs, the number of threads executed is limited by the lack of registers.
We propose the effective optimization to create a kernel function for each conditional
branch. This technique can reduce the number of registers compared to the original
function, and the single GPU performance is accelerated by *1.5 times. The perfor-
mance of a single GPU process (NVIDIA TESLA P100) achieved 383.3 mega-lattice
update per second (MLUPS) with the leaf size of 43 in single precision. The perfor-
mance is about 16 times higher than that of a single CPU process (two Broadwell-EP
14 cores 2.4 GHz).

We have also discussed the weak scalability results. Regarding the weak scalability
results, 36 GPU nodes achieved 22535 MLUPS with the parallel efficiency of 85%
compared with a single GPU node. The present scaling studies revealed a severe
performance bottleneck due to MPI communication, which will be addressed via
GPUDirect RDMA or NVLink in the future work.

Finally, we estimate the minimum mesh resolution Dxrealtime at which air flow
simulations can be executed in real time. The above estimation shows that a detailed
real-time wind simulation is realized by GPU computing. We conclude that the present
scheme is one of efficient approaches to realize a real-time simulation of the envi-
ronmental dynamics of radioactive substances.

Acknowledgements. This research was supported in part by the Japan Society for the Pro-
motion of Science (KAKENHI), a Grant-in-Aid for Scientific Research (C) 17K06570 and a

Acceleration of Wind Simulation 143

Grant-in-Aid for Scientific Research (B) 17H03493 from the Ministry of Education, and “Joint
Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures” in Japan
(Project ID: jh170031-NAH). Computations were performed on the TSUBAME 3.0 at the Tokyo
Institute of Technology, and the ICEX at the Japan Atomic Energy Agency.

References

1. Nakayama, H., Takemi, T., Nagai, H.: Adv. Sci. Res. 12, 127–133
2. Rothman, D.H., Zaleski, S.: J. Fluid Mech. 382(01), 374–378 (1997)
3. Inamuro, T.: Fluid Dyn. Res. 44, 024001 (2012). 21 pp.
4. Inagaki, A., Kanda, M., et al.: Boundary-Layer Meteorology, pp. 1–21 (2017)
5. Kuwata, Y., Suga, K.: J. Comp. Phys. 311 (2016)
6. Rahimian, A., Lashuk, I., et al.: In: Proceedings of the 2010 ACM/IEEE International

Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–11.
IEEE Computer Society (2010)

7. Rossinelli, D., Tang, Y.H., et al.: In: Proceedings of the 2015 ACM/IEEE International
Conference on High Performance Computing, Networking, Storage and Analysis, vol. 2.
IEEE Computer Society (2015)

8. Berger, M.J., Oliger, J.: J. Comp. Phys. 53(3), 484–512 (1984)
9. Zhao, Y., Liang-Shih, F.: J. Comp. Phys. 228(17), 6456–6478 (2009)
10. Zhao, Y., Qiu, F., et al.: Proceedings of 2007 Symposium on Interactive 3D Graphics,

pp. 181–188 (2007)
11. Yu, Z., Fan, L.S.: J. Comput. Phys. 228(17), 6456–6478 (2009)
12. Wang, X., Aoki, T.: Parallel Comput. 37(9), 521–535 (2011)
13. Shimokawabe, T., Aoki, T., et al.: In: Proceedings of the 2010 ACM/IEEE International

Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–11.
IEEE Computer Society (2010)

14. Shimokawabe, T., Aoki, T., et al.: In: Proceedings of the 2011 ACM/IEEE International
Conference on High Performance Computing, Networking, Storage and Analysis, vol. 3.
IEEE Computer Society (2011)

15. Feichtinger, C., Habich, J., et al.: Parallel Computing 37(9), 536–549 (2011)
16. Zabelock, S., et al.: J. Comput. Phy. 303(15), 455–469 (2015)
17. Kang, S.K., Hassan, Y.A.: J. Comput. Phys. 232(1), 100–117 (2013)
18. Zou, Q., He, X., et al.: Phys. Fluid 9(6), 1591–1598 (1996)
19. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: Physics of Fluids A: Fluid Dynamics 3

(7), pp.1760–1765 (1991)
20. Lilly, D.K.: Phys. Fluids A 4(3), 633–635 (1992)
21. Geier, M., Schonherr, M., et al.: Comput. Math. Appl. 70(4), 507–547 (2015)
22. Geier, M., Psquali, A., et al.: J. Comput. Phys. 348, 889–898 (2017)
23. Kim, J., Kim, D., Choi, H.: J. Comput. Phys. 171(20), 132–150 (2001)
24. Peng, Y., Shu, C., et al.: J. Comput. Phys. 218(2), 460–478 (2006)
25. Chun, B., Ladd, A.J.C.: Phys. Rev. E 75(6), 066705 (2007)
26. Yin, X., Zhang, J.: J. Comput. Phys. 231(11), 4296–4303 (2012)
27. Guzik, S.M., Weisgraber, T.H., et al.: J. Comput. Phys. 259(15), 461–487 (2014)
28. Laurmaa, V., Picasso, M., Steiner, G.: Comput. Fluids 131(5), 190–204 (2016)
29. Zuzio, D., Estivalezes, J.L.: Comput. Fluids 44(1), 339–357 (2011)
30. Usui, H., Nagara, A., et al.: Proc. Comput. Sci. 29, 2351–2359 (2014)

144 N. Onodera and Y. Idomura

31. Open MPI: Running CUDA-aware Open MPI. https://www.open-mpi.org/faq/?category=
runcuda

32. NVIDIA: Whitepaper, NVIDIA Tesla P100. https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf

33. Ghia, U., Ghia, K.N., Shin, C.T.: J. Comput. Phys. 48, 387–411 (1982)
34. National Institute of Advanced Industrial Science and Technology, Database, (in Japanese).

https://unit.aist.go.jp/emri/ja/results/db/01/db_01.html

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Acceleration of Wind Simulation 145

https://www.open-mpi.org/faq/%3fcategory%3druncuda
https://www.open-mpi.org/faq/%3fcategory%3druncuda
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://unit.aist.go.jp/emri/ja/results/db/01/db_01.html
http://creativecommons.org/licenses/by/4.0/

Architecture of an FPGA-Based
Heterogeneous System for Code-Search

Problems

Yuki Hiradate, Hasitha Muthumala Waidyasooriya(B) , Masanori Hariyama,
and Masaaki Harada

Graduate School of Information Sciences, Tohoku University, 6-3-09,
Aramaki-Aza-Aoba, Aoba, Sendai, Miyagi 980-8579, Japan

hiradate.yuki.p5@dc.tohoku.ac.jp, {hasitha,hariyama}@tohoku.ac.jp,
mharada@m.tohoku.ac.jp

Abstract. Code search problems refer to searching a particular bit pat-
tern that satisfies given constraints. Obtaining such codes is very impor-
tant in fields such as data encoding, error correcting, cryptography, etc.
Unfortunately, the search time increases exponentially with the number
of bits in the code, and typically requires many months of computation
to find large codes. On the other hand, the search method mostly consists
of 1-bit computations, so that reconfigurable hardware such as FPGAs
(field programmable gate arrays) can be used to successfully obtain a
massive degree of parallelism. In this paper, we propose a heterogeneous
system with a CPU and an FPGA to speed-up code search problems.
According to the evaluation, we obtain over 86 times speed-up compared
to typical CPU-based implementation for extremal doubly even self-dual
code search problem of length 128.

1 Introduction

Fields such as cryptography, data encoding, error correcting, etc. often requires
bit patterns that satisfy particular conditions. However, finding such bit patterns
is a very time consuming problem. For example, in order to find 64-bit code that
satisfies particular conditions, we have to search 264 bit patterns. Even if we can
search one bit pattern in one clock cycle using a 4 GHz CPU, it requires over 146
years to search all combinations. For a 128-bit code search problem, the required
processing time exceeds the age of the universe. Therefore, how we can solve such
code search problems. Mathematicians propose many algorithms to generate a
particular code that satisfies the conditions, instead of search for all possible bit
patterns. For example, to find all 64-bit numbers that are divisible by four, we
can fix the least significant two bits to zero and generate all combinations of bit
patterns of the other 62 bits. This increases the processing speed by four times.
For more complex problems, many different methods are available to reduce the
amount of searches. Most of those methods use bit operations or fixed-point
computations. On the other hand, CPUs and GPUs are specialized for floating-
point computations, and using those for such simple bit operations is not an
efficient method.
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 146–155, 2018.
https://doi.org/10.1007/978-3-319-69953-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_9&domain=pdf
http://orcid.org/0000-0001-5108-9891

Architecture of an FPGA-Based Heterogeneous System 147

In this paper, we use re-configurable hardware call FPGA (field pro-
grammable gate array) [1] to efficiently compute bit operations. FPGAs con-
tain over millions of multi-input logic gates and registers [2]. Since all these
logic gates and their interconnections are configurable, we can design custom
processing elements and datapaths to efficiently execute the required operation
with a massive degree of parallelism. Recently, OpenCL-based FPGA design [3]
has been introduced to design accelerators using C-like high-level programming.
This design method allows us to exploit the full potential of an FPGA while
reducing the design time [4]. OpenCL is not only can be used to design FPGA
accelerator, but also can be used to design a whole heterogeneous system includ-
ing the computations of a CPU and also the data transfers between a CPU and
an FPGA.

In this paper, we propose an FPGA-based heterogeneous accelerator to
speed-up the “extremal doubly even self-dual code” search problem [5–7]. To
solve this problem, the work in [8] proposes a method that contains many bit-
operations that can be done in parallel. The proposed FPGA accelerator contains
thousands of processing elements to perform bit-operations in parallel while the
CPU computes complex but sequential operations in a higher clock frequency
compared to the FPGA. The FPGA accelerator design and the heterogeneous
system implementation are done using OpenCL. According to the evaluation, we
obtain over 86 times speed-up compared to a typical CPU-based implementation
for extremal doubly even self-dual code search problem of length 128.

2 Code-Search Problems

In this paper, we consider the acceleration of extremal doubly even self-dual code
search [8], as an example to show the efficiency of the FPGA-based heterogeneous
system for such problems. Self-dual codes are an important class of linear codes
with both theoretical importance and practical applications [7]. It is important in
the fields such as cryptography, error correcting, etc. In this section, we briefly
explain the extremal doubly even self-dual code search algorithm. Note that,
we restrict the details of the mathematical background since it is not in the
scope of this paper. Readers can refer [8] for the details. We focus on the types
of computations required in such code search problems, and how to accelerate
those computations using FPGA-based heterogeneous system.

2.1 Extremal Doubly Even Self-dual Code Search

In the work in [8], the extremal doubly even self-dual code is described as follows.
“A binary self-dual code C of length n is a code over F2 satisfying C = C⊥ where
the dual code C⊥ of C is defined as C⊥ = {x ∈ F

n
2 |x · y = 0 for all y ∈ C}

under the standard inner product x · y. A self-dual code C is doubly even if all
codewords of C have hamming weight divisible by four, and singly even if there
is at least one codeword of hamming weight ≡ 2 (mod 4). Note that a doubly
even self-dual code of length n exists if and only if n is divisible by eight. It was

148 Y. Hiradate et al.

shown in [9] that the minimum hamming weight d of a doubly even self-dual
code of length n is bounded by d ≤ 4[n/24] + 4. A doubly even self-dual code
meeting this upper bound is called extremal.”

For example, an extremal doubly even self-dual code C of length 128 satisfies
the following three conditions.

1. Hamming weight ≡ 0 (mod 4)
2. C = C⊥

3. d(C) = 24

To find such a code, work in [8] proposes the following algorithm that contains
four steps.

Step 1: x ∈ F
64
2 and wt(x) ≡ 3 (mod 4)

Step 2: If AAT + BBT �= I32 go to step 1. A and B are circulant matrices given
by Eq. (1).

A =

⎛
⎜⎜⎜⎝

x1 x2 · · · x32

x32 x1 · · · x31

...
...

...
x2 x3 · · · x1

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

x33 x34 · · · x64

x64 x33 · · · x63

...
...

...
x34 x35 · · · x33

⎞
⎟⎟⎟⎠ (1)

Step 3: The matrices G and H in Eq. (2) are the generator matrices of C and
C⊥ respectively. If the hamming weight of the sum until the 10th row of G
is less than 20, go to step 1. If the hamming weight of the sum until the 10th

row of H is less than 20, go to step 1.

M =
(

A B
BT AT

)
, G = (I64,M) , H =

(
MT , I64

)
(2)

Step 4: A code is found and exit.

In order to satisfy the step 3 of the code search algorithm, the hamming
weight of {x1 · · · x64} must be equal or larger than 19. That is, at least 19 bits
of the 64 bits in the code must be ones. Therefore, we have to search k-out-of-64
codes where 19 ≤ k ≤ 64. Searching for such a code is a very time consuming
problem.

3 FPGA-Based Heterogeneous Architecture

3.1 Exploiting the Parallelism

Since FPGA is a reconfigurable device, we can implement both space parallelism
and time parallelism. Space parallelism is similar to SIMD (single instruction
multiple data) operations in GPUs where the same operation is performed on
multiple data simultaneously. Time parallelism is implemented using pipelines,
where multiple operations are performed on different data. In order to design

Architecture of an FPGA-Based Heterogeneous System 149

Fig. 1. The amount of data transferred among each step of the code search method.

an efficient architecture, we have to exploit the parallelism of the code search
problem. Figure 1 shows the amount of data transferred among each step of the
code search method. As explained in Sect. 2, if the conditions are not met in each
step, further computations are terminated and go back the step 1. Therefore, the
amount of data transferred to the latter steps become smaller and smaller in each
step. To utilize this efficiently, we use a large amount of parallel computations in
the initial steps but a small amount of parallel computations in the latter steps.
In addition, multiple steps are computed in parallel for different data using a
pipelined architecture.

3.2 Overall Architecture of the FPGA-Based Heterogeneous
System

Figure 2 shows the overall architecture of the FPGA-based heterogeneous system.
It consists of a CPU and an FPGA accelerator. The CPU and the FPGA works
together to generate k-out-of-n codes that satisfies the step 1 of the algorithm
explained in Sect. 2.1. For each k-out-of-n code, matrix calculations in step 2 is
performed in parallel. After the matrix computation is done, hamming weight is
calculated as explained in step 3.

Amount of parallel computations are decreases from step 1 to step 3. As
shown in Fig. 2, we have used a CPU and 64 bit-shift modules in step 1. There
are 64 matrix calculation modules in step 2. However, there are only 10 modules
in step 3. Since the amount of data transferred to each stage is getting smaller
and smaller, we decrease the amount of parallel computations. This way, we can
efficiently use the FPGA resources by spending more resources on bottleneck
stages that process a large amount of data.

150 Y. Hiradate et al.

Fig. 2. Overall architecture.

3.3 k-out-of-n Code Generation

There are a few methods such as [10,11] for k-out-of-n code generation. However,
these methods have a data dependency among code searches. That is, the search
of a new bit pattern must be started only after the search of the previous bit
pattern is finished. As a result, it is extremely difficult to accelerate such methods
using parallel processing. Therefore, we use the “circular permutation generation
algorithm” proposed in [12] to accelerate k-out-of-n code generation. A p-ary
circular permutation of length n is an n-character string of an alphabet of size p,
where all rotations of the string are considered as equivalent. Therefore, we can
regard a circular permutation code as a seed and generate the other bit patterns
by rotating the bits. Figure 3 shows two seeds and the generated bit patterns
of 2-out-of-4 codes. The rotation of bits can be done in parallel using bit-shift
operations. Therefore, even if we generate the seeds in serial, we can still have a
large amount of parallel operations.

The algorithm to generate circular permutation [12] is a serial one. There-
fore, the only way to increase the processing speed of the circular permutation
generation is to increase the clock frequency. Unfortunately, the clock frequency
of an FPGA is usually less than 300 MHz. Therefore, we use a CPU for the
permutation generation which has more than 10 times larger clock frequency
compared to that of an FPGA. Once the permutations are generated, those are
transferred to the external memory (DRAM) of the FPGA board. The FPGA
accelerator access those data and performs 63 shift operations in parallel and
select the codes that satisfies the step 1 of the algorithm explained in Sect. 2.1.
The permutation generation and bit-shift can be done in parallel as shown in
Fig. 4. The time required for a circular permutation generation and parallel bit-
shift operations are nearly equal. This way, the CPU and the FPGA are used in
parallel manner.

Architecture of an FPGA-Based Heterogeneous System 151

Fig. 3. 2-out-of-4 bit pattern generation using seeds.

Fig. 4. Parallel processing of k-out-of-n code generation using a CPU and FPGA.

3.4 Matrix Calculation and Hamming Weight

In step 2, we do the matrix calculation of AAT + BBT �= I32 is a simple bit
operation. Since there are 64 codes generated in parallel in step 1, we use 64
modules in parallel in step 2 for matrix calculation. Only a small percentage of
codes satisfy this condition, so that the amount of data proceeds to the next step
is small. As a result, we use one “hamming weight computation” modules in step
3 for every 8 matrix calculation results. As a result, the number of modules in

152 Y. Hiradate et al.

Fig. 5. Program code for step 2.

Fig. 6. Program code for step 3.

step 2 is reduced without affecting the total processing time. A part of matrix
calculation program code is shown in Fig. 5.

In step 3, hamming weight until the 10th row is calculated. However, most
codes can be rejected by computing the hamming weight until the first few rows.
Therefore, we divide the step 3 into two stages. In the first stage, the hamming
weight until the first 5 rows are computed. The codes satisfy this condition go
to the second stage. We use only 2 modules in the second stage since a smaller
degree of parallelism is required. A part of step 3 program code is shown in
Fig. 6.

Architecture of an FPGA-Based Heterogeneous System 153

4 Evaluation

We used two systems for the evaluation, where one contains only one CPU and
the other contains one CPU and one FPGA. In the CPU only system, the CPU is
Intel Xeon E5-1650 v3 (3.50 GHz). In the heterogeneous system, the CPU is Intel
Xeon E5-2643, and the FPGA is Terasic DE5a-net FPGA board [13] with Intel
Arria 10 FPGA. FPGA is configured using Quartus prime pro 16.1 and Intel
FPGA SDK for OpenCL [14]. CPU codes are compiled using Intel compiler 17.0
with OpenMP directives for parallel computation.

Table 1 shows the comparison of the processing time of k-out-of-n code gen-
eration using different methods. In this evaluation, n is 64 and k is 8. The fastest
CPU implementation is a nested-loop implementation that search all bit patterns
to find the desired code. Some part of the loop can be processed in parallel so
that the processing time is reduced. Compared to that, proposed heterogeneous
implementation produced over 2.4 times speed-up compared to the nested-loop
implementation.

Table 2 shows the comparison of the total processing time of extremal doubly
even self-dual code search. Note that the clock frequency of the FPGA is reduced
to 207 MHz from 309 MHz in Table 1 due to increased computation. Even with
such low clock frequency, the speed-up of the proposed implementation is 86.9
times compared to the CPU-only implementation. This shows that FPGAs are
very efficient for bit operations. Moreover, nearly 64 codes can be checked per
clock cycle in FPGA due to its massively parallel computations.

Table 3 shows the resource usage of the FPGA. Since only 37% of the logic
resources are used, there is a potential to increase the processing speed further
by doing more parallel computations. If we increase the degree of parallelism, the
bottleneck would be the circular permutation generation in the CPU. Therefore,

Table 1. Comparison of the processing time of k-out-of-n code generation

[10] [11] Nested loops Proposed

Device CPU CPU CPU CPU & FPGA

Clock frequency (MHz) 3500 3500 3500 CPU:3300, FPGA:309

Processing time (s) 35 9.04 0.6 0.25

Table 2. Results

Conventional Proposed

Device CPU only CPU & FPGA

Clock frequency (MHz) 3500 207

Processing time (s) 29.13 0.33

Number of clock cycles (109) 10.21 0.07

Codes checked per clock cycle 0.04 63.5

154 Y. Hiradate et al.

Table 3. FPGA resource utilization

Resource type Utilization (Percentage %)

Logic 143,186 (34)

Memory bits 3,899,280 (7)

RAM blocks 425 (16)

decreasing the processing time of circular permutation generation is critical for
future improvements.

The evaluation is done for only k-out-of-64 codes where k equals 8. We also
found similar results for 19-out-of-64 codes. Neither of those search results have
given a solution for extremal doubly even self-dual code of length 128. Therefore,
it is still an unsolved problem. In order to find a solution for this problem, we
have to search other k values and that is one of our future works. Also note that,
the data transferred to the FPGA for the CPU are only the circular permutation
data generated in CPU. Therefore, the DRAM access by the FPGA is minimal.
Although the FPGA board has a small memory bandwidth of 25.6 GB/s band-
width, it is not a bottleneck for the code search problems.

5 Conclusion

In this paper, we propose an FPGA-based heterogeneous system for extremal
doubly even self-dual code search. Although we are yet to solve the problem,
there is a great potential to find a solution in near future due to over 86 times
of speed-up of the proposed system compared to a conventional one with only
a CPU. Moreover, we used only 34% of the FPGA resources, so that further
increase of speed is possible. It is very important to exploit the possibility of
accelerating other code search problems using FPGAs in future.

References

1. Marchal, P.: Field-programmable gate arrays. Commun. ACM 42(4), 57–59 (1999)
2. https://www.altera.com/content/dam/altera-www/global/en US/pdfs/

literature/hb/arria-10/arria 10 aib.pdf
3. Czajkowski, T.S., Neto, D., Kinsner, M., Aydonat, U., Wong, J., Denisenko, D.,

Yiannacouras, P., Freeman, J., Singh, D.P., Brown, S.D.: OpenCL for FPGAs:
prototyping a compiler. In: Proceedings of the International Conference on Engi-
neering of Reconfigurable Systems and Algorithms (ERSA), p. 1 (2012)

4. Waidyasooriya, H.M., Hariyama, M., Uchiyama, K.: Design of FPGA-Based Com-
puting Systems with OpenCL (2017)

5. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland, Amsterdam (1977)

6. Pasquier, G.: A binary extremal doubly even self-dual code (64, 32, 12) obtained
from an extended Reed-Solomon code over F16. IEEE Trans. Inform. Theory 27,
807–808 (1981)

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/arria_10_aib.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/arria_10_aib.pdf

Architecture of an FPGA-Based Heterogeneous System 155

7. Rains, E., Sloane, N.J.A.: Self-dual codes. In: Pless, V.S., Huffman, W.C. (eds.)
Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998)

8. Harada, M.: An extremal doubly even self-dual code of length 112. Electron. J.
Comb. 15, 1–5 (2008)

9. Mallows, C.L., Sloane, N.J.A.: An upper bound for self-dual codes. Inform. Control
22, 188–200 (1973)

10. Harbison, S.P., Steele Jr., G.L.: C: A Reference Manual. Prentice Hall, Englewood
Cliffs (1987)

11. https://docs.python.org/2/library/itertools.html
12. Sawada, Joe: A fast algolithm to generate neckleces with fixed content. Theoret.

Comput. Sci. 301, 477–489 (2003)
13. Terasic, DE5-Net FPGA Development Kit. http://www.terasic.com.tw/cgi-bin/

page/archive.pl?Language=English&CategoryNo=158&No=526
14. Intel FPGA SDK for OpenCL, Programming Guide. https://www.altera.com/en

US/pdfs/literature/hb/opencl-sdk/aocl programming guide.pdf

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://docs.python.org/2/library/itertools.html
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=158&No=526
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=158&No=526
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
http://creativecommons.org/licenses/by/4.0/

Performance Tools

TINS: A Task-Based Dynamic Helper
Core Strategy for In Situ Analytics

Estelle Dirand1(B), Laurent Colombet1, and Bruno Raffin2

1 CEA, DAM, DIF, 91297 Arpajon, France
estelle.dirand@cea.fr

2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG,

38000 Grenoble, France

Abstract. The in situ paradigm proposes to co-locate simulation and
analytics on the same compute node to analyze data while still resi-
dent in the compute node memory, hence reducing the need for post-
processing methods. A standard approach that proved efficient for shar-
ing resources on each node consists in running the analytics processes on
a set of dedicated cores, called helper cores, to isolate them from the sim-
ulation processes. Simulation and analytics thus run concurrently with
limited interference. In this paper we show that the performance can
be improved through a dynamic helper core strategy. We rely on a work
stealing scheduler to implement TINS, a task-based in situ framework
with an on-demand analytics isolation. The helper cores are dedicated to
analytics only when analytics tasks are available. Otherwise the helper
cores join the other cores for processing simulation tasks. TINS relies on
the IntelR© TBB library. Experiments on up to 14,336 cores run a set of
representative analytics parallelized with TBB coupled with the hybrid
MPI+TBB ExaStamp molecular dynamics code. TINS shows up to 40%
performance improvement over various other approaches including the
standard helper core.

1 Introduction

The exascale era will bring more computational capabilities enabling the sim-
ulation of more complex phenomena with higher precision. This will generate
a growing amount of data. Traditionally, simulation codes output data into the
filesystem and these data are later read back for postmortem analytics. However,
the growing gap between computational capabilities and IO bandwidth calls for
new data processing methods.

The in situ paradigm proposes to reduce data movement and to analyze data
while still resident in the memory of the compute node by co-locating simulation
and analytics on the same compute node [1]. The simplest approach consists in
modifying the simulation timeloop to directly call analytics routines. However,
several works have shown that an asynchronous approach where analytics and
simulation run concurrently can lead to a significantly better performance [2–4].
Today, the most efficient approach consists in running the analytics processes on
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 159–178, 2018.
https://doi.org/10.1007/978-3-319-69953-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_10&domain=pdf

160 E. Dirand et al.

a set of dedicated cores, called helper cores, to isolate them from the simulation
processes [3]. Simulation and analytics thus run concurrently on different cores
but this static isolation can lead to underused resources if the simulation or the
analytics do not fully use all the assigned cores.

In this paper, we introduce TINS, a task-based in situ framework that imple-
ments a novel dynamic helper core strategy. TINS relies on a work stealing
scheduler and on task-based programming. Simulation and analytics tasks are
created concurrently and scheduled on a set of worker threads created by a single
instance of the work stealing scheduler. Helper cores are assigned dynamically:
some worker threads are dedicated to analytics when analytics tasks are avail-
able while they join the other threads for processing simulation tasks otherwise,
leading to a better resource usage. We leverage the good compositionality prop-
erties of task-based programming to seamlessly keep the analytics and simulation
codes well separated and a plugin system enables to develop parallel analytics
codes outside of the simulation code.

TINS is implemented with the Intel R© Threading Building Blocks (TBB)
library that provides a task-based programming model and a work stealing sched-
uler. The experiments are conducted with the hybrid MPI+TBB ExaStamp
molecular dynamics code [5] that we associate with a set of analytics represen-
tative of computational physics algorithms. We show up to 40% performance
improvement over various other approaches, including the standard helper core,
on experiments on up to 14,336 Broadwell cores.

The paper is organized as follows. After an overview of related work (Sect. 2),
we present the TINS task-based in situ method (Sect. 3) and we compare the
dynamic helper core method with state-of-the art approaches (Sect. 4).

2 Related Work

The more direct way to perform in situ processing is called synchronous and
consists in in-lining analytics code in the simulation code. The total execution
time is the addition of simulation and analytics times, plus some possible over-
heads due to cache trashing. The analytics can directly access the simulation
data structures, but more often a copy is performed to build a data structure
adapted to the analytics needs [6]. ParaView/Catalyst [7] and VisIt/Libsim [8]
are both relying on this approach to enable in situ visualization. They recently
worked on a unified in situ API for the simulation codes, called SENSEI [9], to
switch between Catalyst, Libsim and the IO framework ADIOS [10] with very
limited code modifications.

Parallel simulations are almost never 100% efficient, some cores being idle
during communication phases for instance or because some code sections do not
provide enough parallelism to feed all the cores. One idea is to harvest these
CPU cycles to execute analytics, leading to execution times shorter than with
the synchronous execution. This is called asynchronous in situ. A simple app-
roach consists in relying on the OS scheduler capabilities to allocate resources.
The analytics run its own processes or threads concurrently with the ones of the

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 161

simulation. The simulation only needs to give a copy of the relevant data to the
local in situ analytics processes. The analytics can next proceed concurrently
with the simulation. However, works [11,12] show that relying on the OS sched-
uler does not prove efficient because the presence of analytics processes tends to
disturb the simulation.

To circumvent this problem, a common approach consists in dedicating one
or more cores, called helper cores, to the analytics. The simulation runs on less
cores, but, because it is usually not 100% efficient, its performance decreases
by less than the ratio of confiscated cores. Damaris [3], FlowVR [2] Functional
Partitioning [13], GePSeA [14], Active Buffer [15] or FlexIO [4] support this
approach and have demonstrated its benefit in different contexts. Performance
gains are usually significant compared to a synchronous approach. However,
because the analytics and simulation are both isolated on distinct subsets of
cores, this helper core strategy does not allow the analytics to harvest unused
cycles of the simulation cores and vice versa.

GoldRush [11] takes a different approach. It implements a custom time-
sharing scheduling to interleave simulation and analytics while limiting the inter-
ference on the simulation. Goldrush detects sequential sections in the OpenMP
code of the simulation to schedule the analytics processes. The simulation sends
resume signals to the analytics during these sections while the analytics are sus-
pended otherwise. Experiments show the simulation performance is improved
compared to OS controlled scheduling or a synchronous approach. However,
Goldrush does not enable overlapping simulation and analytics during short
simulation sequential sections and weakly scalable parallel sections.

All previously mentioned approaches applied to MPI or MPI+OpenMP simu-
lations. New programming models are also developed as alternatives to message
passing. StarPU [16], PaRSEC [17], Legion [18] and HPX [19] propose task-
based runtime systems for distributed heterogeneous architectures. The program
defines a directed acyclic graph where vertices are tasks and edges data depen-
dencies between tasks. The runtime is in charge of mapping tasks to resources,
and triggering task execution and the necessary data movements when data
dependencies are resolved. Early experiments have been reported using Legion
for in situ analytics [20,21]. They show that Legion runtime is able to overlap
analytics and simulation tasks, but globally the performance is not yet compet-
itive with MPI approaches.

In a more general context the shortcomings of standard OS for scheduling
concurrent parallel applications on one multi-core node motivated the develop-
ment of specific co-scheduling strategies. Space-sharing is often favored compared
to time-sharing as it usually leads to better performance. But these solutions
require a specific OS scheduler or modifications to the parallel runtimes [12,22].

162 E. Dirand et al.

3 The TINS Framework

3.1 Work Stealing and TBB

Task-based programming is becoming a standard for shared memory. The user
only needs to delimit the potential parallelism through tasks or loops and the
runtime takes care of creating and distributing these tasks to the worker threads
it created. In a work stealing scheduling, the threads are assigned a set of tasks
they have to execute. When a thread has executed all its tasks, it selects another
thread and steals part of this victim’s tasks if available; otherwise, it tries with
another victim. The work stealing scheduler algorithm has a proven performance
[23]. Pioneered by Cilk, task-based programming is today also available through
Intel R© TBB or OpenMP for instance.

In this paper, we use the TBB library that provides a task-based program-
ming model and a work stealing scheduler for shared memory machines. TBB
provides mechanisms to guide the task execution, in particular the notions of
task arena (arena in the following) and task scheduler observer (observer in
the following). An arena encapsulates one or several TBB parallel regions where
threads share and execute tasks. An arena is defined with a concurrency level
that fixes the maximum number of tasks that can be executed simultaneously.
In other words, the arena concurrency level determines the maximum number of
threads that can work inside an arena. An application can contain several are-
nas. In this situation, when the parallel work encapsulated in an arena has been
completed, the worker threads involved in this arena are free to enter another
arena if its concurrency level allows it. An observer is an object that intercepts
when a worker thread enters and leaves a specific arena. We use it to control
thread affinity as detailed in Sect. 3.4.

In a TBB application, there will never be more threads running than the
number of cores in the processor to avoid core oversubscription. In the case of
an application with two concurrent arenas with concurrency levels of n1 and n2

on a processor with N cores, two situations can therefore be distinguished:

– if n1 + n2 ≤ N , the concurrent arenas can have as many threads as requested
(there will be n1 threads in the first arena, n2 in the second);

– if n1 + n2 > N , the concurrent arenas cannot have as many threads as
requested and TBB allocates to each arena a number of threads proportional
to the request (n1/(n1 + n2)N and n2/(n1 + n2)N respectively).

3.2 In Situ Processing with Tasks

TINS relies on the TBB work-stealing scheduler to implement a novel task-based
in situ processing method. Simulation and analytics tasks are created concur-
rently and scheduled on a set of worker threads created by a single instance of the
TBB scheduler. The use of TBB arenas allows to implement two asynchronous
patterns: the standard helper core strategy with a permanent thread isolation
and a dynamic helper core strategy with a temporary thread isolation.

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 163

3.3 Spawning Analytics and Simulation Tasks

Traditionally, a simulation is organized around a timeloop where internal data are
updated at each timestep. We consider here a hybrid MPI+TBB simulation where
each MPI process runs one instance of the work-stealing scheduler. Following TBB
vocabulary, we call simulation master thread the simulation main thread started
by MPI for each process. When tasks are created, they are distributed among the
simulation master thread and the worker threads spawned by TBB.

To enable the asynchronous execution of the analytics, we propose the
method described in Fig. 1. The simulation master thread spawns an analytics
master thread at simulation initialization. The simulation and analytics master
threads have their own timeloop and arena with different concurrency levels: the
simulation master thread creates simulation tasks in the simulation arena while
the analytics master thread creates analytics tasks in the analytics arena. Each
master thread is responsible for its own arena and cannot enter the other one,
while worker threads can change of arena as detailed in Sect. 3.4.

MPI process
Simulation thread

Spawn analytics
master thread

Compute a simu-
lation timestep

if analyticsBreakpoint

Wait for
analyticsDone

Copy data

Notify dataReady

Analytics thread

Wait for dataReady

Run analytics

Notify
analyticsDone

Fig. 1. Timeloops of the simulation (left) and analytics (right) master threads inside
one MPI process. The green-framed blocks contain sequential regions (MPI commu-
nications for example) and parallel regions where simulation or analytics tasks are
scheduled on the worker threads spawned by TBB inside the MPI process. The red
arrows depict the synchronization between the master threads. (Color figure online)

The computation of the simulation timestep is left unchanged by TINS, alter-
nating sequential regions with parallel ones where simulation tasks are created.

164 E. Dirand et al.

The user defines an analytics breakpoint frequency that sets the frequency of
data processing. Every time the simulation reaches such analytics breakpoint,
data are copied into a temporary buffer. When data are copied, the simulation
master thread notifies the analytics master thread that data are ready to be
processed with the dataReady signal and resumes the simulation execution.

On the other side, the analytics master thread waits for the simulation mas-
ter thread dataReady signal to launch the analytics on the data written into
the temporary buffer. It creates analytics tasks while the simulation master
thread creates simulation tasks in its own timeloop, leading to an asynchronous
in situ pattern. Once the analytics are executed, the analytics master thread
notifies the simulation master thread with the analyticsDone signal. This sec-
ond synchronization is added to avoid having to store more than one temporary
buffer. This synchronization can be delayed if enough memory is available to
store various buffers. The simulation master thread therefore has to wait for the
analyticsDone signal before writing data in the temporary buffer. This signal
is disabled for the first analytics breakpoint to avoid a deadlock.

3.4 Resource Sharing Policies

Analytics tasks can be executed in the two asynchronous modes described in
Fig. 2. To do so, we define two arenas with concurrency levels ns and na for
simulation and analytics respectively. In order to simply manage the arenas and
the asynchronous modes, we defined two functions that need to be placed before
and after the TBB parallel regions.

On a processor with N cores, TBB spawns up to N − 1 worker threads by
default, which would lead to core oversubscription because there are already
2 master threads. To avoid this pitfall, we pin the analytics master thread on
the first core thanks to the TBB observer and we restrict the node topology so
that the TBB scheduler only sees the remaining N − 1 cores. This way, there
will be at most N − 2 worker threads. Various pinning strategies were tested
on the simulation master thread. Because no solution outperformed the other,
we decided not to pin it. The placement of the worker threads depends on the
strategy.

In the static helper core strategy, the available threads are split in two cat-
egories: some threads execute analytics tasks while the other ones are in charge
of simulation tasks. The isolation is permanent. In particular, threads remain
idle when no task of the expected kind is available for execution. To imple-
ment the static helper core strategy, the concurrency levels are chosen such that
na + ns = N . The TBB observer is used to bind threads that execute analytics
tasks on the first na cores of the processor while the threads that execute sim-
ulation tasks are bound to the remaining cores. The goal is to try as much as
possible to gather all threads of the same kind on the same NUMA nodes for a
better cache efficiency. Tests showed that it notably improves the performance.

We introduce the dynamic helper core policy with a temporary thread isola-
tion. As in the static helper core approach, a set of threads is assigned to analytics

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 165

T0

T1

T2

T3

T4

T5

(a) Static helper core

T0

T1

T2

T3

T4

T5

(b) Dynamic helper core

Sequential Simulation Analytics Lost

Fig. 2. Gantt diagram of the execution of simulation and analytics tasks on 6 threads
(T0 to T5) for a static (a) or dynamic (b) helper core strategy. T0 and T5 are respec-
tively the simulation and analytics master threads, T1, T2 and T3 are worker threads
assigned to simulation and T4 is a worker thread assigned to analytics. The diagram
represents two iterations of a simulation, both being the alternation of four sequential
regions (grey areas) and three parallel regions (blue areas). The analytics is composed
of one parallel region (orange areas). The purple areas highlight the periods when the
threads are idle. The dynamic helper core strategy enables worker threads to switch
to simulation (resp. analytics) tasks when there is no analytics (resp. simulation) work
left, while this is not possible with static helper cores. (Color figure online)

tasks execution while the remaining execute simulation tasks. The main differ-
ence with the static approach is that the isolation is temporary: when the exe-
cution of a simulation (resp. analytics) parallel region is completed, the worker
threads involved in the computation can enter the analytics (resp. simulation)
arena if its concurrency level permits it. This method aims at reducing the thread
idleness periods induced by the static helper core approach. We set ns = N − 1
so that all the worker threads and the simulation master thread can work on
simulation tasks if available. Note that the analytics master thread cannot exe-
cute simulation tasks because it is not allowed to enter the simulation arena.
To restrict the number of threads in the analytics arena, we can choose different
values for na. na = ns means that half of the threads will execute analytics tasks
when both arenas are active while na < ns gives a higher priority to the simu-
lation. We tested various binding strategies for the worker threads, but because
they can execute tasks from both arenas, we did not observe that a binding
strategy was overcoming the others. We therefore adopted the less constraining
one by not binding the worker threads.

3.5 Plugin System

TINS aims at keeping the simulation and analytics codes well separated. We
therefore developed a plugin system that allows to develop the analytics outside

166 E. Dirand et al.

of the simulation code. A plugin is a code compiled as a shared library. At
runtime, the analytics master thread scans the plugin directory provided by the
user and loads the required analytics. This way, simulation and analytics tasks
are scheduled by the same instance of the TBB scheduler. A plugin should meet
the following requirements. First, it has to be developed using a MPI+TBB
programming model and it should take as input a MPI communicator. Indeed,
simulation and analytics may perform MPI communications simultaneously and
they need to use distinct communicators for the messages not to be mixed. The
analytics master thread therefore creates its own communicator that the plugins
should use for their internal MPI communications. To ease the interoperability
between the simulation code and the plugins, a shared data structure also needs
to be defined and used by both the simulation and the plugin. The simulation
copies the data in this shared data structure and the plugin takes it as input.

4 Experimental Evaluation

We compare the dynamic helper core strategy implemented with TINS with
several other approaches on a molecular dynamics simulation using Intel R© Xeon
processors available in the CCRT French Computing Center.

4.1 ExaStamp Molecular Dynamics Code

ExaStamp [5] is a molecular dynamics code dedicated to material sciences (con-
densed matter and shock physics). It is written in C++11 and uses MPI and TBB
for the different levels of parallelism. ExaStamp is used as a production code and
routinely runs on more than 4,000 cores to simulate the displacement of up to 1 bil-
lion particles in a 3D system. ExaStamp is well parallelized, leaving limited com-
pute resources under-used: it shows an efficiency of 90% on one node varying the
number of cores from 1 to 28, and of 85% when scaling from 1 to 512 nodes. For
each particle, the parameters of interest are the index of the particle (idx), its type
(type), its position along the three axes (rx, ry, rz) and its velocity along the three
axes (vx, vy, vz). To ease the interoperability between ExaStamp and the analyt-
ics described below, we defined the ParticleInSitu data structure as a structure
of arrays where each array contains nbPart elements, nbPart being the number of
particles in the currentMPI process. The data structure is shared by the simulation
code and the analytics implemented in the plugin system: the simulation produces
and fills it and the plugins take it as input.

Implementing the TINS approach in ExaStamp required about 50 extra lines
of code. The analytics master thread is implemented as a C++ thread and the
synchronization signals between the master threads are implemented with shared
booleans. The master threads may perform MPI communications concurrently
so we need a thread-safe implementation of MPI with MPI THREAD MULTIPLE.

ExaStamp execution is parametrized through an input data file that defines
the analytics to be executed, the analytics breakpoint frequency, the execution
policy and the size of the arenas. No recompilation is required to change the
configuration.

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 167

4.2 Analytics

To test TINS, we developed a set of analytics routines representative of the
analytics used in computational physics (Table 1). They were chosen to repre-
sent different patterns regarding parallelization, MPI communications, cache and
memory usage.

Table 1. Analytics implemented to evaluate TINS

Analytics Description

write dat Write the positions of the particles inside each MPI process in a
file (one file per MPI process)

statistics seq Compute sequentially the mean of the positions for the particles
inside each MPI process

statistics par Compute in parallel the mean of the positions for the particles
inside each MPI process (with 1 TBB parallel reduction)

radial Compute in parallel a local radial distribution function for the
particles inside each MPI process (with 2 nested TBB parallel for)

histogram Compute in parallel a global histogram of rx positions (locally
with 2 TBB parallel reductions, and globally with 2 MPI REDUCE)

In the write dat routine, each MPI process writes a file with the positions
of each particle at each analytics breakpoint. This analytics mimics a native
file writing pattern commonly used in ExaStamp to write particles in an XYZ
format suitable for post-processing tools. This analytics plugin neither generates
TBB tasks nor MPI communications.

The two statistics routines trigger local computations and do not perform
any MPI communication. They both compute the mean of the positions of the
particles from the data copied in each MPI process. We implemented a sequential
version (statistics seq) and a parallel version (statistics par) where the
mean is computed through one TBB parallel reduction. Each task consists in a
few summations but is very memory intensive. When simulating the behavior
of 4,000,000 particles per MPI process, the positions represent approximately
96 MB of data per MPI process, significantly more than the caches available
on a Broadwell processor (see below for the processor specifications). Reading
these data therefore evicts simulation data from the caches. Moreover, these
analytics highlight NUMA effects because data are split between the caches of the
different NUMA nodes. To further stress memory accesses for the experiments,
the statistics routines can be executed several times at each analytics breakpoint.

The histogram algorithm (histogram) mixes TBB tasks creation and MPI
communications. This routine counts how many particles have a position in
intervals of the form [rxi, rxi + Δx]. A first collective communication is neces-
sary to determine the bounds of the system: each MPI process computes its own
minimum and maximum positions with a TBB parallel reduction and the global

168 E. Dirand et al.

bounds are found thanks to a MPI REDUCE operation. The global domain is then
split into smaller intervals of the form [rxi, rxi + Δx]. The number of particles
in each interval is computed inside each MPI process thanks to a TBB parallel
reduction and the global histogram is then computed with a MPI REDUCE. The
histogram is computed on 1,000 intervals. For experimenting with analytics hav-
ing different MPI communication loads, we can increase the size of the arrays
communicated in the second MPI REDUCE. This way, we can see the influence of
an analytics that spends most of its time in MPI communications.

The local radial distribution function (radial) is a common algorithm in
computational physics and consists in a local histogram over the distances
between the particles. For each particle, we compute the distance with all the
other particles and store them in a local histogram of 1,000 bins. This analyt-
ics requires two nested for loops and is parallelized with TBB thanks to the
tbb::blocked range2d feature. This algorithm is used because it demonstrates
the effect of a compute intensive analytics.

4.3 I/O Middlewares

We compare the TINS approach with two state-of-the-art in situ frameworks:
Damaris [24] and Goldrush [11].

Damaris implements the static helper core strategy. It is a MPI-based app-
roach that starts on each node a certain number of processes for the simulation
and the analytics, each one running with their own MPI communicator. Local
data transfers from the simulation to the analytics processes are made through a
shared memory segment. To limit data copies, Damaris enables the simulation to
directly allocate data inside the shared memory segment. The simulation writes
data into this shared memory segment and the analytics deallocates data once
consumed. We instrumented ExaStamp with the Damaris API and developed
Damaris plugins for the five analytics described above, keeping their TBB par-
allelization when existing. An important difference with TINS is that Damaris
starts two distinct instances of TBB scheduler per node: one for running the
simulation tasks and the other for the analytics. Damaris does not integrate
mechanisms for pinning the processes or threads to the cores. We use TBB
observers to bind analytics threads (master and workers) to the helper cores and
the simulation threads (master and workers) to the remaining cores. The helper
cores are assigned contiguously starting from the first core to keep them running
as much as possible on the same sockets. We experienced better performance
with this approach.

Goldrush is a C library that implements a custom time-sharing scheduling
to trigger analytics during the simulation sequential sections. Each simulation
process records the duration of its sequential sections and assumes these sections
repeat at each iteration. When a sequential section is long enough, given a user-
defined threshold, the simulation process sends a SIGCONT signal to resume

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 169

the analytics process and a SIGSTOP signal to suspend it at the end of this
sequential region. We instrumented ExaStamp with the Goldrush API delimiting
the sequential regions where no TBB task is created. We ported the sequential
statistics and the parallel one with its TBB parallelization that can run tasks
on all cores when resumed by Goldrush.

4.4 Experimental Setups

Experiments run on the Cobalt supercomputer from the CCRT high perfor-
mance computing center. Each node has two Intel R© Broadwell CPUs running at
2.40 GHz and 128 GB of memory. Each CPU has 2 NUMA nodes with 7 cores
each and a shared L3 cache of 17,920 KB. Hyperthreading is not activated. The
nodes are connected through a EDR InfiniBand network. The codes use Intel R©

TBB 16.0.3.210, are compiled with icpc compiler (version 17.0.4.196) and are
launched with Intel R© MPI (version 2017.0.4.196).

Experiments are conducted timing 32 consecutive iterations of ExaStamp,
with the analytics performed after each timestep. In production codes, outputs
are usually not produced at each timestep to avoid slowing down to much the
execution. Here we stress the system by analyzing data at each iteration to make
the overheads more visible.

Tests are performed on simulations with 4,000,000 particles per MPI pro-
cess and one MPI process per node. Simulation codes usually run several MPI
processes per node, but we run only one MPI process per node to probe TBB
scheduler with a larger pool of cores. We compared the performance of running
ExaStamp with 1 process per node and 4 processes per node and measured only
a 2% performance drop.

4.5 Results

Comparison with Goldrush
We first compare the TINS approach with the static and dynamic helper core
strategies with the Goldrush approach. We ran three analytics on 28 Broadwell
cores for a simulation of 4,000,000 particles: the parallel statistics performed 100
and 1,000 times at each analytics breakpoint (stat par 100 and stat par 1000)
for small and long analytics parallelized with TBB and the sequential statistics
computed 1,000 times at each analytics (stat seq 1000) for a long analytics
without parallelization. For each experiment, we tested two static helper core
configurations (SHC-a-s) and two dynamic helper core configurations (DHC-a-s)
where a and s stand for analytics and simulation arena sizes.

Table 2 shows that the Goldrush approach is efficient on small parallel analyt-
ics. For instance, it gives on overhead of only 8% on ExaStamp executed without
analytics (ExaStamp-alone) when co-locating the stat par 100 analytics and it
can outperform the TINS approach with 7 static helper cores because too much
cores were removed from the simulation in this situation. However, the TINS
approach with dynamic helper core strategy can be up to 4.55% faster than the

170 E. Dirand et al.

Table 2. Total execution times in seconds of ExaStamp co-located with three analytics
executed with different TINS configurations and with Goldrush for a simulation of
4,000,000 atoms on 28 Broadwell cores (1 MPI process)

stat par 100 stat par 1000 stat seq 1000

ExaStamp-alone 75.66 75.66 75.66

Goldrush 81.90 92.73 131.53

SHC-1a-27s 77.35 86.05 86.01

SHC-7a-21s 99.00 99.67 101.20

DHC-7a-27s 78.17 81.76 85.84

DHC-27a-27s 79.00 82.29 85.85

Goldrush approach. For longer analytics, like the sequential statistics, the TINS
approach with dynamic helper core strategy can be up to 34.74% faster than
the Goldrush approach. The long execution time of the stat seq 1000 analyt-
ics reflects that Goldrush only manages to overlap with the simulation a small
portion of the analytics because it executes analytics only during long enough
sequential periods. The remaining of the analytics computations that Goldrush
does not manage to execute during the simulation sequential sections is thus
completed after the end of the simulation. The TINS task interleaving strat-
egy prevents this issue by using both the simulation sequential periods and the
periods when the simulation is not efficient enough to schedule analytics tasks.

Static versus Dynamic Helper Cores
In order to compare the different in situ strategies, we run a simulation of
256,000,000 particles with 64 MPI processes on 1,792 cores (Figs. 3 and 4). We
tested various configurations to stress the memory accesses or the MPI com-
munications for the statistics and the histogram routines. The statistics
routines were executed 1 to 1,000 times at each analytics breakpoint. We present
here only the results with 100 and 1,000 executions representative of the two main
behaviors that emerged from these tests. The histogram was tested with global
reductions applied on arrays of 1,000 to 1,000,000,000 integers. We include here
the results for the intermediate size of 100,000,000 integers. For large arrays,
execution times are similar for all strategies, dominated by the MPI communi-
cation. Analytics cost is too short with small array sizes to exhibit significant
performance differences.

For each analytics, we tested various numbers of helper cores and arena sizes.
damaris-a-s corresponds to Damaris running the analytics on a helper cores and
the simulation on the remaining s cores. SHC-a-s (resp. DHC-a-s) corresponds to
the TINS approach running the static (resp. dynamic) helper core strategy with an
analytics arena of size a and a simulation arena of size s. Each histogram bar gives
the total execution time of one strategy. A bar is divided into four areas: left part
is the simulation master thread idle (no pattern) and active times (cross pattern);
right part is the analytics master thread execution time split into idle (no pattern)
and active times (dashed pattern).

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 171

For the sake of comparison, we implemented a synchronous version of the
algorithm in Fig. 1 where the simulation master thread waits for the analytics-
Done signal before computing the next iteration. We also implemented a pure
asynchronous case where simulation and analytics tasks are created inside the
same arena. Task scheduling is left to the TBB scheduler without any isolation or
priority constraint. As a reference we also report the execution time of ExaStamp
running on all cores without analytics, giving the best execution time we could
expect if perfectly overlapping analytics with the simulation.

First, we notice that the TINS implementation presents a small overhead on
the simulation execution time compared to the Damaris implementation. Our
first studies tend to show that this overhead comes from the interaction between
the two arenas and the observer in the TINS approach. Indeed, we interfere
with TBB default data placement when using two arenas while there is only
one arena in the Damaris case. This overhead depends on the number of helper
cores but never exceeds 8%. On the other side, the execution of memory intensive
analytics (statistics seq and statistics par) can be up to 75% longer with
Damaris than with equivalent static helper core strategies implemented with
TINS. Performance measurements with VTune show an important impact of
NUMA effects, Damaris having up to 75% of DRAM remote accesses compared
to 15% for TINS. Damaris relies on a shared memory segment managed by the
Boost library and this shared memory segment is not bound to any specific
memory bank. The shared memory segment can therefore be interleaved on
different NUMA nodes, leading to performance penalties when data need to be
accessed. TINS also relies on a copy but we do not need to create a shared
memory segment because analytics and simulation belong to the same process.
We tested various binding strategies for the temporary buffer. Compared to
a situation where the buffer is not bound, the analytics is 41% quicker when
binding the buffer on the NUMA nodes where the analytics worker threads
belong and 22% longer when binding it on the NUMA nodes where the simulation
worker threads belong. The different binding strategies do not have an impact
on the simulation execution time and we decided to simply bind the buffer on
the NUMA nodes where the analytics worker threads belong to speed up the
analytics.

To compare the static helper core configurations, we can separate the ana-
lytics into two groups: the short analytics whose execution time are smaller than
the simulation execution time (Fig. 3) and the long analytics whose execution
time are equivalent or greater than the simulation execution time (Fig. 4). For
short analytics, the best configuration is to dedicate one thread for the analyt-
ics. The analytics cannot benefit of any parallelism but the smallest number of
threads are confiscated for the simulation and the analytics execution is still
faster than the simulation iteration. Increasing the number of helper cores then
leads to fewer threads for the simulation, which impacts the simulation execution
time. For long analytics, the optimal number of static helper cores is analytics-
dependent. Using 4 threads for statistics par is a good trade off because if
we use fewer threads, the analytics cannot benefit from its parallelization and

172 E. Dirand et al.

the total execution time is dominated by the analytics execution time. If we use
more threads for the analytics, the simulation runs on fewer threads and the
total execution time is dominated by the simulation execution time.

The dynamic helper core strategy is in general less sensitive to the configu-
ration. For the small analytics in Fig. 3, there is less than 1% difference for the
total execution time from one configuration to another. The different dynamic
helper core configurations are therefore equivalent to a static helper core app-
roach where one helper core is used. The analytics can be performed with an
overhead of less than 5% with respect to ExaStamp alone and the dynamic helper
core strategy can be up to 3% faster than the pure asynchronous approach and
28% faster than the synchronous approach that suffers from NUMA issues.

The results are similar with the sequential statistics performed 1,000 times
(Fig. 4), with approximately 1% difference in the total execution time from one
configuration to another. In the case of the parallel statistics performed 1,000
times (Fig. 4), setting an analytics arena of size 1 is too restrictive because the
analytics cannot benefit from its parallelization. It therefore presents a total
execution time 10% longer than the simulation alone while the other dynamic
helper core configurations reduce this overhead to 6%. For these analytics, the
dynamic helper core strategy is up to 40% better than the Damaris approach
set with the appropriate number of static helper cores.

The radial analytics shows a slightly different behavior for the dynamic
helper core strategy: increasing the concurrency level of the analytics arena
also increases the total execution time. An analytics arena of size 1 induces
an overhead of 6% with ExaStamp alone, this overhead growing up to 39% with
an analytics arena of size 27. This analytics differs from the others because it
executes two nested parallel loops. TBB does not support task switching on
nested parallel loops. When a thread enters the analytics arena during simu-
lation sequential periods, it cannot move back to the simulation arena before
all the analytics tasks have been executed. In particular, it cannot switch back
to support the simulation when the sequential region is over, slowing down the
progress of the simulation. This effect is all the more visible as the analytics
arena size increases. It is therefore necessary to reduce the size of the analytics
arena in the dynamic helper core strategy, sizes of 4 and 7 being good tradeoff
in this situation.

Experiments show that TINS implemented with the dynamic helper core
strategy gives generally better performance than the static helper core strategy
implemented by Damaris. In addition, our system shows greater flexibility for the
choice of the number of helper cores, the execution times between the different
dynamic configurations being relatively close.

Task versus Analytics Master Thread
TBB constrains master threads to execute only the tasks of the arena they
created. Thus the analytics master thread never executes simulation tasks. As
we spawn only N − 2 worker threads, there is always one core that cannot
execute simulation tasks, potentially leading to underusing this core. We tried
oversubscription by creating N−1 worker threads, but the performance degrades

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 173

0

20

40

60

80

100

120

140

160

T
im

e
(s

)

Write File - 1,792 Broadwell cores

0

20

40

60

80

100

120

140

160

T
im

e
(s

)

Sequential Statistics (100 times) - 1,792 Broadwell cores

syn
chron

ous

pure asy
nchron

ous

Dam
aris

-1a
-27

s

SHC-1a
-27

s

DHC-1a
-27

s

Dam
aris

-4a
-24

s

SHC-4a
-24

s

DHC-4a
-27

s

Dam
aris

-7a
-21

s

SHC-7a
-21

s

DHC-7a
-27

s

Dam
aris

-14
a-1

4s

SHC-14
a-1

4s

DHC-27
a-2

7s

0

20

40

60

80

100

120

140

160

T
im

e
(s

)

Histogram (array of 100,000,000 integers) - 1,792 Broadwell cores

Simulation Analytics Sleeping ExaStamp alone

Fig. 3. Comparison of the different strategies on 1,792 Broadwell cores (64 MPI pro-
cesses) for three analytics quicker than the simulation timestep: file writing (a), sequen-
tial statistics performed 100 times (b) and histogram with an array of 100,000,000
integers for the MPI collective communication (c).

significantly. To compare our analytics-master-thread approach with a version
without additional master thread, we modified ExaStamp so that the simulation
master thread creates an analytics task enqueued in the analytics arena task
queue after data are copied. This task creates sub analytics tasks, as in the
analytics-master-thread approach. The arena sizes are respectively set to N and
n for simulation and analytics. The n threads in the analytics arena are pinned
on the first cores, as in the static helper core strategy defined above.

Table 3 compares the execution times of the task approach (task-a-s)
and the analytics master thread one (thread-a-s). The results are similar
for the histogram computation (less than 2% of difference for the two meth-
ods) and the radial analytics (less than 4% of difference). However, the task
method completely fails at reproducing the results of the thread method on the

174 E. Dirand et al.

0

50

100

150

200

250
T

im
e

(s
)

Sequential Statistics (1,000 times) - 1,792 Broadwell cores

0

20

40

60

80

100

120

140

160

180

T
im

e
(s

)

Parallel Statistics (1,000 times) - 1,792 Broadwell cores

syn
chron

ous

pure asy
nchron

ous

Dam
aris

-1a
-27

s

SHC-1a
-27

s

DHC-1a
-27

s

Dam
aris

-4a
-24

s

SHC-4a
-24

s

DHC-4a
-27

s

Dam
aris

-7a
-21

s

SHC-7a
-21

s

DHC-7a
-27

s

Dam
aris

-14
a-1

4s

SHC-14
a-1

4s

DHC-27
a-2

7s

0

20

40

60

80

100

120

140

160

T
im

e
(s

)

Radial - 1,792 Broadwell cores

Simulation Analytics Sleeping ExaStamp alone

Fig. 4. Comparison of the different strategies on 1,792 Broadwell cores (64 MPI pro-
cesses) for three analytics equivalent to or larger than the simulation timestep: sequen-
tial statistics performed 1,000 times (a), parallel statistics performed 1,000 times and
radial.

statistics seq analytics: the total execution time is up to 74% higher with an
analytics arena of size 27. Performance measurements with VTune show that the
percentage of DRAM remote accesses is of 18.5% with an analytics arena of size 7
and increases to 67.5% with an analytics arena size of 27 while it remains around
15% for TINS. In the thread approach, the sequential analytics will always be
executed by the analytics master thread, guaranteeing data locality. In the task
approach, we can bind the analytics threads on a set of cores but we cannot
guarantee that the task will be executed on a particular thread. The task app-
roach is also more intrusive in the simulation because the simulation needs to
enqueue the task while it is left to a separate thread in the TINS approach. The
TINS approach shows therefore better performance than a task approach and is
less intrusive in the simulation.

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 175

Table 3. Execution times in seconds of the task and analytics-master-thread
approaches, for three different analytics running the dynamic helper core strategy,
with analytics arenas of sizes 7 and 27, on 1,792 Broadwell cores (64 MPI processes).

statistics seq radial histogram

Time (s) Total Simulation Analytics Total Simulation Analytics Total Simulation Analytics

task-7-27 110.7 102.6 94.6 93.6 91.6 29.9 90.7 89.0 23.7

thread-7-27 95.1 85.3 87.2 96.0 93.2 45.5 88.8 86.9 18.1

task-27-27 163.1 138.0 146.3 112.9 110.6 39.3 86.5 84.8 22.1

thread-27-27 93.7 85.6 86.3 116.6 114.0 42.6 88.6 86.9 17.6

Iteration Varying Analytics Workload
The analysis of simulation results often requires to execute different types of
analytics at different iterations. Typically in production runs, different kinds of
analytics are performed as the physics of the system evolves. To encompass this
behavior, we execute 3 different statistics: the parallel statistics is computed
during 10 iterations, the histogram is computed for the next 10 iterations and
the radial distribution function is computed for the last 10 iterations.

Figure 5 compares the results for the different strategies on a simulation of 2
billions atoms using 14,336 Broadwell cores (512 MPI processes). The dynamic
helper core approach always gives the best performance, being up to 20% faster
than Damaris. As the analytics workload varies, no number of static helper cores
is capable of ensuring the best performance for all the iterations. In opposite the
dynamic helper core strategy offers more flexibility, leading to a better resource
usage. Best results are obtained with an analytics arena of size 4 or 7 because
the analytics can run in parallel and the simulation has still exclusive access to
enough resources to ensure that its progression is not disturbed by analytics.

syn
chron

ous

pure asy
nchron

ous

Dam
aris

-1a
-27

s

SHC-1a
-27

s

DHC-1a
-27

s

Dam
aris

-4a
-24

s

SHC-4a
-24

s

DHC-4a
-27

s

Dam
aris

-7a
-21

s

SHC-7a
-21

s

DHC-7a
-27

s

Dam
aris

-14
a-1

4s

SHC-14
a-1

4s

DHC-27
a-2

7s

0

20

40

60

80

100

120

140

160

180

T
im

e
(s

)

Iteration Varying Analytics Workload - 14,336 Broadwell cores

Simulation Analytics Sleeping ExaStamp alone

Fig. 5. Comparison of the different strategies on 14,336 Broadwell cores for an analytics
scheme where the executed analytics depends on the iteration number.

176 E. Dirand et al.

5 Conclusion

Many previous works investigated how to perform asynchronous in situ process-
ing at a process level for MPI applications. The helper core strategy emerged as
the best approach to share the resources. In this paper, we propose the TINS
approach that goes one step further by proposing a dynamic helper core strat-
egy with a temporary thread isolation in a task-based programming model. The
helper cores are assigned to analytics only when analytics tasks are available
while they join the other threads for simulation processing instead. The TINS
approach is a minimally intrusive method where it is easy to switch between
static and dynamic helper core strategies without code recompilation and that
is easy to use by the end-user. It enables use of both the simulation sequential
regions and the part of the simulation that are not parallelized well enough. The
experiments conducted on up to 14,336 Broadwell cores on representative ana-
lytics codes show that the TINS framework implemented with the Intel R© TBB
library can be up to 40% faster than the Damaris and Goldrush approaches
on the ExaStamp molecular dynamics code that shows a good MPI and TBB
efficiency. In particular, when the analytics workload varies from an iteration
to another, no fixed number of static helper cores is capable of ensuring the
best performance while the dynamic helper core strategy proves more flexible.
Experiments also show that the obtained performance are close to the raw sim-
ulation, demonstrating that our approach enables to perform analytics at a high
frequency. Future work will investigate the behavior of TINS on real analytics
use cases. We also plan to study how to port TINS on other task-based runtimes,
OpenMP in particular.

Acknowledgments. This work was partly funded by the French Programme d’Inves-
tissements d’Avenir (PIA) project SMICE. We thank Fang Zheng for having provided
the Goldrush code and Matthieu Dorier for his help with Damaris.

References

1. Bennett, J.C., Abbasi, H., Bremer, P.-T., Grout, R., Gyulassy, A., Jin, T., Klasky,
S., Kolla, H., Parashar, M., Pascucci, V., Pebay, P., Thompson, D., Yu, H., Zhang,
F., Chen, J.: Combining in-situ and in-transit processing to enable extreme-scale
scientific analysis. In: International Conference on High Performance Computing,
Networking, Storage and Analysis, pp. 49:1–49:9. IEEE Computer Society Press
(2012)

2. Dreher, M., Raffin, B.: A flexible framework for asynchronous in situ and in transit
analytics for scientific simulations. In: 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID 2014) (2014)

3. Dorier, M., Antoniu, G., Cappello, F., Snir, M., Orf, L.: Damaris: how to effi-
ciently leverage multicore parallelism to achieve scalable, jitter-free I/O. In: IEEE
International Conference on Cluster Computing (2012)

4. Zheng, F., Zou, H., Eisnhauer, G., Schwan, K., Wolf, M., Dayal, J., Nguyen, T.A.,
Cao, J., Abbasi, H., Klasky, S., Podhorszki, N., Yu, H.: FlexIO: I/O middleware
for location-flexible scientific data analytics. In: IPDPS 2013 (2013)

TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics 177

5. Cieren, E., Colombet, L., Pitoiset, S., Namyst, R.: ExaStamp: a parallel framework
for molecular dynamics on heterogeneous clusters. In: Lopes, L., et al. (eds.) Euro-
Par 2014. LNCS, vol. 8806, pp. 121–132. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-14313-2 11

6. Lorendeau, B., Fournier, Y., Ribes, A.: In situ visualization in fluid mechanics
using Catalyst: a case study for Code Saturne. In: IEEE Symposium on Large
Data Analysis and Visualization (LDAV) (2013)

7. Fabian, N., Moreland, K., Thompson, D., Bauer, A., Marion, P., Geveci, B.,
Rasquin, M., Jansen, K.: The ParaView coprocessing library: a scalable, general
purpose in situ visualization library. In: Large Data Analysis and Visualization
Workshop (LDAV 2011), pp. 89–96 (2011)

8. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation
with a fully featured visualization system. In: 11th Eurographics Conference on
Parallel Graphics and Visualization, pp. 101–109 (2011)

9. Ayachit, U., Whitlock, B., Wolf, M., Loring, B., Geveci, B., Lonie, D., Bethel, E.:
The SENSEI generic in situ interface. In: 2nd Workshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization (ISAV 2016), pp. 40–44
(2016)

10. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In:
6th International Workshop on Challenges of Large Applications in Distributed
Environments, pp. 15–24 (2008)

11. Zheng, F., Yu, H., Hantas, C., Wolf, M., Eisenhauer, G., Schwan, K., Abbasi,
H., Klasky, S.: GoldRush: resource efficient in situ scientific data analytics using
fine-grained interference aware execution. In: International Conference on High
Performance Computing, Networking, Storage and Analysis (SC 2013), pp. 78:1–
78:12 (2013)

12. Harris, T., Maas, M., Marathe, V.J.: Callisto: co-scheduling parallel runtime sys-
tems. In: Proceedings of the Ninth European Conference on Computer Systems
(EuroSys 2014), pp. 24:1–24:14 (2014)

13. Li, M., Vazhkudai, S.S., Butt, A.R., Meng, F., Ma, X., Kim, Y., Engelmann, C.,
Shipman, G.: Functional partitioning to optimize end-to-end performance on many-
core architectures. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–12 (2010)

14. Singh, A., Balaji, P., Feng, W.: GePSeA: a general-purpose software acceleration
framework for lightweight task offloading. In: International Conference on Parallel
Processing, pp. 261–268 (2009)

15. Ma, X., Lee, J., Winslett, M.: High-level buffering for hiding periodic output cost
in scientific simulations. IEEE Trans. Parallel Distrib. Syst. 17(3), 193–204 (2006)

16. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.
Pract. Exper. 23, 187–198 (2011)

17. Hoque, R., Herault, T., Bosilca, G., Dongarra, J.: Dynamic task discovery in PaR-
SEC: a data-flow task-based runtime. In: Proceedings of the 8th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA 2017, pp.
6:1–6:8. ACM, New York (2017). http://doi.acm.org/10.1145/3148226.3148233

18. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC 2012)
(2012)

https://doi.org/10.1007/978-3-319-14313-2_11
https://doi.org/10.1007/978-3-319-14313-2_11
http://doi.acm.org/10.1145/3148226.3148233

178 E. Dirand et al.

19. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: a task based
programming model in a global address space. In: Proceedings of the 8th Inter-
national Conference on Partitioned Global Address Space Programming Models
(PGAS 2014) (2014)

20. Pébaÿ, P., Bennett, J.C., Hollman, D., Treichler, S., McCormick, P.S., Sweeney,
C.M., Kolla, H., Aiken, A.: Towards asynchronous many-task in situ data analy-
sis using legion. In: 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 1033–1037, May 2016

21. Heirich, A., Slaughter, E., Papadakis, M., Lee, W., Biedert, T., Aiken, A.: In situ
visualization with task-based parallelism. In: Workshop on In Situ Infrastructures
on Enabling Extreme-Scale Analysis and Visualization (ISAV 2017) (2017)

22. Cho, Y., Oh, S., Egger, B.: Adaptive space-shared scheduling for shared-memory
parallel programs. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016. LNCS, vol.
10353, pp. 158–177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61756-5 9

23. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

24. Dorier, M., Sisneros, R., Peterka, T., Antoniu, G., Semeraro, D.: Damaris/Viz: a
nonintrusive, adaptable and user-friendly in situ visualization framework. In: IEEE
Symposium on Large Data Analysis and Visualization (LDAV) (2013)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-61756-5_9
https://doi.org/10.1007/978-3-319-61756-5_9
http://creativecommons.org/licenses/by/4.0/

Machine Learning Predictions
for Underestimation of Job Runtime

on HPC System

Jian Guo1(B) , Akihiro Nomura2(B), Ryan Barton1(B), Haoyu Zhang1(B),
and Satoshi Matsuoka1,2,3(B)

1 Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Tokyo, Japan
{guo.j.ae,barton.r.aa}@m.titech.ac.jp,

lynkzhang@gmail.com, matsu@is.titech.ac.jp
2 Global Scientific Information and Computing Center,

Tokyo Institute of Technology, Tokyo, Japan
nomura.a.ac@m.titech.ac.jp

3 Real World Big-Data Computing Open Innovation Laboratory,
National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. In modern high-performance computing (HPC) systems,
users are usually requested to estimate the job runtime for system
scheduling when they submit a job. In general, an underestimation of job
runtime will cause the HPC system to terminate the job before its com-
pletion. If users could be notified that their jobs may not finish before its
allocated time expires, users can take actions, such as killing the job and
resubmitting it after parameter adjustment, to save time and cost. Mean-
while, the productivity of HPC systems could also be vastly improved. In
this paper, we propose a data-driven approach – that is, one that actively
observes, analyzes, and logs jobs – for predicting underestimation of job
runtime on HPC systems. Using data produced by TSUBAME 2.5, a
supercomputer deployed at the Tokyo Institute of Technology, we apply
machine learning algorithms to recognize patterns about whether the
underestimation of job runtime occurs. Our experimental results show
that our approach on runtime-underestimation prediction with 80% pre-
cision, 70% recall and 74% F1-score on the entirety of a given dataset.
Finally, we split the entire job data set into subsets categorized by sci-
entific application name. The best precision, recall and F1-score of sub-
sets on runtime-underestimation prediction achieved 90%, 95% and 92%
respectively.

Keywords: HPC · Job log analysis
Underestimation on job runtime · Machine learning

The original version of this chapter was revised: The affiliation of the second author
has been corrected. The erratum to this chapter is available at https://doi.org/10.
1007/978-3-319-69953-0 17

c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 179–198, 2018.
https://doi.org/10.1007/978-3-319-69953-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_11&domain=pdf
http://orcid.org/0000-0002-9678-9960
https://doi.org/10.1007/978-3-319-69953-0_17
https://doi.org/10.1007/978-3-319-69953-0_17

180 J. Guo et al.

1 Introduction

Modern high-performance computing (HPC) systems are built with an increas-
ing number of CPU/GPU cores, memory, and storage space. Meanwhile, scientific
applications have been growing in complexity. However, not all users have enough
experience working reasonably with supercomputing resources. Writing and exe-
cuting programs on an HPC system requires more experience and techniques than
on a PC. First, HPC users need to have relevant knowledge about system-specific
information, such as parallel programming on multi cores or multi nodes in HPC
environments, and how many compute nodes or cores are appropriate for a spe-
cific application job. Furthermore, when submitting a job to an HPC system, users
are usually requested to estimate the runtime of said job for system scheduling. In
general, an underestimated runtime will lead to the HPC system terminating the
job before its completion. On the other hand, an overestimated runtime of the job
usually results in a longer queuing time. In both cases, the productivity of HPC
users is hindered [1]. Especially in the case of underestimation, the system will
directly terminate the undergoing job when its estimated runtime expires. Users
will lose their processing data, and furthermore, can no longer get the final results
they need. Therefore, most users have to resubmit their jobs again and run them
again from the beginning, which is a costly situation for users and systems since
they waste time and system resources.

Predicting jobs, especially those which may not finish before its allocated
time expires, can mitigate wastes of time and system resources by taking early
actions for those jobs. For instance, if an ongoing task execution of a job is
predicted to be runtime-underestimated based on the characteristic patterns,
system administrators or an automated agent can explicitly send a notification
to the user who submitted the job. The user can fix the problem by killing the
job and resubmitting it after parameter adjustment.

In this study, we propose a data-driven approach for predicting job statuses
on HPC systems. Here, “data-driven” means that our approach actively observes,
analyzes, and logs jobs collected on TSUBAME, a large-scale supercomputer
deployed at the Tokyo Institute of Technology. Supervised machine learning
algorithms (i.e., XGBoost and Random Forest) are applied to address this binary
classification problem (having runtime-underestimation or not).

Our experimental results show that our approach predicts the underesti-
mated job with 80% precision, 70% recall and 74% F1-score on the entirety of a
given dataset. Then, we split the entire job data set into subsets categorized by
scientific application name. The best precision, recall and F1-score of subsets on
job runtime-underestimated prediction achieve 90%, 95% and 92% respectively.
This achievement means that, for some scientific applications on HPC systems,
our model can be used to accurately predict whether a job can be completed
before its estimated runtime expires.

Our specific contributions are:

– We introduced some evaluation metrics (precision, recall, and F1-score on
minority classes) which are more fair than metrics used in similar previous
studies (overall precision, recall, and F1-score).

Machine Learning Predictions for Underestimation of Job Runtime 181

– Additionally, we plotted feature importance and revealed surprising hidden
patterns between different HPC applications and different features on com-
puting resource usage.

The rest of the paper is organized as follows: Related work about gathering
and analyzing job logs in HPC systems are introduced in Sect. 2, followed by an
overview description of the dataset and feature engineering used for preprocess-
ing the dataset in Sect. 3. Design and implementation of our machine learning-
based prediction methods and the evaluation of our approach are described in
Sect. 4. In Sect. 5, we presented detailed analysis based on experiment results and
discussion. Finally, we gave our future work and conclude the paper in Sect. 6.

2 Related Work

Gathering and analyzing job logs in HPC systems is a widely studied topic in
computer science literature. In recent years, there have been many studies on
analyzing job logs focusing on anomaly detection, failure prediction, runtime
prediction, and so on.

Klinkenberg et al. [2] proposed and evaluated a method for predicting fail-
ures with framed cluster monitoring data and extracted features describing the
characteristic of the signals. Authors in [3] presented a machine learning based
Random forests (RF) classification model for predicting unsuccessful job execu-
tions. In modern supercomputing centers, successful or health jobs occupy a very
large part of job databases. However, authors used the overall accuracy as an eval-
uation metric in those works, which cannot truly reflect unsuccessful execution
results. Tuncer et al. [4] presented a method to detect anomalies and performance
variations in HPC and Cloud environments. However, they run kernels represent-
ing common HPC workloads and infuse synthetic anomalies to mimic anomalies
observed in HPC systems, which may deviate from anomaly situations in reality.

There exists research focusing on predicting other job features, such as I/O,
CPU, GPU, memory usage and runtime in clusters. McKenna et al. [5] utilized
several machine learning methods (kNN, Decision Tree, and RF) for predict-
ing runtime and I/O usage for HPC jobs with training data from job scripts.
Rodrigues et al. [6] predicted job execution, wait time, and memory usage with
job logs and batch schedulers by an ensemble of machine learning algorithms
such as RF and kNN. Fan et al. [7] proposed an online runtime adjustment
framework for trade-off between prediction accuracy and underestimation rate
in job runtime estimates.

Additionally, others have worked on log file analysis with machine learning,
anomaly detection and so on. In this work, we use system log data collected by
ganglia to predict whether a job runtime was underestimated. We found that our
method has particularly good results at predicting underestimated runtime for
some applications after splitting the entire job data set into subset categorized
by scientific application name.

To the best of our knowledge, our work is the first to analyze job data and
build models according to different HPC scientific applications using machine

182 J. Guo et al.

learning. We discover that different features of computing resource usage, with
different weights on the prediction of job runtime-underestimation, ended up
affecting HPC applications’ runtime.

3 Data Collection and Feature Engineering

Our purpose is to model and predict users’ runtime-underestimation on job run-
time that wastes time and system resources. To address this, we propose a machine
learning-based technique which takes advantage of utilization data of different
computing resources as well as users’ resource usage requirements at job submis-
sion. The technique builds classifiers that can recognize hidden patterns in the col-
lected data, which are necessary to understand what jobs are running in the system
and the number of resources allocated at each node.

The overall system architecture from data gathering to result prediction is
depicted in Fig. 1.

Input

Ganglia+
PBS

MYSQL

Data
Preprocessing

Dropping
Nan

Label
Target

Feature
Engineering

Label
Encoder

Feature
Selection

Feature
Scaling

Building Models

Randomized
searchCV

Tuning
Hyperpara

ments

Random
ForestXGBoost

Training and
Test

Entire
Dataset

Subset 1

Subset 2

Subset 3

Subset
N

…

Fig. 1. Overall workflow diagram in this study

3.1 Gathering TSUBAME DATA

TSUBAME 2.5 [8] is GPU supercomputer located at Tokyo Institute of Technol-
ogy, operated from November 2010 to July 2017, including its ancestor TSUBAME
2.0. TSUBAME 2.5 is well known as “the greenest supercomputer in the world” in
theGreen500List [9] onNovember 2010 andJune 2011.The systemconsists of 1408
computenodes, eachofwhichhas threeNVIDIATeslaK20XGPUs (upgraded from
NVIDIATeslaM2050onSeptember2013), twoCPUsandSSDas local scratch stor-
age. The nodes are interconnected with dual-rail InfiniBand QDR full fat-tree net-
work. All nodes run SUSE Enterprise Linux 11 and compute jobs are managed by
PBS Professional 11. System load (and power) information, including GPU usage,
is monitored and recorded using Ganglia [10]. All nodes process information is also
recorded via process accounting interface in Linux.

We created MySQL database containing anonymized job history data from
PBS’s log, associated CPU and GPU usage information as features from Gan-
glia, and application information from accounting logs of each job. Prediction of

Machine Learning Predictions for Underestimation of Job Runtime 183

online runtime underestimation needs to be based on the progress information,
rather than the post-processing of measured information after jobs are finished.
All features regarding computing resource usage were normalized by dividing by
used wall clock timings. This provides progress information in the form of a ratio –
resource usage related measurements by wall clock units. As they are normalized
by time-based value, those normalized performance related measurements serve as
appropriate data sources for machine learning based job status prediction. Indeed,
this can also be extended to online prediction [3]. In total, 14.3 million jobs were
recorded, with a total database size of 8.5 GiB.

Table 1 shows the really world data we collected by Ganglia and PBS from
TSUBAME 2.5.

Table 1. List of computing resource usage features based on normalized time series data
and job requests information

Features Description Features Description

used cpupercent Recorded CPU usage req pl Requested priority

used mem Recorded memory usage req et Requested option to
extend maximum runtime

used ncpus Recorded number of CPU
used

nhosts Calculated number of
host involved

used vmem Recorded memory
address space usage

is array 1 if the job is a part of
array (parameter survey)
job

req mem Requested memory
amount

gpu utilization Recorded average GPU
utilization per node
(0.0–3.0)

req ncpus Recorded number of CPU
used

num gpu used Number of GPU per node
which is actually used

req walltime Requested runtime
(wallclock time)

app Recorded application
which run inside of the job

req gpus Requested number of
GPUs per node

grouphash Anonymized project
name

used walltime Recorded runtime
(wallclock time)

userhash Anonymized user name

queue time Timestamp of job submit start time Timestamp of job submit

end time Timestamp of job finish exit state Recorded exit status of
job script

year Fiscal year month Month

used nodesec Used runtime on per node used cputime Used runtime per CPU

queue Job class name

3.2 Feature Engineering

The purpose of a feature, other than being an attribute, would be much easier to
understand in the context of a problem. A feature is a characteristic that might

184 J. Guo et al.

help when solving the problem [11]. Features describe the structures inherent in
data, and furthermore, they are very important to the predictive models and will
influence the result. The quality and quantity of features have direct impact on
whether the model is good or not. Therefore, getting enough useful features from
the raw data is the first step in building good models for solving our problem.

Feature Selection. From the previous sections, we know that the raw data about
compute resources usage was time series data of extreme size. Directly using raw
time series data will produce unacceptable compute overhead, which may lead to
serious time gaps between data collection and analysis as well as wasted computa-
tional resource. Instead of using raw time series data, we selected a set of relevant
features fromthe raw job logsdata for use inmodel constructionbynormalizing and
converting them to MySQL database. In machine learning tasks, this is an essential
step to make results easier to interpret by researchers. Additionally one can enjoy
shorter training times, avoid the curse of dimensionality and enhanced generaliza-
tion by reducing overfitting [12].

In this research, our purpose is building a machine learning technique-based
model that can predict whether a job is underestimated on its runtime. Therefore
we selected features as training set X by removing redundant or irrelevant features
such as used cputime, used nodesec, used walltime, queue time, start time and
end time without incurring much loss of information. This is a preliminary study
in which we try to reveal complex patterns hidden in utilization of computing
resources, user behaviors, and different applications on an HPC system. Those fea-
tures are redundant, which have a large impact on the prediction of job runtime.

Additionally, we needed to create the target variable as the test set y which is
then compared with the results produced with the training set X. We label the test
set by the following formula:

y′ = j.used walltime − j.req walltime

where j.used walltime is actual runtime of a job, and j.req walltime is user esti-
mated time of a job. If y′ < 0, we label this job as 0 in the test set y, which means
that the actual runtime of this job does not exceed the user’s estimated time when
its user submitted it. Relatively, if y′ >= 0, this job will be labeled as 1 in the test
set, which indicates runtime-underestimation. In this case, this job will be termi-
nated by the HPC system immediately before its completion. The purpose of our
work is to predict whether a job is runtime-underestimated after job submission.

Feature Preprocessing. So far, we have selected enough feature variables as
the training set and also have made corresponding labels as the test set. However,
there are a few more important things needing to be addressed before we create the
training machine learning model.

First is Labelencoding. For most traditional machine learning algorithms, the
data fed to them must be in numerical type. Based on Table 1, however, we can
see that there are some feature columns that are non-numerical type. For instance,

Machine Learning Predictions for Underestimation of Job Runtime 185

Table 2. 5 instances with selected 18 features as training set and test set

Training set (X)
used cpupercent used mem used ncpus used vmem req mem req ncpus req walltime req gpus

975 974532 3 8.95E+07 1.07E+09 3 3540 3
1733 4.8451e+06 12 5.49226e+06 2.14748e+09 12 10800 0
1196 1.12E+06 192 6.83E+08 2.15E+09 192 86400 48
896 828776 24 3.41E+08 2.15E+09 24 86400 3
1197 2.64E+06 12 9.20E+07 2.15E+09 12 86400 1

Training set (X) Test set (y)
req pl req et nhosts is array gpu utilization num gpu used group queue user app Label: 1 or 0

0 0 1 0 81.0646 3 5 2 5 20 0
0 1 1 0 0 0 11 2 35 8 0
0 1 16 0 48.8958 3 166 5 368 11 0
0 1 1 0 169.295 3 10 5 473 11 0
0 1 1 0 49.8069 3 5 5 185 11 1

the column queue is list including [G, H, L128F, S, S96, X] which represents vary-
ing queues in TSUBAME 2.5 HPC system. In addition, the column userhash and
grouphash keep hash values from 1 100 users and 421 user groups. Labelencoder
can also be used to transform non-numerical variables (as long as they are hash-
able and comparable) to numerical variables. For example, LabelEncodeing can
turn [G, S, G,H, S] into [1, 2, 1, 3, 2], but then the imposed ordinality means that
the average ofG andH is S. In thiswork,we usedLabelencoder to transform feature
variables in columns userhash, grouphash and queue from categorical variables to
numerical variables.

Second is feature standardization. Based on Table 1, we can see that the range
of values of columns varies widely. For instance, in column used mem, values range
from single units to millions of units. Meanwhile, in column used cpupercent, the
values range from 0 to hundreds of thousands. In contrast with these two columns,
the column is array is bool type (0 or 1). Given this wide variation of training set
values in somemachine learning algorithms, objective functionswill notwork prop-
erly without normalization. For example, most of classifiers calculate the distance
between two points by the Euclidean distance. If one of the features has a broad
range of values, the distance will be governed by this particular feature. Therefore,
the range of all features should be feature scaled so that each feature contributes
approximately proportionately to the final distance.

Feature standardization can make the values of each feature in the data have
zero-mean (when subtracting the mean in the numerator) and unit-variance. This
method iswidely used for normalization inmanymachine learning algorithms (e.g.,
SVM, logistic regression, and neural networks). The general method of calculation
is to determine the distributionmean and standard deviation for each feature.Next
we subtract the mean from each feature. Then we divide the values of each fea-
ture by its standard deviation (since mean is already subtracted) [13], which can be

186 J. Guo et al.

presented in the following formula:

x′ =
x − x̄

σ

Where x is the original feature vector, x̄ is the mean of that feature vector, and σ
is its standard deviation. We give 5 job instances - with 18 selected features which
as Table 2 showed.

One important thing to note, researchers usually split the data into training,
validation, and testing sets in the training phase. If we perform feature scaling to
take the mean and variance (or standard deviation) over the whole set of predictor
variables, future information will be introduced into the training predictor vari-
ables; namely, the future information contained in the mean and variance. There-
fore, we perform feature scaling over the training data and save the mean and vari-
ance. Then we apply feature scaling to the predictor variables of the validation and
test data sets, using the training mean and variances. A model can be applied on
unseen data which, in general, is not available at the time the model is built. The
validation process (including data splitting) simulates this. In order to get a good
estimate of the model quality (and generalization power), one needs to restrict the
calculation of the normalization parameters (mean and variance) to the training
set.

Finally, for data cleaning work, we dropped all log job instances that contain
NaN which may be caused by recording error when collecting data. The size of
the logs from Jan. 1, 2015 to Dec. 31, 2016 is about one million job instances,
which are enough for training and testing our models. Table 3 shows the sum-
mary of the entire job data set and subsets categorized by scientific application
name. In Table 3, we found that, regardless of the whole dataset or a given sub-
set, both are imbalanced datasets. That is, at least one of the classes accounts for
only a small minority of the data. Aside from subset named “WRF”, the rest are
extremely imbalanced subsets. For example, subsets named “Bio: BLAST”, “Bio:
MEGADOCK” and “MD:Desmond MD”, the minority class (labeled 1, having
runtime-underestimation) are less than 1%, 1.45% and 2.2% respectively on those
subsets. The majority class (labeled 0, not having runtime-underestimation) occu-
pies overall 94.82% over the entire data set.

4 Performance Metrics and Algorithm Coverage for Binary
Classification Problem on Imbalanced Dataset

So far, we have realized very clearly that we are dealing with a binary classifica-
tion problem on an extremely imbalanced dataset. Almost all classifications that
will predict every sample as the majority class can still achieve very high perfor-
mance [14]. We can see that no matter what algorithms it is based on, and no mat-
ter what the data subset is, the majority class always has very high scores on all
metrics. Therefore, for building models on extremely imbalanced data, the over-
all classification accuracy is often not an appropriate metric of performance. There
are 2 ways that are given by data scientists and researchers to deal with imbalanced

Machine Learning Predictions for Underestimation of Job Runtime 187

Table 3. Imbalanced subsets categorized by scientific application name

Name of dataset Number of
instance

Number of instance
with label 0
(majority class
percentage)

Number of instance
with label 1
(minority class
percentage)

Whole data 987,123 935 926 (94.82%) 51 197 (5.18%)

Ab-Initio: PHASE 454 384 (84.59%) 70 (15.41%)

Bio: BLAST 6 367 6352 (99.76%) 15 (0.23%)

Bio: MEGADOCK 228 728 225 416 (98.54%) 3 312 (1.45%)

CAE: Abaqus 170 143 (84.11%) 27 (15.89%)

CAE: CST MW-Studio 944 861 (91.2%) 83 (8.8%)

CAE: Fluent 467 434 (92.94%) 33 (7.06%)

CAE: LS-DYNA 1 712 1 583 (92.46%) 129 (7.54%)

CAE: MSC Marc 28 28 (100%) 0

CFD: OpenFOAM 4 876 4480 (91.88%) 396 (8.12%)

MATLAB 3 127 2 832 (90.57%) 295 (9.43%)

MD: AMBER 45 554 44 382 (97.43%) 1 172 (2.57%)

MD: CHARMM 103 79 (76.7%) 24 (23.3%)

MD: Desmond MD 4 510 4411 (97.8%) 99 (2.2%)

MD: GROMACS 212 817 205 528 (96.57%) 7 289 (3.43%)

MD: NAMD 3 530 2 871 (81.33%) 659 (18.67%)

MD: Tinker 20 889 20 125 (96.34%) 764 (3.66%)

MD: lammps 1 285 1 147 (89.26%) 138 (10.74%)

MPI 124 828 112 321 (89.98%) 12 507 (10.02%)

Others 4 365 4 044 (92.65%) 321 (7.35%)

Python 208 892 199 368 (95.44%) 9 524 (4.56%)

QM: Gaussian 31 116 29 462 (94.68%) 1 654 (5.32%)

QM: OpenMX 3 786 3 459 (91.36%) 327 (8.64%)

QM: Quantum Espresso 5 276 4482 (84.95%) 794 (15.05%)

QM: VASP 69 445 58 541 (84.3%) 10 904 (15.7%)

RISM 102 102 (100%) 0

Vis: POV-RAY 1 967 1 833 (93.19%) 134 (6.81%)

WRF 1 785 1 258 (70.47%) 527 (29.53%)

data set. First is to collect more minority class data or to re-sample the imbalanced
dataset by over-sampling (e.g. adding copies of instances from the minority class)
or by under-sampling (e.g. deleting instances from the majority class). We can-
not do either of these strategies, because over-sampling will increase the size of
the data set thereby greatly extending training time, and under-sampling may lose

188 J. Guo et al.

important information as a consequence of dropped data. Second is to change the
performance metrics. There are metrics that have been designed to get fair perfor-
mance evaluation when working with imbalanced classes.

4.1 Metrics for Evaluating Imbalanced Data

Inmachine learning taskswith extremely imbalanced datasets, we use a set of alter-
native metrics such as false positive rate (FPR), true positive rate (TPR), receiver
operating characteristic (ROC), Area under the Curve of ROC (AUC), precision,
recall, and F1-score to evaluate the performance of our model on imbalanced data:

True Positives (TP): the true positive are the cases when the actual class of the
target label was 1 (True) and the predicted is also 1 (True). In this research, the
case where a job is actually runtime-underestimated (1) and the model classifies
the case as runtime-underestimated (1) falls under True Positives.
True Negatives (TN): the true negative are the cases when the actual class of the
target label was 0 (False) and the predicted is also 0 (False). In this research, the
case where a job is NOT runtime-underestimated and the model classifies the case
as NOT runtime-underestimated falls under True Negatives.
False Positives (FP): the false positive are the cases when the actual class of the
target label was 0 (False) and the predicted is 1 (True). In this research, the case
where a job is NOT runtime-underestimated and the model classifies the case as
runtime-underestimated comes under False Positives.
False Negatives (FN): the false negative are the cases when the actual class of the
target label was 1 (True) and the predicted is 0 (False). In this research, the case
where there is a runtime-underestimated job and the model classifies the case as
NOT runtime-underestimated comes under False Negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2 × Precision × Recall

Precision + Recall
(4)

FPR =
FP

FP + TN
(5)

TPR =
TP

TP + FN
(6)

SPC =
TN

TN + FP
(7)

Machine Learning Predictions for Underestimation of Job Runtime 189

The ROC is a kind of curve graph that represents the diagnostic ability for a
binary classification problem with all possible threshold values. ROC can be drawn
with coordinates ranging between FPR and TPR along the x and y axes. Adjusting
the threshold will change the FPR and TPR. In a binary classification problem, the
prediction result for each sample is usually made based on a continuous random
variable X, which is a “score” computed for this sample. Setting a threshold T , the
sample will be classified as “positive” if X > T , and “negative” otherwise.

The AUC it indicates the probability that a classifier will rank a randomly cho-
sen positive instance higher than a randomly chosen negative one (assuming ‘pos-
itive’ ranks higher than ‘negative’) [15]. The AUC is a single metric which can be
used for an overall performance summary of a classifier, calculated by following
formula:

AUC =
∫ −∞

∞
TPR(T)(−FPR′(T))dT

=
∫ ∞

−∞

∫ ∞

−∞
I(T ′ > T)f1(T ′)f0(T)dT ′dT = P (X1 > X0) (8)

where X1 is the score for a positive instance and X0 is the score for a negative
instance, and f0 is the probability density when the sample actually belongs to
class “positive”, and f1 otherwise [16].

Due to space limitations, we will not describe it in detail here. What we need to
know about AUC are as follows: The range of the value of AUC is between 0 and 1,
the higher the better; When AUC is 1, this means that it is a perfect classifier, and
with this prediction classifier, there is at least one threshold that leads to a perfect
prediction (noFPandFN).However, there is no perfect classifier inmost realworld
cases. 0.5 < AUC < 1 means that the performance of this model is better in cases
of a random guess. If the AUC is around 0.5, that means the performance of this
model is generally the same as the result of a random guess.

TheAUCwas the firstmetric used to evaluate the overall accuracy performance
of a classifier in the evaluation stage. After the best classifiers were chosen with the
AUC, we used ROC to trade off precision vs recall in the minority class, because
the majority class always has very high scores on all metrics in extremely imbal-
anced datasets. F1-score was a useful metric as we desired harmonic average of the
precision and recall.

In all classifiers, a trade off will always occur between true negative rate (SPC,
specificity) and true positive rate (TPR). The same occurs with precision and
recall. In our study, we hope to train a classifier that gives high precision over the
minority class (label 1, a job having runtime-underestimation), while maintain-
ing reasonable precision and recall for the majority class. In the case of modeling
on extremely imbalanced dataset, quite often the minority class is of great signifi-
cance. For our imbalanced binary classification problem, we will take advantage of
the combination of the above-mentioned evaluation metrics to diagnose our model.

190 J. Guo et al.

4.2 Machine Learning Algorithms for Imbalanced Data

In this study, we compare two popular supervised machine learning algorithms:
Random Forest (RF) [17] and XGBoost [18]. XGBoost is a scalable tree boosting
system that implements the gradient boosting decision tree algorithm, which is
widely used by data scientists and provides state-of-the-art results on many prob-
lems. The reason we chose to compare these two algorithms is that there are tree
based models (both based on ensembles of decision trees) that solve tabular data
very well, and have certain properties that a deep net does not have (e.g. ease of
interpretation and invariant to input scale, and much easier to tune). Both of these
methods are widely used as they outperform other distance-based algorithms like
logistic regression, support vector machine, kNN in data science [4,14,18–21].

5 Experiment Results and Analysis

Since we split the entire job data set into subsets, there are some subsets in which
the absolute number of minority class samples is too small. Therefore, we use the
leave-one-out cross-validation (LOOCV) in our work [22]. The LOOCV method
keeps a certain percentage of the full data set as a test set, then the rest of the data
is used to perform k-fold cross-validation (k-fold CV). Next, it records k scores and
calculates the standard deviation (std) of k scores as reference for choosing the best
classifier from them.At the same time, it evaluates the robustness of themodel.The
final performance score of this model can be obtained from using the best-chosen
classifier to predict the test set.

Meanwhile, most machine learning algorithms have several hyperparameters
thatwill affect amodel’s performance.Tuninghyperparameters is an indispensable
step to improve a model’s performance, which often improve its accuracy or other
metrics, like precision and recall, by 3–5%,depending on the algorithmanddataset.
In some cases, parameter tuning may improve the accuracy by around 50% [21]. In
this study, we train our model and tune hyperparameters via LOOCV with the
RandomizedSearchCV function from scikit-learn [23]. The RandomizedSearchCV
is an estimator used to optimizing hyperparameters from parameter settings. In
contrast to GridSearchCV, not all parameter values are attempted, but rather a
fixed number of parameter settings is sampled from the specified distributions. We
set 30% of the each dataset as the test set with a random state, n iter to 50, and we
also set AUC as the scoring metric in RandomizedSearchCV. Parameter settings
and optimized parameters are presented in Table 4.

5.1 Classification with Entire Dataset

We trained and tuned classifiers with the XGBoost and the RF on the entire
dataset. We used the best chosen classifiers based on 5-fold CV on the training
set (70% entire dataset) to predict the test set (30% entire dataset). Tables 5 and 6
shows that the XGBoost and the RF have an extremely similar overall performance
result. The result consist of similar values of runtime-underestimation prediction

Machine Learning Predictions for Underestimation of Job Runtime 191

Table 4.Hyperparameters settings of Random Forest, XGBoost and the best parameters
after tuning for our study

Algorithm Hyperparameters Best parameters after tuning

Random Forest n estimators: Number of
decision trees in the ensemble

n estimators = 500

min weight fraction leaf : The
minimum number of (weighted)
samples for a node to be
considered a leaf. Controls the
depth and complexity of the
decision trees

max features = 2

maxfeatures: Number of
features to consider when
computing the best node split

criterion = “entropy”

criterion: Function used to
measure the quality of a split

min weight fraction leaf = 8

XGBoost n estimators: Number of
decision trees in the ensemble

n estimators = 500

learningrate: Shrinks the
contribution of each successive
decision tree in the ensemble

learning rate = 0.8

maxdepth: Maximum depth of
the decision trees. Controls the
complexity of the decision trees

max depth = 3

max delta step: Set it to a finite
number (say 1) will help
convergence

max delta step = 2

maxfeatures: Number of
features to consider when
computing the best node split

max features = “log2”

(in terms of overall precision, recall, and F1-score) in the entire dataset. As we esti-
mated, the precision, recall, and F1-score of the majority class are very high on
both algorithms (0.98, and as high as 0.99). In contrast, all metrics on the minor-
ity class are lower than those on the majority class (e.g. F1-score: 0.74 vs 0.99).
However, the overall average of precision, recall, and F1-score achieved very high
scores on both algorithms (all around 0.97), due to combining absolute quantity
and relative quantity subsets into an entire imbalanced dataset. There is a slight
difference in precision and recall between the two algorithms; XGBoost outper-
forms the RF in precision by 0.02, while decreases the RF’s recall by 0.01. Thus,
the precision, recall, and F1-score on the minority class are fairer metrics than
those of the majority class when evaluating model performance.

192 J. Guo et al.

Table 5. Prediction results with entire dataset by XGBoost

Class Precision Recall F1-score Total
1 0.8 0.7 0.74 15273
0 0.98 0.99 0.99 280864

Avg/Total 0.98 0.97 0.97 296137

Predicted Positive Predicted Negative
Actual Positive 10677 (TP) 4596 (FN)
Actual Negative 2749 (FP) 278115 (TN)

Table 6. Prediction results with entire dataset by Random Forest

Class Precision Recall F1-score Total
1 0.78 0.71 0.74 15304
0 0.98 0.99 0.99 280833

Avg/Total 0.97 0.97 0.97 296137

Predicted Positive Predicted Negative
Actual Positive 11178 (TP) 4287 (FN)
Actual Negative 3186 (FP) 277486 (TN)

5.2 Classification with Subset Dataset Categorized by Scientific
Application Name

In most HPC systems, there are a huge number of jobs submitted by thousands of
userswhoare potentially grouped into hundreds of user groups. In relevant research
about job logs analysis, researchers usually divide logs into subsets with different
rules or purposes for seeking hidden patterns from those logs [1–3].

In this research, our main purpose is predicting whether a job may or may not
finish before its runtime estimated by its user. The runtime is mainly affected by
many factors, such as user behaviors and computing resource usage in the HPC
environment. (In this study, we do not consider human intervention from users or
administrators, nor random hardware failures). The entire job dataset was split
into subsets categorized by scientific application name for mining potential pat-
ternswhichmayaffect runtimeofHPCapplications.According toTable 3, there are
almost one million job logs based on 27 pre-installed HPC applications in TSUB-
AME 2.5 (except those in the unlabeled “others” class). We used XGBoost and
RF to build prediction models with the optimized hyperparameters presented in
Table 4 and run them through on each subset by 5-fold LOOCV respectively. The
performance evaluation results includingAUC,precision and recall on theminority
class were plotted in Figs. 2 and 3.

Figure 2 shows the AUC and the standard deviation (std) of the AUC by 5-fold
LOOCV for 26 subsets after taking “others” as a subset and removing “RISM”,
“CAE: MSC”, from all training dataset. This was because there is no instance
of runtime-underestimation (labeled 1, minority class) in their subsets. The AUC
(XGBoost) was chosen as an indicator to sort the results in descending order for
observation and analysis purposes.We can see that theXGBoost outperforms or tie

Machine Learning Predictions for Underestimation of Job Runtime 193

0

5

10

15

20

25

30

35

0

0.1
0.2
0.3

0.4
0.5
0.6
0.7

0.8
0.9

1

R
el

at
iv

e
pe

rc
en

ta
ge

 o
f m

in
or

ity
 c

la
ss

A
U

C

Applications (Absolute Number of Minority class)

AUC (XGBoost) std of AUC (XGBoost) AUC (RF) std of AUC (RF) Relative Percentage of Minority Class (%)

Fig. 2. The AUC and its STD after running through subsets with 5-fold LOOCV

with RF slightly in most application subsets with the AUC as the indicator, except
application named “CAE: LS-DYNA”. The std of AUC show the model stability;
the smaller the std is, the more stable the model’s performance is. The percentage
of minority class of each application was also plotted in Fig. 2. We can see that, for
most of cases in this study, the percentage ofminority class almost has no impact on
the AUC and the std of the AUC. However, we found that, the higher the absolute
number of minority class is, the more stable the model is relatively. We believe that
the high std of AUC in some subsets is due to the low absolute number of minor-
ity class. The AUC shows the overall performance of models. We can see that both
algorithms achieved very good AUC on 5 subsets including “CAE: Abaqus”, “Vis:
POV-RAY”, “MD: Tinker”, “MD: NAMD” and “MD: GROMACS”. Except for
“MD: NAMD” by RF, the AUC in the rest of 4 subsets are greater than or equal to
0.9,whichmeans thatbothalgorithmsprovideverygoodpredictionabout runtime-
underestimation for those 5 applications in the HPC environment. In contrast to
“CAE:Abagus” and “Vis: POV-RAY”, the results of “Bio:BLAST” by both 2 algo-
rithms are the worst in all subsets. Since in “Bio:BLAST” subset, the absolute
number (15) and the relative percentage (0.45%) on minority class are much lower
than those on other subsets, our models cannot handle with this kind of problem.
The “CAE:FLUENT” has similar result with “Bio:BLAST”, because of its abso-
lute number (33) on minority class is also very low. But its std of AUC is better
than “Bio:BLAST”, due to its relative percentage on minority class is higher than
“Bio:BLAST”.

In Fig. 3, we used best-chosen classifier from 5-fold LOOCV to plot precision
and recall in minority class on all subsets, which follows the sorting in Fig. 2. Tak-
ing stable, precision, recall and F1-score into consideration together, we think that
“Vis: POV-RAY” achieves the best result on minority class by XGBoost (90% pre-
cision, 95% recall, 92% F1-score). This figure helps to find out which algorithms

194 J. Guo et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

APPLICATION

Precision (XGBoost) Recall (XGBoost) Precision (RF) Recall (RF)

Fig. 3. Precision and recall on minority class after running through XGBoost and Ran-
dom Forest

is good at which metric. For example, if we need the best recall on subset “Vis:
POV-RAY”, XGBoost will be the best selection to build model.

If we want our model to provide the best precision for “CAE: LS-DYNA”, RF
should be chosen to build model. In this research, from the user’s point of view,
the precision is more important than the recall, due to the FP is more important
than the FN in the job runtime-underestimated prediction. Since the FP can be
much more costly than FN. On the contrary, if looking at the angle of HPC system
administrators for saving system resources as much as possible, the recall will be
more critical than FP.

Figure 4 represent ROC, AUC and std of AUC after 5-fold CV on “CAE:Aba-
gus” and “Bio: BLAST” by XGBoost. Adjusting the threshold will change the
FPR. For instance, increasing the threshold will decrease FP (and increase FN),
which corresponds to moving in the left direction on the curve. The curve is more

Fig. 4. ROC, AUC and standard deviation after 5-fold CV on subsets “CAE:Abagus”
(left) and “Bio: BLAST” (right) by XGBoost

Machine Learning Predictions for Underestimation of Job Runtime 195

inclined to the upper left corner (0, 1), where the performance of the model is bet-
ter at distinguishing positive and negative classes. Adjusting the threshold onROC
will be the last step to improve the performance of a model.

5.3 Feature Importance

Feature importance gives a score (F score) for indicatinghowvaluable oruseful each
feature was when building boosted decision trees based models. With the features

Fig. 5. Important features for different applications; features are automatically named
according to their index, f0: used cpupercent, f1: used mem, f2: used ncpus, f3:
used vmem, f4: req mem, f5: req ncpus, f6: req walltime, f7: req gpus, f8: req pl, f9:
req et, f10:nhosts, f11: is array, f12: gpu utilization, f13: num gpu used, f14: group,
f15: queue and f16: user, from f0 to f16 respectively

196 J. Guo et al.

sorted according to how many times they appear, the more a feature was used to
make key decisions within the decision trees, the higher its relative importance was
to the model.

In our study, we plotted feature importance in the top 5 AUC indicated sub-
sets with the features ordered according to how many score they have (how impor-
tant it was) in Fig. 5. We can see that used mem, used vmem, used cpupercent,
req walltimeandgpu utilizationare themost important features in those applica-
tions. However, applications have different weights (namely prediction of runtime-
underestimation) on different features (namely computing resource usage), which
both affected job runtime. Our method recognized these patterns and used them
to predict job runtime-underestimation in HPC systems.

5.4 Discussion

Papers [2–5] demonstrate related research, such as job status prediction, failure
prediction and anomaly detection, based on log file analysis with machine learning
with good results. Whether abnormal detection or job status prediction, the num-
ber of correct instances (majority class) should be much more than the number
of incorrect instances (minority class) in a dataset, which leads to an imbalanced
dataset just like our dataset presented here. However, in those works, authors used
the overall accuracy, precision, recall, and F1-score to evaluate the model perfor-
mance without considering those of on the minority class. As we explained in this
paper, because of the imbalanced absolute number and relative percentage of the
majority classes and the minority classes (the minority class will be more than 1 in
multi-classificationproblems), the overallmetrics cannot accurately reflect thepre-
dictions ofminority class.Minority classes aremore important than the predictions
ofmajority classes in classificationproblemwith an imbalanceddataset.Therefore,
we propose that taking precision, recall, and F1-score on minority classes, rather
than overall, is a promising metric for future work.

6 Conclusions and Future Work

Predicting whether a job is runtime-underestimated after job submission can
greatly benefit HPC users and system administrators. In this study, we built a
machine learning based model to mine patterns hidden in HPC job logs for predict-
ing runtime-underestimation.Additionally,we introduced someevaluationmetrics
(precision, recall, and F1-score on minority classes) which are more fair than met-
rics used in similar previous studies (overall precision, recall, and F1-score). We
split our dataset into subsets, and found that thebest precision, recall, andF1-score
of subsets on job runtime-underestimated prediction (minority class) achieved
90%, 95%and92%respectively.These results outperformsome recent related stud-
ies to date. Finally, we plotted feature importance and revealed surprising hidden
patterns between different HPC applications and different features on computing
resource usage.

Machine Learning Predictions for Underestimation of Job Runtime 197

As future work, we would like to improve prediction by extracting more fea-
tures such as the network traffic I/O, the standard deviation of computing resource
usage etc. which may affect the prediction performance. Also, we would like to do
more test with data collected from different time periods to prove and improve the
robustness of our model.

Acknowledgment. This work was supported by JST CREST Grant Number
JPMJCR1303 and JPMJCR1687, Japan. This work was partially conducted as research
activities of AIST - Tokyo Tech Real World Big-Data Computation Open Innovation
Laboratory (RWBC-OIL).

References

1. Zhang, H., You, H., Hadri, B., Fahey, M.: HPC usage behavior analysis and perfor-
mance estimation with machine learning techniques. In: Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA), the Steering Committee of The World Congress in Computer Sci-
ence, Computer Engineering and Applied Computing (WorldComp), p. 1 (2012)

2. Klinkenberg, J., Terboven, C., Lankes, S., Müller, M.S.: Data mining-based analysis
of HPC center operations. In: 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER), pp. 766–773. IEEE (2017)

3. Yoo, W., Sim, A., Wu, K.: Machine learning based job status prediction in scientific
clusters. In: SAI Computing Conference (SAI), pp. 44–53. IEEE (2016)

4. Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V.J., Egele, M., Coskun,
A.K.: Diagnosing performance variations in HPC applications using machine learn-
ing. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS,
vol. 10266, pp. 355–373. Springer,Cham(2017). https://doi.org/10.1007/978-3-319-
58667-0 19

5. McKenna, R., Herbein, S., Moody, A., Gamblin, T., Taufer, M.: Machine learning
predictions of runtime and IO traffic on high-end clusters. In: 2016 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), pp. 255–258. IEEE (2016)

6. Rodrigues, E.R., Cunha, R.L., Netto, M.A., Spriggs, M.: Helping HPC users specify
job memory requirements via machine learning. In: Proceedings of the Third Inter-
national Workshop on HPC User Support Tools, pp. 6–13. IEEE Press (2016)

7. Fan, Y., Rich, P., Allcock, W.E., Papka, M.E., Lan, Z.: Trade-off between prediction
accuracy and underestimation rate in job runtime estimates. In: 2017 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), pp. 530–540. IEEE (2017)

8. Matsuoka, S.: The TSUBAME 2.5 evolution. TSUBAME e-Sci. J. 10, 2–8 (2013)
9. Feng,W.,Cameron,K.:TheGreen500 list: encouraging sustainable supercomputing.

Computer 40(12), 50–55 (2007)
10. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:

design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)
11. Brownlee, J.: Discover feature engineering, how to engineer features and how to get

good at it. Machine Learning Process (2014)
12. Bermingham, M.L., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I.,

Campbell, H., Wright, A.F., Wilson, J.F., Agakov, F., Navarro, P., et al.: Application
of high-dimensional feature selection: evaluation for genomic prediction in man. Sci.
Rep. 5, 1–12 (2015)

https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19

198 J. Guo et al.

13. Grus, J.: Data Science from Scratch: First Principles with Python. O’Reilly Media,
Inc., Sebastopol (2015)

14. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn imbalanced data, vol.
110. University of California, Berkeley (2004)

15. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874
(2006)

16. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation (2011)

17. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News
2(3), 18–22 (2002)

18. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

19. Song,R.,Chen, S.,Deng,B., Li, L.: eXtremegradient boosting for identifying individ-
ual users across different digital devices. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu,
D. (eds.) WAIM 2016. LNCS, vol. 9658, pp. 43–54. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39937-9 4

20. Nielsen, D.: Tree boosting with XGBoost-why does XGBoost win “every” machine
learning competition? Master’s thesis, NTNU (2016)

21. Olson, R.S., La Cava, W., Mustahsan, Z., Varik, A., Moore, J.H.: Data-driven
advice for applying machine learning to bioinformatics problems. arXiv preprint
arXiv:1708.05070 (2017)

22. Cawley, G.C., Talbot, N.L.: Efficient leave-one-out cross-validation of kernel fisher
discriminant classifiers. Pattern Recogn. 36(11), 2585–2592 (2003)

23. Pedregosa, F.,Varoquaux,G.,Gramfort,A.,Michel, V., Thirion,B.,Grisel,O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning
in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-39937-9_4
https://doi.org/10.1007/978-3-319-39937-9_4
http://arxiv.org/abs/1708.05070
http://creativecommons.org/licenses/by/4.0/

A Power Management Framework
with Simple DSL for Automatic
Power-Performance Optimization

on Power-Constrained HPC Systems

Yasutaka Wada1(B), Yuan He2, Thang Cao3, and Masaaki Kondo3

1 Meisei University, Tokyo, Japan
yasutaka.wada@meisei-u.ac.jp

2 Shenyang University of Technology, Shenyang, Liaoning, China
heyuan@sut.edu.cn

3 The University of Tokyo, Tokyo, Japan
{cao,kondo}@hal.ipc.i.u-tokyo.ac.jp

Abstract. To design exascale HPC systems, power limitation is one of
the most crucial and unavoidable issues; and it is also necessary to opti-
mize the power-performance of user applications while keeping the power
consumption of the HPC system below a given power budget. For this
kind of power-performance optimization for HPC applications, it is indis-
pensable to have enough information and good understanding about both
the system specifications (what kind of hardware resources are included
in the system, which component can be used as a “power-knob”, how to
control the power-knob, etc.) and user applications (which part of the
application is CPU-intensive, memory-intensive, and so on). Because this
situation forces both the users and administrators of power-constrained
HPC systems pay much effort and cost, it has been highly demanded to
realize a simple framework to automate a power-performance optimiza-
tion process, and to provide a simple user interface to the framework. To
tackle these concerns, we propose and implement a versatile framework
to help carry out power management and performance optimization on
power-constrained HPC systems. In this framework, we also propose a
simple DSL as an interface to utilize the framework. We believe this is a
key to effectively utilize HPC systems under the limited power budget.

Keywords: HPC · Performance · Power · Optimization

1 Introduction

The need for high performance computing (HPC) in modern society never
recedes as more and more HPC applications are highly involved in every aspect
of our daily life. To achieve exascale performance, there are many technical chal-
lenges waiting to be addressed, ranging from the underlying device technology to
exploiting parallelism in application codes. Numerous reports including Exascale

c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 199–218, 2018.
https://doi.org/10.1007/978-3-319-69953-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_12&domain=pdf

200 Y. Wada et al.

Study from DARPA [2] and Top Ten Exascale Research Challenges from DOE
[12] have identified power consumption as one of the major constraints in scaling
the performance of HPC systems. In order to bridge the gap between required
and current power/energy efficiency, one of the most important research issues
is developing a power management framework which allows power to be more
efficiently consumed and distributed.

Power management is a complicated process involving the collection and
analysis of statistics from both hardware and software, power allocation and
control by available power-knobs, code instrumentation/optimization, and so
on. For large scale HPC systems, it would be more complex since handling these
tasks at scale is not easy. So far, these tasks are mostly carried out in a discrete
and hand-tuned way for a specific hardware or software component. This fact
causes several problems and limitations.

First, the lack of cooperation/automation makes power management very dif-
ficult and time-consuming. It is desirable that power management process is able
to be carried out under a common convention with little effort from users and
system administrators. Second, though there are many existing tools to be poten-
tially used for power optimization, each of them is usually designed for different
purpose. For example, PDT and TAU are used for application analysis, RAPL
is dedicated to power monitoring and capping while cpufreq targets mainly for
performance/power tuning [10,18,23]. It is necessary to have a holistic way to
use them together. Third, different HPC systems have different capabilities for
power management, resulting in system or hardware-specific ad-hoc solutions.
Of course, these are not portable. Therefore, it is crucial to provide a generalized
interface for portability and extensibility. Fourth, power management sometimes
needs a collaborative effort from both users and administrators. Many existing
solutions fail to draw a clear border between them.

To address these problems, some of power management related tools and
APIs such as GeoPM [5] and PowerAPI [8] have been developed. These
tools/APIs are user-centric and need hand-tuning efforts for efficient power
management. Hence, we design and implement a versatile power management
framework targeting at power constrained large scale HPC systems. We try to
provide a standard utility to people of different roles when managing/using such
systems. Through this framework, we provide an extensible hardware/software
interface between existing/future power-knobs and related tools/APIs so that
system administrators can help supercomputer users make full use of valuable
power budget. Since the framework defines clear roles for people participating
and software components, power management and control can be carried out
securely. The framework contains a very simple domain-specific language (DSL)
which serves as a front-end to many other utilities and tools. This enables users
to create, automate, port and re-use power management solutions.

This paper makes the following contributions:

– We design and implement a versatile framework to meet the necessity of per-
formance optimization and power management for power-constrained large
scale HPC systems.

A Power Management Framework with Simple DSL 201

– By showing three case studies, we demonstrate how this framework works and
how it is used to carry out certain power management tasks under different
power control strategies.

– We also prove the effectiveness of this framework through these three case
studies.

The rest of this paper is organized as follows. Section 2 covers the background
and related work, while Sect. 3 presents details of the power management frame-
work and its components. Section 4 is about the DSL. In Sect. 5, we demonstrate
this framework through a few case studies and make discussions on the results.
Finally, Sect. 6 concludes this paper.

2 Related Work

To make full use of a given power budget on power-constrained HPC systems,
many aspects such as system configurations and application characteristics are
required to be considered when applying power-performance optimization for
applications. This section covers related research efforts for some of these aspects.

2.1 Power-Performance Optimization

Power-performance optimization methodologies typically aim at maximizing
application performance while satisfying given constraints (power budget, energy
consumption, application execution deadline, etc.). Most of them are mainly
based on “power-shifting” among hardware components [9,13,19] or among
applications/jobs [3,17,20,24,26]. Usually we have a large number of jobs run-
ning on a HPC system, and hence optimizing power-performance in both intra-
and inter-application cases is important.

Intra-application Optimization. Some power-performance optimization
methods focus on the optimization of an application by accommodating power
budgets from one hardware component to another.

For example, Miwa et al. proposed power-shifting method to shift the power
budget from network resources among nodes to CPUs in order to utilize unused
power created when network equipment with the Energy Efficient Ethernet Stan-
dard [7] are deployed for the interconnections among nodes [13]. Gholkar et al. pro-
posed a technique to optimize the number of processors to be used in a job under
given power budgets [6]. Inadomi et al. proposed power-performance optimization
method which considers manufacturing variations in a large system [9,19].

Though these power-performance optimization methods succeeded to
improve the execution performance of applications, each method employs its
own optimization process and it is required to develop a unified way or frame-
work to apply the optimizations.

202 Y. Wada et al.

Inter-application Optimization. In most HPC systems, users submit a large
number of jobs, and the system scheduler allocates some of the jobs consider-
ing the number of nodes needed by each job, estimated execution time, and so
on. In addition to the intra-application power-performance optimization, it is
important to optimally allocate power budgets among running jobs.

Cao et al. developed a demand-aware power management approach [24]. With
this approach, job scheduler allocates power budget and hardware resources to
run jobs considering their demands and the total system power consumption.
They also developed an approach for cooling-aware job scheduling and node
allocations [3]. The aim of this approach is to shift power from cooling facili-
ties to compute nodes as much as possible by keeping low inlet temperature.
Sakamoto et al. developed extensible power-aware resource management based
on slurm resource manager [20]. By using this resource management framework,
job scheduler can correct and utilize the power consumption data of each applica-
tion and node. Patki et al. proposed a resource management system which makes
it possible to apply back-fill job scheduling considering system power utilization
[17]. Chasapis et al. proposed a runtime optimization method which changes
concurrency levels and socket assignment considering manufacturing variability
of chips and the relationships among chips in NUMA nodes [4]. Wallace et al.
proposed “data-driven” job scheduling strategy [26] which observes the power
profile of each job and use it at runtime to decide power budget distribution
among jobs running on the system which has limited power budget.

2.2 Interfaces to Control Power-Knobs

To realize power-performance optimization, user applications need to access and
control power-knobs and obtain power consumption values for various hardware.
These power-knobs may come from different vendors so we need a unified inter-
face to access them.

Recent Intel processors are equipped with RAPL interface to apply power-
capping to CPU and DRAM [10]. RAPL allows us to monitor and restrict the
power consumption of both CPU and DRAM. Also, NVML [15] provides the
API to manage both power consumption and operating frequency of NVIDIA’s
GPUs. PAPI (Performance API) is now developed with functionalities to access
NVML and RAPL interfaces [27]. With these functionalities, user applications
are allowed to have access to these interfaces in the same way as to other hard-
ware performance counters if the system administrator gives the permission to
them. Though PAPI supports various processor architectures, it mainly provides
us interfaces to monitor hardware counter information and is not for control-
ling the hardware. Power API has also been developed to provide standardized
interfaces to measure/control power on HPC systems [8]. It provides us unified
interfaces and abstraction layers to users, system administrators, applications,
and so on.

However, users are still required to insert API calls into the application
source code to realize power-performance optimized applications. In addition,
each system has its own power-performance characteristics, and this makes the

A Power Management Framework with Simple DSL 203

optimization process much harder and requires users to spend large cost and
effort. To alleviate the difficulties, it is desirable to develop a simple and easy-
to-use interface to control and monitor power-knobs. This simple interface should
play an important function for the unified framework.

2.3 Performance Profiling and Analysis Tools

Not only optimizing applications, but also gathering performance data of appli-
cations is essential. Detailed analysis information of a user application is required
to apply power-performance optimization more effectively.

Until now, many performance analysis tools have been developed. TAU [21]
is one of such performance analysis tools, with which one can collect application
profiling information and visualize the data with it. Most of these tools are basi-
cally developed to give us a simple and easy way to collect application profiling
data, and recently they can help collect power consumption data together with
performance data by using PAPI and similar libraries. SPECpower [11] consists
of a set of benchmark programs and provides instructions to measure the perfor-
mance and power consumption of computer systems. SPECpower can be used
to collect detailed data for comparing different systems.

However, it is difficult to utilize such information for power-performance
optimization as in practice, many kinds of user applications run on many different
systems. In addition, most of the performance analysis tools and methodologies
assume that the user optimizes their applications manually according to the
information obtained through such tools.

2.4 Domain Specific Language to Describe System Performance
and Configuration

To make it easy to develop power-performance optimized applications, using
a DSL is already considered. ASPEN [22] is a DSL to describe both system
architecture and application characteristics in order to model the performance
of an application on a system. ASPEN is good at estimating performance of
the system described with it, but the power consumption is just an estimation
based on given parameters. To realize power-performance optimization on real
systems, it is required to know the actual power profile on target systems.

2.5 Towards a Versatile Power Management Framework

Most of the works above, related to power-performance optimization/manage-
ment on power-constrained HPC systems, could help us carry out good power
management. However, we still need to pay much cost and effort to apply them
to many kinds of user applications, and it is difficult to make all users know well
about the system they want to use, in addition to their application character-
istics. Furthermore, if the system is replaced, they are forced to optimize their
applications again while getting knowledge about the new system.

204 Y. Wada et al.

In this paper, we aim to provide a simple and easy way to realize power-
performance managed/optimized application by using a versatile power manage-
ment framework which has access to all kinds of information from the systems,
users, and applications. This framework applies power-performance optimization
to the application automatically, and can reduce users’ burden drastically.

3 The Proposed Power Management Framework

The main objective of the framework proposed in this paper is to make the
power management and power-performance optimizations processes more facili-
tating and flexible for both users and system administrators. In this framework,
we assume a standard HPC system with its hierarchical structure as shown
in Fig. 1. The target system consists of multiple compute nodes, interconnec-
tion network, and the storage subsystem. Each node consists of multiple proces-
sors, DRAM modules, and accelerators like GPUs. Each processor has multiple
cores. We assume some of the hardware components have power-knobs to con-
trol power consumption of the executing programs, but their availability to the
users depends on the control permission or the operational policy specified by
the system administrator.

3.1 Overview and Power Management Workflow Control

To optimize power-performance efficiency and to manage power consumption of
HPC applications to be executed, we have to take care of many things including:
(1) what kinds of hardware components the system has and how much power
is consumed in them, (2) what kinds of power-knobs are available and how to
control them, (3) how the applications behave at runtime, and (4) what is the
relationship between performance and power consumption of the application.

Fig. 1. The outline of a target HPC system

A Power Management Framework with Simple DSL 205

Based on these information, (5) we have to design a power-performance opti-
mization algorithm. One of the most burdensome tasks is (6) to assemble and
utilize existing tool-sets for collecting the necessary information and actually
controlling power-knobs.

It requires the user to pay much cost and time to consider these tasks. Our
framework is designed to provide or to support the following functionalities which
help users and administrators carry out power management/control effectively
without taking care of the above mentioned issues:

– Analyzing source code and applying automatic instrumentation
– Measuring and controlling application power consumption and performance
– Optimizing an application under given power budget
– Specifying and defining the target machine specification
– Calibrating hardware power consumption of the system

The outline of the framework is presented in Fig. 2. One of the benefit of
the framework is the fact that workflow of power-performance optimization and
control can be specified in higher abstraction level. Details of how to use libraries
for controlling power-knobs, how to profile and analyze the application code, and
how to instrument power management pragmas in the code or the job submission
script are hidden from users. Moreover, the framework provides high modularity
and flexibility so that libraries or tool-set used in the framework and also power
optimization algorithms are customizable.

In order to provide customizability and flexibility, we developed a simple
DSL as the front-end for these supported tools and for selecting the power opti-
mization algorithm. Note that in current version of the framework, we support
RAPL/cpufreq utils for accessing power-knobs [9,19] and TAU/PDT for code

Fig. 2. The overview of the power-performance optimization framework

206 Y. Wada et al.

instrumentation and profiling. However, these are extensible and other tool-sets
are easily supported.

This framework requires only two sets of inputs, the DSL code and the user
application source code. Based on them, our framework offers a semi-automatic
way of power-performance optimizations. Meanwhile, the administrators and
users can be free from the effort to understand the inside of the optimization
workflow. Once the DSL source code is prepared, the proposed framework pro-
vides an easy way to realize optimized execution of user applications.

Note that our framework supports two types of users. One is simply super-
computer “user” and the other is “administrator”. An administrator is able to
specify machine configurations, enable/disable power-knobs and calibrate the
hardware while a user is not allowed to do so. Switching between them is carried
out with the DSL.

3.2 Application Instrumentation for Profiling and Optimization

To realize power-performance profiling and optimized execution of a user appli-
cation, the application is required to be instrumented with API calls to get
profiling data and to control power-knobs. In current version of our workflow, it
is assumed that PDT based instrumentation tool [9,19,25] is used for automatic
instrumentation. For example, the user should instruct the instrumentation tool
to insert API calls before/after each function call, parallel loop, and so on to
control the power-knobs. This process can also be carried out with the DSL.

Figure 3 shows an example of the automatic instrumentation by the frame-
work. As shown on the left in Fig. 3, our automatic instrumentation tool
assumes that its input is a source code written with MPI. The instrumen-
tation tool detects the entry/exit points of each function in the source code
and inserts API calls. The tool also inserts an initialization API call just after
“MPI Init()”. As the result, as shown on the right in Fig. 3, a source code with
API calls (“PomPP Init()” for initialization, and “PomPP Start Section()” and
“PomPP Stop Section()” for power-knob control) is generated.

Beside the framework, the user can insert the API calls into the application
code by themselves. However, it would be a troublesome task since the user needs
a sanity check for start-stop relationship of all the API calls throughout the whole
source code. If the control flow of the application code is complex, this is not easy.
For example, in Fig. 3, “func1” has two return statements, and API calls indicating
the exit point of the section have to be inserted for both of them.

For the automatic code instrumentation, we include TAU based profiling
tool [21] in the framework and it allows selective instrumentation. With the
selective instrumentation capability, users can specify which functions should be
instrumented for power-knob control based on its execution time and so on.

As shown in Fig. 2, we assume to use the same execution binary for both
profiling and optimization run to reduce users’ labor. To realize this, the library
is developed to enable both profiling and power-knob control with the same API
call [9,19]. The library can change its behavior based on the user setting via
environment variables.

A Power Management Framework with Simple DSL 207

Fig. 3. An example of the automatic instrumentation for both profiling and power-knob
control

3.3 Power Control and Application Optimization

In the current implementation of the framework, we assume to decide power-
capping and power distribution in advance statically. For the optimization, the
user is asked to run at least two scripts generated by the DSL described in
Sect. 4.

The first one is the script to generate power-performance profiling data for
the application. This script runs the instrumented application several times and
generates power consumption profiling data of the available power-knobs with
several settings of them.

The second one is the script for optimized application run. In this script,
power-knob settings are decided in advance based on the information given by
the hardware calibration data, the profiling data of the target application, and
other given constraints (power budget, allowed slowdown in the execution time,
and so on). This decision is written to a file, and is referred to find out when
and how the power-knobs should be controlled while running the application.

In our current implementation, it is assumed that the script or program,
which is used to make a decision for the optimized power capping values, is
prepared by the system administrator in advance, because the administrator is
responsible to decide which power-knobs to be opened for user applications and
what kind of power-performance models are desirable.

208 Y. Wada et al.

3.4 Machine Specification and Setting

A main feature of this framework is to help the system administrators set/mod-
ify the configurations of various HPC systems. Through the DSL source, the
administrator can provide the system configuration and available power-knobs
to the framework. Users of the system should have the permission to access the
power-knobs as if they are allowed by the administrator.

3.5 Hardware Calibration

Precise power-performance control is required to realize overprovisioned HPC
system because power budget is usually strictly constrained for safe operation
of the system. To realize the precise control, actual power consumption informa-
tion of each component in the system is necessary. In addition, we may need the
information on how different the power consumption of each component is. As
Inadomi et al. mentioned, because of manufacturing variations, each component
in the system has its own characteristic even when we compare the same products
[9]. Hardware calibration is very useful in a large scale system as even components
with identical performance specifications actually have different power charac-
teristics. In most cases, such hardware configuration and calibration processes
are only required once per system right after the system is installed.

Therefore, the proposed framework provides the scripts for the hardware cal-
ibration based on the information given by the administrators. The scripts run
some microbenchmarks and collect the power-performance relationship informa-
tion for each component. With this information and the profiling data of user
applications, our framework decides how much power budgets should be allo-
cated for each power-knob.

4 DSL to Control Power Management Workflow

As a front-end to our framework, we have developed a simple DSL to provide a
uniform gateway to tools and utilities in the framework. It helps to create power
management algorithms and processes. The DSL interpreter is developed based
on ANTLR v4 [1,16] with very simple semantics.

Using this DSL leads to several advantages. First, this simple DSL provides
a unified way to access to various functionalities supported by this framework.
Second, system configurations, optimization processes and algorithms are com-
posed in this DSL such that they can be easily reused and extended. Third,
given the code written in this DSL, automation is possible which dramatically
improves productivity.

4.1 Semantics of the DSL

Source code written in our DSL is composed of a basic element which is called the
“statement”. Each statement has a command, which is used to specify an action.

A Power Management Framework with Simple DSL 209

For example, Listing 1, 2 and 3 illustrate statements manipulating objects defined
in this DSL. Listing 1 shows how system configuration is set and Listing 2 shows
how to use an application as the microbenchmark to calibrate the hardware.
Listing 3 is about how a job is submitted with a socket power cap of 70 W.

Listing 1. DSL Code Snippets for System Configuration

1 CREATE MACHINE M
2 ADD M POMPP_NPKGS_PER_NODE 2
3 ADD M POMPP_NCORES_PER_PKG 12
4 ADD M POMPP_TOTAL_NODES 965
5 ADD M POMPP_MAX_FREQ 16
6 ADD M POMPP_MIN_FREQ 12
7 ADD M POMPP_PKG_TDP 130.0
8 ADD M POMPP_DRAM_TDP 62.0
9 ADD M POMPP_PKG_MIN 64.0

10 ADD M POMPP_DRAM_MIN 30.0
11 ADD M POMPP_MODULE_MIN 46.0
12 SWITCH M

Listing 2. DSL Code Snippets for Hardware Calibration

1 CREATE JOB EP_C
2 ADD EP_C EXEC_PATH <absolute path to the executable>
3 ADD EP_C JOB_TYPE CALIBRATION
4 ADD EP_C PVT_PATH <absolute path to the power variation table>
5 SUBMIT EP_C

Listing 3. DSL Code Snippets to Submit a Job with a Specified Power Cap

1 CREATE JOB EP_G
2 ADD EP_G EXEC_PATH <absolute path to the executable>
3 ADD EP_G JOB_TYPE GENERAL
4 ADD EP_G MODULE_POWER 70
5 ADD EP_G CONTROL_MODE RAPL
6 SUBMIT EP_G

So far, commands supported by this DSL are “CREATE”, “DELETE”,
“ADD”, “REMOVE”, “GET”, “SET”, “LIST”, “INSERT”, “SWITCH” and
“SUBMIT”. When initializing objects, “CREATE” is used so it is followed by
a type and an object name while “ADD” is used to add attribute and it is fol-
lowed by an attribute and its value. “GET” and “SET” are used to retrieve and
modify attributes of an object while “REMOVE” is used to remove an attribute
of an object and “DELETE” is used to delete an object. In addition, “LIST” is
used to list objects created; “INSERT” is used for manual instrumentation; and
“SUBMIT” means to submit a job to the HPC system. Finally, “SWITCH” is
used to switch between “user” and “administrator” or used to switch to different
sets of machine configurations. In the scope of this DSL, an administrator is also
a user, but with more commands/capabilities available. For example, an admin-
istrator can submit a job just like a user but a user is not allowed to calibrate the
hardware. Therefore, when switching to the “administrator” role, a password is
required to prevent an administrator from misuses of privileged commands. All
commands are summarized in Table 1.

Supported types in this “DSL” include “MACHINE”, “JOB” and “MODEL”.
“MACHINE” is used to represent set of system configurations, while “JOB”

210 Y. Wada et al.

Table 1. Commands in the DSL

CREATE/DELETE Creating or deleting an object

ADD/REMOVE Adding or removing an attribute for an object

GET/SET Setting or getting the value of an attribute

LIST Listing objects

INSERT Manual instrumentation to application source

SWITCH Switching between user/admin or switching to a
different machine

SUBMIT Submitting jobs to the system

is used to represent a job to run on the system and “MODEL” is defined as
the relationship between performance and power consumption, which can be
used to optimize the execution process of an application to satisfy power or
performance requirements according to a mathematical model. Such models are
used to generate power caps from the profiling and hardware calibration data.

In addition to commands and types above, arrays and loops are also sup-
ported in this DSL. Arrays are used to create objects as a batch and loops
simply help improve the productivity of this DSL. Through all these supported
features, this DSL stands between the user/system administrator and our frame-
work and allows the framework to be accessed in a more unified manner and also
realizes more complex power management tasks.

4.2 Implementation of the DSL Interpreter

The DSL interpreter is designed and implemented with ANTLR v4. During inter-
pretation, various DSL statements are translated into shell scripts and applica-
tion instrumentation for different purposes such as hardware calibration, appli-
cation profiling, job submission, specifying power control in the application,
interfaces to other tools and so on. This interpretation process is uniform for
different systems but different hardware configurations may lead to variations in
the results.

Along with any created instances of a defined type in this DSL, there is also
an XML file created to store their attributes. For example, an instance of the
type “job” will have an accompanying XML file which stores its attributes such
as its name, path, executable, power caps and so on.

5 Case Studies and Evaluation

In this section, we provide three case studies to demonstrate some of the func-
tionalities of our framework. All these case studies are firstly programmed with
the DSL and then interpreted on a gateway node of an HPC system with its
specifications shown in Table 2.

A Power Management Framework with Simple DSL 211

Table 2. Evaluation environment and parameters

Number of nodes 16

Processor Intel Xeon E5-2680

Number of sockets per node 2

Number of cores per socket 8

Memory size per node 128 GB

Interconnect Infiniband FDR

OS Red Hat Linux Enterprise with kernel 2.6.32

Compiler FUJITSU Software Technical Computing Suite

MPI Open MPI 1.6.3

Applications EP and IS (Class D) from the NPB Suite

Fig. 4. Power profiles of EP and IS

Listing 4. DSL Source for Profiling

1 CREATE JOB EP_P
2 ADD EP_P EXEC_PATH <absolute path to the executable>
3 ADD EP_P JOB_TYPE PROFILING
4 ADD EP_P PVT_PATH <absolute path to the power variation table>
5 ADD EP_P ITERATIONS 5
6 ADD EP_P PROFILE_NAME EP
7 SUBMIT EP_P

In these case studies, we employed RAPL interface [10] as the available power-
knob, and considered only CPU power to be controlled through the RAPL under
the assumption that DRAM power consumption has strong correlations with
CPU performance and power. We used two applications (EP and IS) from the
NPB benchmark suite [14] to carry out these case studies. To understand their
performance and power characteristics, profiling is necessary and the results

212 Y. Wada et al.

are shown in Fig. 4 with an interval of 100 ms. The profiling processes are also
specified with our DSL as in Listing 4. How power capping should be applied
during the profiling process depends on the system and the power-performance
model to be used, and our framework can be easily extended to follow them.

5.1 Case Study 1: Peak Power Demand as the Power Cap
for Applications

The first case study shows how a maximum power demand of an application is
used as the power cap for the application. This case study requires our framework
to insert power-knob control API calls to the user application. Such API calls
are inserted into the application source file, and help both the profiling process
and capping tasks.

Listing 5. DSL Source for Case Study 1 (with Peak Power Demand)

1 CREATE MODEL MAX
2 ADD MAX MODEL_PATH <absolute path to the model script to find out max power>
3
4 CREATE JOB EP_MAX
5 ADD EP_MAX EXEC_PATH <absolute path to the executable>
6 ADD EP_MAX JOB_TYPE OPTIMIZATION
7 ADD EP_MAX CONTROL_MODE RAPL
8 ADD EP_MAX PROFILE_NAME EP
9 ADD EP_MAX MODEL_TO_USE MAX

10 SUBMIT EP_MAX

Fig. 5. Power performance optimization results under case study 1 (with peak power
demand)

A Power Management Framework with Simple DSL 213

For this case study, first we profile a target application without any power cap
to get its general power profile, and then search for its peak power consumption
in the profile. After finding the peak power consumption, we then launch a
production run with it as the power cap so that the application does not suffer
from any performance loss under the guarantee that the power consumption will
not exceed given power budget. The DSL source (for EP) for this case study is
shown in Listing 5.

Figure 5 presents the power profiles of two applications under the peak power
demand. As expected, there is no performance loss observed in this case study.

5.2 Case Study 2: Average Power Demand as the Power Cap
for Applications

The second case study is used to prove how the average power demand of an
application is obtained through profiling and used as the power cap for the
application. Such power caps can help save the power and may lead to more
energy-efficient runs. Saved power can be distributed to other jobs simultane-
ously running on the same system by the system software like a job scheduler.
The DSL source (for EP) for this case study is shown in Listing 6.

In this case study, first we run the target application without any power
capping to get its general power profile like Case Study 1, and then obtained
average power consumption through a simple calculation. We set the power caps
with this average value for a power optimized run.

Figure 6 presents the power profiles of two applications under the average
power demand. For each application, there is a performance loss compared to
Case Study 1, but the power consumption is much less.

Listing 6. DSL Source for Case Study 2 (with Average Power Demand)

1 CREATE MODEL AVERAGE
2 ADD AVERAGE MODEL_PATH <absolute path to the model script to find out the average power>
3
4 CREATE JOB EP_AVE
5 ADD EP_AVE EXEC_PATH <absolute path to the executable>
6 ADD EP_AVE JOB_TYPE OPTIMIZATION
7 ADD EP_AVE CONTROL_MODE RAPL
8 ADD EP_AVE PROFILE_NAME EP
9 ADD EP_AVE MODEL_TO_USE AVERAGE

10 SUBMIT EP_AVE

5.3 Case Study 3: Power Cap to Satisfy a User-Defined Deadline
While Minimizing Power Consumption

The third case study is used to show how a linear performance/power model of
the application is constructed through profiling and how we use this model to
derive the power cap according to user’s performance demand for the application.

214 Y. Wada et al.

Fig. 6. Power performance optimization results under case study 2 (with average power
demand)

Listing 7. DSL Source for Case Study 3 (within a Slowdown of 2)

1 CREATE MODEL LINEAR
2 ADD LINEAR MODEL_PATH <absolute path to the script of a linear model between performance

and power>
3
4 CREATE JOB EP_LINEAR
5 ADD EP_LINEAR EXEC_PATH <absolute path to the executable>
6 ADD EP_LINEAR JOB_TYPE OPTIMIZATION
7 ADD EP_LINEAR CONTROL_MODE RAPL
8 ADD EP_LINEAR PROFILE_NAME EP
9 ADD EP_LINEAR MODEL_TO_USE LINEAR

10 ADD EP_LINEAR PERFORMANCE_TARGET 0.5
11 SUBMIT EP_LINEAR

In addition to the power profiles shown in Fig. 4, four extra rounds of profiling
are required for this case study. The first two extra rounds are launched with
the peak power demand to find the shortest runtime. Then through the third
extra round of profiling where we set the power caps to a very small value
(10 W/Socket), we found that the minimum amount of power needed to run both
applications properly is around 30 W. We then set the power cap to 30 W per
socket and profile the forth extra round to find the runtime of the applications.
Using these profiled data, we can construct a linear performance/power model
for each application as shown in Fig. 7.

Using the models shown in Fig. 7, performance demand can be set from the
users when they submit their jobs through the DSL code. For example, if the
user allows the runtime to be doubled, the corresponding power caps can be
found from these two models as 59 W and 34 W for EP and IS, respectively. The
DSL source (for EP) for this case study is shown in Listing 7.

A Power Management Framework with Simple DSL 215

Fig. 7. The linear performance/power models for EP and IS

Fig. 8. Power performance optimization results under case study 3 (within a slowdown
of 2)

Figure 8 presents the power profiles of the two applications under power caps
obtained from the models to allow the elapsed time to be shorter than twice
the runtime under the peak power demand. Obviously, these two models are
not accurate enough so that both applications are slowed down for less than
two times (1.20x and 1.53x, respectively). Regardless of the accuracy of such
models, at least user’s performance demand is satisfied while the allocated power
is dramatically cut.

216 Y. Wada et al.

6 Conclusions

We have demonstrated a versatile power management framework for power-
constrained HPC systems to tackle the problem of power limitation. With this
framework, HPC system administrators can easily specify and calibrate their
system hardware. Meanwhile, it is also helpful for tasks such as how the user
applications should be tuned to maximize the performance or to cut the power
demand.

To verify the validity and usefulness of our framework, we tested it with sev-
eral case studies. In these case studies, we applied power management to two
selected applications and showed how a simple power model with linear relation-
ship between the CPU performance and power consumption can be constructed
and used to derive the power cap. These case studies simply proved that our
framework can provide the users an easy way to apply power optimization and
management to their applications.

In our future work, we plan to evaluate the proposed framework with other
power and performance optimization policies/algorithms, and to improve it with
more functionalities such as cooperation with system software, job schedulers and
other external tools to enrich its functionalities.

Acknowledgment. This work is supported by the Japan Science and Technology
Agency (JST) CREST program for the research project named “Power Manage-
ment Framework for Post-Petascale Supercomputers”. We are also grateful to the
Research Institute for Information Technology of Kyushu University for providing us
the resources and to all project members for their valuable comments and cooperation.

References

1. ANTLR. http://www.antlr.org/
2. Bergman, K., et al.: Exascale computing study: Technology challenges in achieving

exascale systems (2008)
3. Cao, T., Huang, W., He, Y., Kondo, M.: Cooling-aware job scheduling and node

allocation for overprovisioned HPC systems. In: Proceedings of the 31st IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2017), pp.
728–737, May 2017

4. Chasapis, D., Casas, M., Moretó, M., Schulz, M., Ayguadé, E., Labarta, J., Valero,
M.: Runtime-guided mitigation of manufacturing variability in power-constrained
multi-socket NUMA nodes. In: Proceedings of the 2016 International Conference
on Supercomputing (ICS 2016), pp. 5:1–5:12, June 2016

5. GeoPM. https://github.com/geopm
6. Gholkar, N., Mueller, F., Rountree, B.: Power tuning HPC jobs on power-

constrained systems. In: Proceedings of the 2016 International Conference on Par-
allel Architectures and Compilation (PACT 2016), pp. 179–191, September 2016

7. IEEE Std 802.3az-2010 (2010). https://standards.ieee.org/findstds/standard/802.
3az-2010.html

8. Laros III, J.H., DeBonis, D., Grant, R., Kelly, S.M., Levenhagen, M., Olivier,
S., Pedretti, K.: High performance computing - power application programming
interface specification version 1.3, May 2016

http://www.antlr.org/
https://github.com/geopm
https://standards.ieee.org/findstds/standard/802.3az-2010.html
https://standards.ieee.org/findstds/standard/802.3az-2010.html

A Power Management Framework with Simple DSL 217

9. Inadomi, Y., Patki, T., Inoue, K., Aoyagi, M., Rountree, B., Schulz, M.,
Lowenthal, D., Wada, Y., Fukazawa, K., Ueda, M., Kondo, M., Miyoshi, I.: Analyz-
ing and mitigating the impact of manufacturing variability in power-constrained
supercomputing. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC15), pp. 78:1–78:12,
November 2015

10. Intel Corporation: Intel R© 64 and IA-32 architectures software developer’s manual,
September 2016

11. Lange, K.D.: Identifying shades of green: the SPECpower benchmarks. Computer
42(3), 95–97 March, 2009

12. Lucas, R., et al.: Top ten exascale research challenges (2014)
13. Miwa, S., Nakamura, H.: Profile-based power shifting in interconnection networks

with on/off links. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC15), pp. 37:1–37:11,
November 2015

14. NAS parallel benchmarks 3.3. http://www.nas.nasa.gov/
15. NVIDIA Corporation: NVML reference manual (2015)
16. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf, Dallas

(2013)
17. Patki, T., Lowenthal, D.K., Sasidharan, A., Maiterth, M., Rountree, B.L., Schulz,

M., de Supinski, B.R.: Practical resource management in power-constrained, high
performance computing. In: Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, pp. 121–132, June 2015

18. PDT. https://www.cs.uoregon.edu/research/pdt/home.php
19. PomPP Library and Tools. https://github.com/pompp/pompp tools
20. Sakamoto, R., Cao, T., Kondo, M., Inoue, K., Ueda, M., Patki, T., Ellsworth,

D.A., Rountree, B., Schulz, M.: Production hardware overprovisioning: real-world
performance optimization using an extensible power-aware resource management
framework. In: Proceedings of the 31st IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2017), pp. 957–966, May 2017

21. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287–331 (2006)

22. Spafford, K.L., Vetter, J.S.: Automated design space exploration with aspen. Sci.
Program. 7:1–7:10 (2015)

23. TAU. https://www.cs.uoregon.edu/research/tau/home.php
24. Cao, T., Thang, C., He, Y., Kondo, M.: Demand-aware power management for

power-constrained HPC systems. In: Proceedings of 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2016), pp. 21–31,
May 2016

25. Wada, Y., He, Y., Thang, C., Kondo, M.: The PomPP framework: from simple
DSL to sophisticated power management for HPC systems. In: HPC Asia 2018
Poster Session, January 2018

26. Wallace, S., Yang, X., Vishwanath, V., Allcock, W.E., Coghlan, S., Papka, M.E.,
Lan, Z.: A data driven scheduling approach for power management on HPC sys-
tems. In: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC16), pp. 56:1–56:11, November 2016

27. Weaver, V.M., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra,
D., Moore, S.: Measuring energy and power with PAPI. In: Proceedings of the
41st International Conference on Parallel Processing Workshops (ICPPW-2012),
pp. 262–268, September 2012

http://www.nas.nasa.gov/
https://www.cs.uoregon.edu/research/pdt/home.php
https://github.com/pompp/pompp_tools
https://www.cs.uoregon.edu/research/tau/home.php

218 Y. Wada et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Scalable Data Management of the Uintah
Simulation Framework

for Next-Generation Engineering
Problems with Radiation

Sidharth Kumar1(B), Alan Humphrey1, Will Usher1, Steve Petruzza1,
Brad Peterson1, John A. Schmidt1, Derek Harris2, Ben Isaac2,

Jeremy Thornock2, Todd Harman2, Valerio Pascucci1, and Martin Berzins1

1 SCI Institute, University of Utah, Salt Lake City, UT, USA
{sidharth,ahumphrey}@sci.utah.edu

2 Institute for Clean and Secure Energy, Salt Lake City, UT, USA

Abstract. The need to scale next-generation industrial engineering
problems to the largest computational platforms presents unique chal-
lenges. This paper focuses on data management related problems faced
by the Uintah simulation framework at a production scale of 260K pro-
cesses. Uintah provides a highly scalable asynchronous many-task run-
time system, which in this work is used for the modeling of a 1000
megawatt electric (MWe) ultra-supercritical (USC) coal boiler. At 260K
processes, we faced both parallel I/O and visualization related challenges,
e.g., the default file-per-process I/O approach of Uintah did not scale
on Mira. In this paper we present a simple to implement, restructur-
ing based parallel I/O technique. We impose a restructuring step that
alters the distribution of data among processes. The goal is to distribute
the dataset such that each process holds a larger chunk of data, which is
then written to a file independently. This approach finds a middle ground
between two of the most common parallel I/O schemes–file per process
I/O and shared file I/O–in terms of both the total number of generated
files, and the extent of communication involved during the data aggrega-
tion phase. To address scalability issues when visualizing the simulation
data, we developed a lightweight renderer using OSPRay, which allows
scientists to visualize the data interactively at high quality and make
production movies. Finally, this work presents a highly efficient and scal-
able radiation model based on the sweeping method, which significantly
outperforms previous approaches in Uintah, like discrete ordinates. The
integrated approach allowed the USC boiler problem to run on 260K
CPU cores on Mira.

1 Introduction

The exponential growth in High performance computing (HPC) over the past
20 years has fueled a wave of scientific insights and discoveries, many of which

S. Kumar and A. Humphrey—Authors contributed equally.

c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 219–240, 2018.
https://doi.org/10.1007/978-3-319-69953-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_13&domain=pdf

220 S. Kumar et al.

would not be possible without the integration of HPC capabilities. This trend
is continuing, for example, the DOE Exascale Computing Project [18] lists 25
major application focus areas [20] in energy, science, and national security. The
primary challenge in moving codes to new architectures at exascale is that,
although present codes may have good scaling characteristics on some current
architectures, those codes may likely have components that are not suited to the
high level of parallelism on these new computer architectures, or to the com-
plexity of real-world applications at exascale. One of the major challenges faced
by modern scalable scientific codes is with regard to data management. As the
gap between computing power and available disk bandwidth continues to grow,
the cost of parallel I/O becomes an important concern, especially for simula-
tions at the largest scales. Large-scale simulation I/O can be roughly split into
two use cases: checkpoint restarts in which the entire state of a simulation must
be preserved exactly, and analysis dumps in which a subset of information is
saved. Both checkpointing and analysis dumps are important, yet due to poor
I/O scaling and little available disk bandwidth, the trend of large-scale simula-
tion runs is to save fewer and fewer results. This not only increases the cost of
faults, since checkpoints are saved less frequently, but ultimately may affect the
scientific integrity of the analysis, due to the reduced temporal sampling of the
simulation. This paper presents a simple to implement method to enable parallel
I/O, which we demonstrate to efficiently scale up to 260K processes.

Fig. 1. Time taken for execution of a
timestep for different patch sizes. Execu-
tion time starts to increase rapidly after a
patch size of 123.

For most applications, the layout of
data distributed across compute cores
does not translate to efficient network
and storage access pattern for I/O.
Consequently, performing naive I/O
leads to significant underutilization of
the system. For instance, the patch
or block size of simulations is typi-
cally on the order of 123 to 203 voxels
(cells), mainly because a scientist typi-
cally works under a restricted compute
budget, and smaller patch sizes lead to
faster execution of individual compu-
tational timesteps (see Fig. 1), which
is critical in completion of the entire
simulation. Small patch sizes do not
bode well for parallel I/O, with either
file-per-process I/O or shared file I/O.
We find a middle ground by introducing a restructuring-based parallel I/O tech-
nique. We virtually regrid the data by imposing a restructuring phase that alters
the distribution of data among processes in a way such that only a few processes
end up holding larger patches/blocks, which are then written to a file indepen-
dently. The efficacy and scalability of this approach is shown in Sect. 3.

Scalable Data Management of the Uintah Simulation Framework 221

In order to gain scientific insight from such large-scale simulations, the visu-
alization software used must also scale well to large core counts and datasets,
introducing additional challenges in performing scientific simulations at scale for
domain scientists. To address I/O challenges on the read side of the scientific
pipeline, we also use our scalable parallel I/O library in combination with the
ray tracing library OSPRay [24] to create a lightweight remote viewer and movie
rendering tool for visualization of such large-scale data (Sect. 4).

Finally, we introduce a new, efficient radiation solve method into Uintah
based on spatial transport sweeps [2,4]. The radiation calculation is central to the
commercial 1000 megawatt electric (MWe) ultra-supercritical (USC) coal boiler
being simulated in this work, as radiation is the dominant mode of heat transfer
within the boiler itself. To improve parallelism within these spatial sweeps, the
computation is split into multiple stages, which then expose spatial dependencies
to the Uintah task scheduler. Using the provided information about the stage’s
dependencies, the scheduler can efficiently distribute the computation, increasing
utilization. For the target boiler problem discussed in this paper, we find this
method up to 10× faster than previous reverse Monte Carlo ray tracing methods
(Sect. 5) due to this increased utilization.

This work demonstrates the efficacy of our approach by adapting the Uin-
tah computational framework [8], a highly scalable asynchronous many-task
(AMT) [7] runtime system, to use our I/O system and spatial transport sweeps
within a large-eddy simulation (LES). This work is aimed at predicting the per-
formance of a commercial 1000 MWe USC coal boiler, and has been considered
as an ideal exascale candidate given that the spatial and temporal resolution
requirements on physical grounds give rise to problems between 50 to 1000 times
larger than those we can solve today.

The principal contributions of this paper are:

1. A restructuring-based parallel I/O scheme.
2. A data parallel visualization system using OSPRay.
3. A faster approach to radiation using a spatial transport sweeps method.

2 Background

2.1 Uintah Simulation Framework

Uintah [22] is a software framework consisting of a set of parallel software compo-
nents and libraries that facilitate the solution of partial differential equations on
structured adaptive mesh refinement (AMR) grids. Uintah currently contains
four main simulation components: (1) the multi-material ICE code for both
low- and high-speed compressible flows; (2) the multi-material, particle-based
code MPM for structural mechanics; (3) the combined fluid-structure interac-
tion (FSI) algorithm MPM-ICE; and (4) the Arches turbulent reacting CFD
component that was designed for simulating turbulent reacting flows with par-
ticipating media radiation. Separate from these components is an AMT runtime,
considered as a possible leading alternative to mitigate exascale challenges at the

222 S. Kumar et al.

runtime system-level, which shelters the application developer from the complex-
ities introduced by future architectures [7]. Uintah’s clear separation between the
application layer and the underlying runtime system both keeps the application
developer insulated from complexities of the underlying parallelism Uintah pro-
vides, and makes it possible to achieve great increases in scalability through
changes to the runtime system that executes the taskgraph, without requiring
changes to the applications themselves [17].

Uintah decomposes the computational domain into a structured grid of rect-
angular cuboid cells. The basic unit of a Uintah simulation’s Cartesian mesh
(composed of cells) is termed a patch, and simulation variables that reside in Uin-
tah’s patches are termed grid or particle variables. The Uintah runtime system
manages the complexity of inter-nodal data dependencies, node-level parallelism,
data movement between the CPU and GPU, and ultimately task scheduling and
execution that make up a computational algorithm [19], including I/O tasks. The
core idea is to use a directed acyclic graph (DAG) representation of the com-
putation to schedule work, as opposed to, say, a bulk synchronous approach in
which blocks of communication follow blocks of computation. This graph-based
approach allows tasks to execute in a manner that efficiently overlaps commu-
nication and computation, and includes out-of-order execution of tasks (with
respect to a topological sort) where possible. Using this task-based approach
also allows for improved load balancing, as only nodes need to be considered,
not individual cores [8].

2.2 Related Work

Many high-level I/O libraries have been developed to help structure the large vol-
umes of data produced by scientific simulations, such as HDF5 and PnetCDF.
The hierarchical data format (HDF5) [10] allows developers to express data
models organized hierarchically. PnetCDF [14] is a parallel implementation of
the network common data form (netCDF), which includes a format optimized
for dense, regular datasets. Both HDF5 and PnetCDF are implemented using
MPI and both leverage MPI-IO collective I/O operations for data aggregation.
In practice, shared file I/O often does not scale well because of the global com-
munication necessary to write to a single file. ADIOS [15] is another popular
library used to manage parallel I/O for scientific applications.

On the visualization front, VisIt [9] and ParaView [3] are popular distributed
visualization and analysis applications. They are typically executed in parallel,
coordinating visualization and analysis tasks for massive simulation data. The
data are typically loaded at full resolution, requiring large amounts of system
memory. Moreover, both can be used for remote visualization, where a remote
server (or servers) is responsible for rendering and operating on the data and
the user interacts remotely through a lightweight client. Our renderer works
similarly, allowing for remote visualization and offline movie rendering. Further-
more, our viewer supports running on any CPU architecture, via OSPRay [24],
which is now integrated in ParaView and being integrated into VisIt. However,
in contrast to these larger visualization packages, our viewer is tuned specifically

Scalable Data Management of the Uintah Simulation Framework 223

for interactive visualization and movie rendering, allowing for better rendering
performance and enabling us to take better advantage of parallel I/O for fast
data loading.

The 1000 MWe USC coal boiler being modeled by Uintah in this work has
thermal radiation as a dominant heat transfer mode, and involves solving the
conservation of energy equation and radiative heat transfer equation (RTE)
simultaneously. This radiation calculation, in which the radiative-flux divergence
at each cell of the discretized domain is calculated, can take up to 50% of the over-
all CPU time per timestep [11] using the discrete ordinates method (DOM) [6],
one of the standard approaches to computing radiative heat transfer. Using a
reverse Monte Carlo ray tracing approach combined with a novel use of Uintah’s
adaptive mesh refinement infrastructure, this calculation has been made to scale
to 262K cores [11], and further adapted to run on up to 16K GPUs [12]. The
spatial transport sweeps method discussed in Sect. 5 shows great promise for
future large-scale simulations.

2.3 System Configuration

The Mira supercomputer [1] at Argonne National Laboratory is an IBM Blue
Gene/Q system that enables high-performance computing with low power con-
sumption. The Mira system has 16 cores per node, 1024 nodes per rack, and 48
racks, providing a total of 768K cores. Each node has 16 GB of RAM and the
network topology is a 5D torus. There are two I/O nodes for every 128 compute
nodes, with one 2 GB/s bandwidth link per I/O node. Mira uses the GPFS file
system. Ranks are assigned with locality guarantees on the machine, which our
I/O system can also take advantage of. Initial results of weak and strong scaling
studies of the target problem on Mira are shown in Fig. 2.

1K 64K 128K 256K 512K
5

20

10

200

100

50

500

2K 4K 8K 16K 32K
Cores

Ti
m

e
(s

ec
)

Standard Timestep
Radiation Solve Time

Uintah Output Timestep

Weak Scalability of the PSAAP CoalBoiler on Mira

Fig. 2. Strong and weak scalability of the coal boiler simulation on Mira using the dis-
crete ordinates solver. In these initial studies, we found scaling issues with the I/O and
radiation solve components of Uintah that needed to be addressed for the production
runs. Note the radiation solve is not executed each timestep, and not included in the
total time for a timestep.

224 S. Kumar et al.

2.4 Target Boiler Problem

GE Power is currently building new coal-fired power plants throughout the world
and evaluating new designs for these boilers. Many of these units will potentially
be 1000 MWe, twin-fireball USC units (Fig. 3a). Historically, twin-fireball (or
8-corner) units became part of the GE Power product offering because of the
design uncertainty in scaling 4-corner units from a lower MWe rating to a much
higher MWe rating. In order to decrease risk, both from GE Power’s perspective
and the customer’s, two smaller units were joined together to form a larger unit
capable of producing up to 1090 MWe.

Simulation plays a key role in designing new boilers, allowing engineers
to build, test, and optimize new designs at very low cost. When viewed as a
large-scale computational problem, there are considerable challenges to simu-
lating the boiler at acceptable accuracy and resolution to gain scientific insight
about the design. The geometric complexity of the boiler is considerable, and
presented a significant challenge for the combustion modelers. The boiler mea-
sures 65 m × 35 m × 15 m and contains 430 separated over-fired air (SOFA) inlets
(Fig. 3b), which inject pulverized coal and oxygen into the combustion cham-
ber. Moreover, the boiler has division panels, plates, super-heaters and re-heater
tubing with about 210 miles of piping walls, and tubing made of 11 metals with
varying thickness. Both the 8-corner units and 4-corner units have different mix-
ing and wall absorption characteristics that must be fully understood in order
to have confidence in their respective designs. One key piece of the design that
must be understood is how the SOFA inlets should be positioned and oriented,
and what effect this has on the heat flux distribution throughout the boiler.

(a) Entire unit. (b) Primary wind-box and SOFA locations.

Fig. 3. CAD rendering of GE Power’s 1000 MWe USC two-cell pulverized coal boiler.

3 Restructured Parallel I/O

File-per process I/O and single shared file I/O are two of the most commonly
used parallel I/O techniques. However, both methods fail to scale at high core
counts. An I/O-centric view of the typical simulation pipeline is as follows: the

Scalable Data Management of the Uintah Simulation Framework 225

simulation domain is first divided into cells/elements (usually pixels or voxels),
and then the elements are grouped into patches. Each patch is assigned a rank
or processor number. Rank assignment is done by the simulation software using
a deterministic indexing scheme (for example, row-order or Z-order). When
performing file-per-process I/O, each process creates a separate file and inde-
pendently writes its patch data to the file. This approach works well for rela-
tively small numbers of cores; however, at high core counts this approach per-
forms poorly, as the large number of files overwhelms the parallel file system.
When using single shared file I/O, performance also decreases as the core count
increases, as the time spent during data exchange involved in the aggregation
step becomes significant, impeding scalability [5]. In this work we tackle both the
communication bottleneck of the aggregation phase in single shared file I/O and
the bottleneck of creating a hierarchy of files in file-per-process I/O by proposing
a middleground approach through a restructuring-based parallel I/O technique.
The main idea is to regrid the simulation domain in a restructuring phase.

Fig. 4. Schematic diagram of restructuring-based parallel I/O. (A) The initial simu-
lation patch size is 4 × 4. (B) A new grid of patch size 8 × 8 is imposed. (C) The
restructuring phase is executed using MPI point-to-point communication. (D) Finally,
using the restructured grid, every patch is written to a separate file.

Starting from the original simulation grid (Fig. 4(A)), we begin restructuring
by imposing a new grid on the simulation domain (Fig. 4(B)). The patch size of
the imposed grid is larger than the initial patch size assigned by the simulation.
As mentioned in Fig. 1, the patch size assigned by the simulation is on the order
of 123 to 203, while the patch size of the new restructured grid is typically twice
that in each dimension. The simulation data is then restructured-based on the
new grid/patch configuration (Fig. 4(C)). During the restructuring, MPI point-
to-point communication is used to move data between processes [13]. Note that
the communication is distributed in nature and confined to small subsets of
processes, which is crucial for the scalability of the restructuring phase. At the
end of the restructuring phase, we end up with large-sized patches on a subset
of processes (Fig. 4(D)). Given that the new restructured patch size is always
bigger than the patch size assigned by the simulation (or equal in size at worst),
we end up with fewer patches held on a subset of the simulation processes.
Throughout the restructuring phase the data remains in the application layout.
Once the restructuring phases concludes, each processes holding the restructured

226 S. Kumar et al.

patches create a file and writes its data to the file. This scheme of parallel I/O
finds a middle-ground between file-per-process-based parallel I/O and shared
file I/O, both in terms of the total number of files generated and the extent of
communication required during the data aggregation phase. With our approach,
the total number of files generated is given by the following formula:

number of files =
⌈
bounds x

nrst x

⌉
×

⌈
bounds y

nrst y

⌉
×

⌈
bounds z

nrst z

⌉

Based on the restructuring box size (nrst x×nrst y×nrst z), we can have
a range of total number of outputted files. The number of files will be equal
to the number of processes (i.e., file-per-process I/O) when the restructuring
patch size is equal to the simulation patch size. The number of files will be one
(i.e., shared-file I/O) when the restructuring patch size is equal to the entire
simulation domain (bounds x × bounds y × bounds z). For most practical sce-
narios, the latter situation is not feasible due to limitations on the available
memory on a single core. With file-per-process I/O, there is no communication
among processes, whereas with collective I/O associated with shared file I/O, the
communication is global in nature. With the restructuring approach, all commu-
nication is localized. The restructuring approach not only helps tune the total
number of outputted files, but also increases the file I/O burst size, which in
general is a requirement to obtain high I/O bandwidth. Our approach exhibits
good scaling characteristics, as shown in the following two sections.

Fig. 5. Three variations of restructuring-based parallel I/O. (A) No restructuring, each
patch is held by a process and is written out separately to a file. (B) Restructuring
phase with new patches containing 22 simulation patches, creating 4× fewer files. (C)
New patch size of 42 simulation patches, creating 16× fewer files (D) New patch size
of 82 simulation patches, creating 64× fewer files. Communication is limited to groups
of (B) 4, (C) 16, and (D) 64 processes.

3.1 Parameter Study

The tunable parameter in our proposed I/O framework that has the greatest
impact on performance is the patch size used for restructuring. The patch size
affects both the degree of network traffic and the total number of outputted
files. To understand the impact of the parameter, we wrote a micro-benchmark

Scalable Data Management of the Uintah Simulation Framework 227

to write out a 3D volume. In our evaluations on the Mira supercomputer, we
kept the number of processes fixed at 32768. Each process wrote a 163 sub-
volume of double precision floating point data to generate a total volume of
1 gigabyte (5123). We used four restructuring box sizes – 323, 643, 1283 and
2563; the number of files generated, respectively, varied as 4096 (5123/323), 512
(5123/643), 64 (5123/1283), 8 (5123/2563). The number of processes involved
in communication during the restructuring phase increases with the box size.
For example, with a restructuring box of size 323, communication is limited to
groups of 8 processes (323/163), whereas with a restructuring box of size 2563,
communication takes place with a group of 4096 processes. See Fig. 5 for an
example. In order to provide a baseline for the results obtained, we also ran
IOR benchmarks. IOR is a general-purpose parallel I/O benchmark [23] that
we configured to perform both file-per-process as well as shared file I/O. For
shared file I/O, all the processes wrote to a single file using MPI collective
I/O. The results can be seen in Fig. 6. The file-per-process I/O performs the
worst and this is because the underlying GPFS [21] parallel file system of Mira
is not adept at handling large numbers of files. Although we did not run any
benchmarks of the Lustre PFS [16], it is more suited to handling large numbers
of files, especially at low core counts. This is mainly because GPFS is a block-
based distributed filesystems where the metadata server controls all the block
allocation, whereas the Lustre filesystem has a separate metadata server for
pathname and permission checks. Furthermore, the Lustre metadata server is
not involved in any file I/O operations, which avoids I/O scalability bottlenecks
on the metadata server. The constraint on the number of files makes our approach
highly suitable for GPFS file systems. Note that both file systems start to get
saturated with file per-process I/O at high core counts.

The performance of restructuring-based parallel I/O improves with larger box
sizes, reaching peak performance with a box size of 1283. At that patch size, the
restructuring approach achieves a 3.7× improvement over the IOR benchmark’s
shared file I/O approach (using MPI collective I/O) because our approach’s
aggregation phase is localized in nature, involving only small groups of processes,
as opposed to MPI collective I/O’s underlying global communication. However,
we observe performance degradation at a restructuring box size of 2563. The
reason for this degradation can be understood by looking at a time breakdown
between the restructuring (communication) phase and the file I/O phase (Fig. 6).
As can be seen, communication time (red) increases with larger restructuring
boxes. Although the file I/O time continues to decrease with increasing box
size, the restructuring time begins to dominate at 2563, and as a result overall
performance suffers. We believe our design is flexible enough to be tuned to
generate small numbers of large shared files or a large number of files, depending
on which is optimal for the target system.

3.2 Production Run Weak Scaling Results

With Uintah’s default I/O subsystem, every node writes data for all its cores into
a separate file. Therefore, on Mira there is one file for every 16 cores (16 cores

228 S. Kumar et al.

Fig. 6. (Left) Performance of restructuring-based parallel I/O with varying box sizes.
(Right) Time breakdown between restructuring (communication) and file I/O for dif-
ferent box sizes. (Color figure online)

per node). This form of I/O is an extension to the file-per process style of I/O
commonly adopted by many simulations. An XML-based meta-data file is also
associated with every data file that stores type, extents, bounds, and other rele-
vant information for each of the different fields. For relatively small core counts
this I/O approach works well. However, I/O performance degrades significantly
for simulations with several hundreds of thousands of patches/processors. The
cost of both reads and writes for large numbers of small files becomes untenable.

We extended the Uintah simulation framework to use the restructuring-based
I/O scheme, and evaluated the weak scaling performance of the I/O system when
writing data for a representative Uintah simulation on Mira. In each run, Uin-
tah wrote out 20 timesteps consisting of 72 fields (grid variables). The patch
size for the simulation was 123. The number of cores was varied from 7,920 to
262,890. Looking at the performance results in Fig. 7, our I/O system scales well
for all core counts and performs better than the original Uintah UDA I/O sys-
tem. The restructuring-based I/O system demonstrates almost linear scaling up to
262,890 cores whereas the performance of file-per-node I/O starts to decline after

Fig. 7. Weak scaling results of restructuring-based parallel I/O compared to Uintah’s
file per node I/O approach. Our I/O system outperforms Uintah’s default I/O at all
core counts, attaining 10× performance improvement at 260K cores.

Scalable Data Management of the Uintah Simulation Framework 229

16,200 cores. At 262,890 cores, our I/O system achieves an approximate speed-up
of 10× over Uintah’s default file-per-node I/O.

The restructuring-based I/O system was then used in production boiler sim-
ulations, carried out at 260K cores on Mira. Due to the improved performance
of the I/O system, scientists were able to save data at a much higher temporal
frequency. In terms of outputs, close to 200 terabytes of data was written which,
using our new restructuring I/O strategy, required only 2% of the entire simula-
tion time. If the simulation were run using the Uintah’s default file-per-process
node output format, nearly 50% of the time of the computation would be spent
on I/O, reducing the number of timesteps that could be saved, or increasing the
total computation time significantly.

4 Scalable Visualization with OSPRay

When trying to visualize the data produced on Mira using the Cooley visualiza-
tion cluster at ANL, VisIt rendered at interactive framerates for smaller datasets;
however, when trying to visualize the recent large simulations using all the cores
on each node would consume too much memory, resulting in crashes or signifi-
cantly reduced performance due to swapping. To address these issues and allow
for quick, interactive visualization and high-quality offline movie rendering, we
wrote a lightweight renderer using OSPRay [24] which uses the restructuring-
based parallel I/O to read the data. OSPRay is a CPU-based open-source ray
tracing library for scientific visualization, and includes high-quality and high-
performance volume rendering, along with support for rendering distributed data
with MPI.

OSPRay includes support for two modes of MPI-parallel rendering: an offload
mode, where data is replicated across nodes, and subregions of the image are
distributed; and a distributed mode, where different ranks make OSPRay API
calls independently to setup their local data, and then work collectively to render

Fig. 8. Frames from the movie showing the O2 field over time. Using restructuring-
based parallel I/O backend and OSPRay we were able to render an animation of the
full 1030 timesteps in two hours using 128 KNL nodes on Theta.

230 S. Kumar et al.

the distributed data using sort-last compositing [24]. To leverage the benefits of
the restructuring-based parallel I/O in the viewer, we implemented our renderer
using the distributed mode of OSPRay, with each rank responsible for loading
and rendering a subregion of the dataset. To properly composite the distributed
data OSPRay requires the application to specify a set of regions on each rank,
which bound the data owned by that rank. In our case this is trivially the bounds
of the single subregion owned by the rank. The renderer supports two usage
modes, allowing for interactive remote visualization and offline movie rendering
for creating production animations of the evolution of the boiler state.

Fig. 9. Strong scaling of movie rendering
on Theta.

The interactive viewer runs a set of
render worker processes on the com-
pute nodes, with one per node as
OSPRay uses threads for on-node par-
allelism. The user then connects over
the network with a remote client and
receives back rendered JPG images,
while sending back over the network
camera and transfer function changes
to interact with the dataset. To decou-
ple the interface from network latency
effects and the rendering framerate, we
send and receive to the render workers
asynchronously, and always take the
latest frame and send the latest appli-
cation state. With this application, users can explore the different timesteps of
the simulation and different fields of data interactively on their laptop, with the
rendering itself performed on Theta or Cooley. When rendering on 16 nodes of
Theta with a 1080 × 1920 framebuffer (oriented to match the vertical layout of
the boiler), the viewer was able to render at 11 FPS, allowing for interactive
exploration.

The offline movie renderer is run as a batch application and will render the
data using a preset camera path. The movies produced allow for viewing the
evolution of the boiler state smoothly over time, as the timesteps can be played
through at a constant rate, instead of waiting for new timesteps or fields to load.
A subset of frames from this animation is shown in Fig. 8, which was rendered
using 128 nodes on Theta. The majority of the time spent in the movie rendering
is in loading the data, which scales well with the presented I/O scheme (Fig. 9).
The animation is rendered at 1080 × 1920 with a high number of samples per
pixel to improve image quality.

While our lightweight viewer is valuable for visual exploration, it is missing
the large range of additional analysis tools provided by production visualiza-
tion and analysis packages like VisIt. To this end, we are working on integrating
OSPRay into VisIt as a rendering backend, enabling scalable interactive visual-
ization for end users.

Scalable Data Management of the Uintah Simulation Framework 231

5 Radiation Modeling: Spatial Transport Sweeps

The heat transfer problem arising from the clean coal boilers being modeled
by the Uintah framework has thermal radiation as a dominant heat transfer
mode and involves solving the conservation of energy equation and radiative heat
transfer equation (RTE) simultaneously [11]. Scalable modeling of radiation is
currently one of the most challenging problems in large-scale simulations, due
to the global, all-to-all nature of radiation [17], potentially affecting all regions
of the domain simultaneously at a single instance in time. To simulate thermal
transport, two fundamental approaches exist: random walk simulations and finite
element/finite volume simulations, e.g., discrete ordinates method (DOM) [6],
which involves solving many large systems of equations. Additionally, the algo-
rithms used for radiation can be used recursively with different spatial orienta-
tions and different spectral properties, requiring hundreds to thousands of global,
sparse linear solves. Consequently, the speed, accuracy, and limitations of the
method must be appropriate for a given application.

Uintah currently supports two fundamentally different approaches to solv-
ing the radiation transport equation (RTE) to predict heat flux and its diver-
gence (operator) in these domains. We provide an overview of these supported
approaches within Uintah and introduce a third approach, illustrating its per-
formance and scaling with results up to 128K CPU cores on Mira for a radiation
benchmark problem.

5.1 Solving the Radiation Transport Equation

The heat flux divergence can be computed using:

∇Q = 4 ∗ π ∗ S −
∫

4π

IΩdΩ, (1)

where S is the local source term for radiative intensity, and IΩ is computed using
the RTE for grey non-scattering media requiring a global solve via:

dIΩ

ds
= k ∗ (S − IΩ) (2)

Here, s is the 1-D spatial coordinate oriented in the direction in which inten-
sity IΩ is being followed, and k is the absorption or attenuation coefficient. The
lack of time in the RTE implies instantaneous transport of the intensity, appro-
priate for most applications. The methods for solving the RTE discussed here
aim to solve for IΩ using Eq. 2, which can then be integrated to compute the
radiative flux and divergence.

5.2 Discrete Ordinates

The discrete ordinates method [6], used in our Mira simulations, solves the RTE
by discretizing the left-hand side of Eq. 2, which results in a 4 or a 7-point stencil,

232 S. Kumar et al.

depending on the order of the first derivative. Instabilities arise when using the
higher order method, so often the 7-point stencil is avoided, or a combination of
the two stencils is used. The 4-point stencil results in numerical diffusion that
impacts the fidelity of the solve, but for low ordinate counts can improve solution
accuracy. As shown by Fig. 2, this method has been demonstrated to scale, but
it is computationally expensive, due to the numerous global sparse linear solves.
In the case shown, as many as 30–40 backsolves were required per radiation
step, with up to an order of magnitude more solves required in other cases. It
should be noted that, due to their computational cost, the radiation solves are
computed roughly once every 10 timesteps, as the radiation solution does not
change quickly enough to warrant a more frequent radiation calculation.

5.3 Reverse Monte Carlo Ray Tracing

Reverse Monte Carlo Ray Tracing (RMCRT) [11] has been implemented on both
CPUs and GPUs [11,12], and is a method for solving Eq. 2 by tracing radiation
rays from one cell to the next, as described in detail in [11,12]. Reverse Monte
Carlo (as opposed to forward) is desirable because rays are then independent of
all other ray tracing processes, and are trivially parallel. RMCRT exhibits high
accuracy with sufficient ray sampling and is can easily simulate various scat-
tering effects. However, RMCRT can have a very large memory footprint when
geometry is replicated on each node to facilitate local ray tracing. To reduce
this memory footprint and the required communication, RMCRT leverages the
AMR support within Uintah to use a fine mesh locally and a coarse mesh dis-
tally. RMCRT uses Monte Carlo processes to model scattering physics and is
a direct method, outperforming discrete-ordinates with significant scattering.
Numerical diffusion is non-existent for RMCRT. When computation resources
are abundant and the solid-angle [11] can be well resolved, RMCRT is preferred
to discrete-ordinates, where numerical diffusion hurts accuracy. This method
has been made to scale up to 256K CPU cores and up to 16K GPUs within the
Uintah framework [11,12,19], and is used for the large-scale, GPU-based boiler
simulations, as detailed in [19].

5.4 Spatial Transport Sweeps Method

The Uintah infrastructure allows for solving for the intensities with a 4-point
stencil known as spatial transport sweeps, a sweeping method [2,4], or simply
sweeps. It is this method that we cover in detail in this work.

Sweeps is a lightweight spatially serial algorithm in which spatial dependen-
cies dictate the speed of the algorithm. These dependencies impose serialized
inter-nodal communication requirements, and account for the bulk of the algo-
rithm’s cost. While the sweeping method is inherently serial, it can be paral-
lelized over many ordinate directions and spectral frequencies. The radiation
sweeping mechanism uses the older A-matrix construction from the linear solve,
and performs recursive back substitution on the A-matrix to solve for the inten-
sities. This process is done in stages for each intensity and phase, both of which

Scalable Data Management of the Uintah Simulation Framework 233

are defined below. Although this staging process is serialized by the reliance
of corner-to-corner dependencies, it can show good performance when sweep-
ing a large quantity of independent solves. For a non-scattering medium, the
angular and spectral intensities are all independent of each other, allowing for
parallelization of the solve.

On large, distributed memory systems, the intensities are stored on multiple
compute nodes, making communication between them expensive and inefficient.
To address this problem, one processor (or node) needs to operate only on intensi-
ties that have satisfied their spatial dependency. The method shown here is based
on the algorithm for a simple rectangular domain; however, it further supports
identification of these dependencies for complex domains with non-rectangular
shapes. To most easily convey the methodology used, we start by describing the
algorithm on a rectangular domain.

Consider a domain with 3 × 3 sub-units. Within Uintah, these sub-units
are referred to as patches. A diagram showing how these patches are divided is
shown in Fig. 10. The number labeling each patch (Fig. 10a) designates the phase
in which a sweep is relevant for a single intensity, from the x + y + z + octant,
with a single wave number. Note that these phases are defined as:

P = xi + yi + zi (3)

where xi, yi, and zi are the patch indices in the x, y, and z directions. The patch
indices are defined as the number of patches away from the origin patch. Hence,
the total number of phases required to complete a single complete full-domain
sweep is:

Pmax = xmax + ymax + zmax (4)

where xmax, ymax, zmax are the maximum. Numbers designate the designated
phase indices of the patches within the domain. We determine the patch indices
using the sub-domain with the patch ID provided by Uintah.

Uintah numbers its patches in the order of z, y, x (Fig. 10b). From this we
can determine the point in space in which the sweep is currently located using
modulo operators, the patch dimensions, and the patch ID. The patch index is
then converted to the patch indices xi, yi, zi for each patch. Using the Uintah

Fig. 10. A rectangular domain divided into 27 sub-domains, labeled by the designated
phase (a) and Uintah patch ID (b).

234 S. Kumar et al.

task scheduler, we can indicate to a task what this phase is. This process is more
complicated when conducting sweeps with multiple intensity directions. First,
consider additional intensities that are in the x+, y+, z+ directions. To keep as
many processors busy as possible in the computation, we create stages.

A stage S is defined as S = I + P , where I is the intensity index relevant
to a single octant. We know the maximum number of stages via the equation
Smax = Imax + Pmax. Now we have an algorithm that describes the sweeping
in a single direction, for intensities of the same octant: next, we will discuss
how to extend this to all octants. The phase equation for the x−, y−, z− octant
results in:

P = xmax − xi + ymax − yi + zmax − zi (5)

Hence, a total of eight phase equations are possible, depending on the com-
bination of directions. We discuss two equations in detail in this paper. The task
designates the stage and intensity, and then computes a function mapping its
patch ID to its spatial patch index using a series of modulos. If the patch and
intensity are relevant to the local processor, then it executes, otherwise it exits
the task.

Spatial Scheduling-Supporting Sweeps Within Uintah. In order to spa-
tially schedule the sweeping tasks, a Uintah patch subset must be identified
during the Uintah task-scheduling phase. It is convenient to use Eq. 5 to accom-
plish this. Iterating over the phase P and two patch indices yi and zi allows us to
collect the relevant patches to a sweeping phase P , which results in Pmax patch
subsets per octant. These patch subsets can be reused for each intensity solve.
The patch subsets are used in the Uintah task-requires call to the infrastructure
that manages ghost cells, which greatly reduces communication costs. The sweep
is propagated across the domain by having one independent task per stage. To
propagate information from patch to patch within Uintah, a requires modifies
dependency chain is created, where the requires is conditioned on a patch subset
only relevant to the patches on which the sweep is occurring. The patch subset
is defined as all patches with the same phase number P , as shown in Fig. 10a.

5.5 Sweeps: Scaling and Performance Results

Table 1 illustrates the performance and weak scaling within Uintah of the sweep-
ing method for radiation transport on a benchmark radiation problem, run on
Mira up to 128K CPU cores. Note this method is experimental and although
DOM was used for the radiation solve in the full-scale Mira boiler simulations,
the sweeping method introduced in this work shows great promise for radiation
calculations within future boiler simulations.

For the target boiler problems in question, the use of sweeps reduces radiation
solve times by a factor of 10 relative to RMCRT and linear solve methods. The
differences in the solution times between the linear solve (DOM) in Table 1 and
Fig. 2 are attributed to differences between the benchmark calculation and the
target boiler simulation. Within the target boiler (CFD) simulation, the previous

Scalable Data Management of the Uintah Simulation Framework 235

Table 1. Weak scaling results on the model radiation problem.

Cores 16 256 4056 65536 131072 262144

Time DO 91 189 399 959 1200 1462

DO iter. 90 180 400 900 1300 1500

Sweeps time 1.9 3.4 4.4 9.09 13.9

solve can also be used as an initial guess, thus accelerating convergence and
making it possible for DOM to use as few as 30–40 iterations as compared to
the much larger number of backsolves shown in Table 1. In contrast to a static
problem, no initial guess is available, and significantly more iterations are used
with DOM than is the case in a full boiler simulation (as shown in Table 1),
in which as many as 1500 iterations are used. However, we note that for this
problem each DOM iteration takes about a second. Hence, the best that DOM
could achieve would be about 40 s, even if a good initial guess is available. In
this way sweeps outperforms both the actual observed cost and the optimistic
estimated cost of DOM with its linear solve using 40 iterations by a factor of
between 4 and 10. However, the sweeping algorithm has not currently scaled
beyond 128K cores due to its large memory footprint and, additionally, it can
be slower than the linear solver for systems with very high attenuation. This
is because the sparse linear solvers are iterative, but they converge quickly for
systems with large attenuation, as the impact of radiation can be isolated to a
subset of the domain for these systems.

For systems with scattering, DOM typically lags the scattering term and
then resolves until the intensities converge to within a certain tolerance. The
convergence can be costly for systems where the scattering coefficients are sig-
nificantly larger than the absorption coefficients. Given these very encouraging
results, applying sweeps to the full problem and improving its memory use are
clearly the next steps.

6 Mira Production Cases – Results

In making use of the improvements to scalability of the entire code, two produc-
tion cases were considered using the geometry, inlet parameters and operating
parameters of a GE Power 8 Corner Unit. The first case represented the opera-
tion of the commercial unit that is currently in production, whereas the second
case represented alterations to the inlet parameters to investigate a more uniform
energy distribution. Each case was run for approximately 20 s of physical time,
which is considered sufficient for the boiler to achieve a steady state distribution.

Table 2 shows the computational aspects of the 2 cases that were run on Mira,
simulating the 8-corner unit. Each production case was run at 260K cores with
455 M grid cells at a resolution of 4.25 cm with 16 MPI ranks per node using
a timestep of 8e−5 and about 400 MB of memory per rank. Table 2 shows that
between the first and second cases additional speed-ups were achieved in the

236 S. Kumar et al.

Table 2. Computational aspects of 8-corner boiler simulations

Item Original inlets Modified inlets

Number of cells 455 M 455 M

Cell resolution 4.25 cm 4.25 cm

MPI ranks 260,712 260,712

MPI ranks/node 16 16

Memory/rank 412 MB 372 MB

dt 8e−5 8e−5

Time/timestep 4.5 s 3.0 s

Pressure solve 1.9 s 1.0 s

Radiation solve 101 s 79.3 s

Data to disk 5.5 min 33.2 s

Data dumps 77 1030

Data size 9.9 TB 180 TB

Timesteps 236,500 220,979

Simulated time 19.38 s 17.92 s

CPU hours 97 M 110 M

pressure solve due to work being done in Uintah/Arches. The most significant
performance improvement was the switch of the I/O library, with the presented
restructuring-based I/O, which resulted in 33 s write times, compared to the
5.5 min required on the Original Inlets case which used the legacy Uintah I/O
system. Ultimately, the Modified Inlets case wrote 1030 datasets allowing for the
creation of 3D rendered movies of the simulation.

Though validation of the simulation data against experimental data was per-
formed, the proprietary nature of both the simulation and experimental data
makes publication of these comparisons problematic. However, working closely
with the GE Power engineers made it possible to validate the results of these
simulations against their previous results. Figure 11 depicts the heat absorption
profile (x-axis) as a function of the elevation in the boiler (y-axis), and shows the
average absorption profile predicted in the unmodfied inlet configuration (Orig-
inal Inlets) is different from the tentative estimates due to the higher fidelity
modeling performed with Arches, but it is in relatively good agreement with the
actual absorption profile based on discussions with GE Power engineers and the
existing proprietary data provided. The second case was run with changes to
the inlet geometry parameters to optimize gas-side energy imbalance (GSEI) by
changing the flow pattern in the wind-box as well as the SOFA inlets.

The key result from this work is the confidence that has been established with
GE Power to demonstrate that high resolution LES simulations are a useful tool
for exploring a range of operating conditions, with the potential to be used for
future designs. This is the first time that computational design at this scale has

Scalable Data Management of the Uintah Simulation Framework 237

Fig. 11. Heat absorption profile as a function of the elevation. The solid green line
shows GE Power’s wall-averaged absorption profile tentative estimates for the expected
operating conditions in the unit. The blue dots show the average absorption profile
computed from unmodified inlet case. (Color figure online)

been used for such a complex combustion problem with petascale simulations.
Future studies of the unit will investigate design and operation adjustments to
achieve incremental improvements in gas-side energy imbalance. GE will consider
testing the new conditions in the existing unit when significant improvements
are discovered.

7 Conclusions

This work has introduced an excellent exascale candidate problem through the
successful simulation of a commercial, 1000 megawatt electric (MWe) ultra-
supercritical (USC) boiler, the largest currently in production worldwide, using
Large-Eddy Simulation (LES) predictions, requiring 280 Million CPU hours on
Mira. The overall objective of this work was in understanding how we can solve
such a problem through the use of an AMT runtime to efficiently schedule and
execute computational tasks, including I/O, and to leverage scalability improve-
ments in the runtime itself, linear solvers, I/O, and computational algorithms.
To achieve the results shown in this work for production-level petascale com-
putations significant code and algorithmic innovations were required, including
novel adaptations of I/O system that achieved a nearly order of magnitude
improvement in I/O performance.

Through this work, we have exposed areas even within an advanced, scalable
runtime system that need careful design consideration for post-petascale and
eventually exascale platforms, particularly when globally coupled problems such
as radiation are considered. For example, while existing radiation methods used
in Uintah scale, it is clear from the results presented that the use of the sweeps
method for problems of this scale and size needs to be investigated further,
to see if it is possible to reduce the overall simulation time significantly. A key
lesson this work conveys is that the success of large, production-scale simulations

238 S. Kumar et al.

depends upon scalability at every level of the code. If any single component
within the simulation pipeline does not scale, the problem cannot be solved. It
is through the integration of these scalable components and subsystems that
the next generation of problems may be solved on exascale systems. Finally, our
results have demonstrated the potential role that LES simulations can have on
analysis and design of an operational commercial boiler and that simulations can
be used as a design tool for future systems, and that choosing fast scalable and
hardware appropriate algorithms, for key areas such as radiation is important
in achieving scalable results.

Acknowledgements. This material is based upon work supported by the Department
of Energy, National Nuclear Security Administration, under Award Number(s) DE-
NA0002375. An award of computer time was provided by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) program. This research
used resources of the Argonne Leadership Computing Facility, which is a DOE Office
of Science User Facility supported under contract DE-AC02-06CH11357. The authors
would like to thank the Intel Parallel Computing Centers program. We would like to
thank all those involved with Uintah past and present.

References

1. Mira home page. https://www.alcf.anl.gov/mira
2. Adams, M.P., Adams, M.L., Hawkins, W.D., Smith, T., Rauchwerger, L., Amato,

N.M., Bailey, T.S., Falgout, R.D.: Provably optimal parallel transport sweeps on
regular grids. Technical report, Lawrence Livermore National Laboratory (LLNL),
Livermore, CA (2013)

3. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware
Inc., New York (2015)

4. Bailey, T., Hawkins, W.D., Adams, M.L., Brown, P.N., Kunen, A.J., Adams, M.P.,
Smith, T., Amato, N., Rauchwerger, L.: Validation of full-domain massively par-
allel transport sweep algorithms. Technical report, Lawrence Livermore National
Laboratory (LLNL), Livermore, CA (2014)

5. Balaji, P., Chan, A., Thakur, R., Gropp, W., Lusk, E.: Toward message passing for
a million processes: characterizing MPI on a massive scale blue gene/P. Comput.
Sci. Res. Dev. 24(1), 11–19 (2009)

6. Balsara, D.: Fast and accurate discrete ordinates methods for multidimensional
radiative transfer. Part I, basic methods. J. Quant. Spectrosc. Radiat. Transf.
69(6), 671–707 (2001)

7. Bennett, J., Clay, R., Baker, G., Gamell, M., Hollman, D., Knight, S., Kolla, H.,
Sjaardema, G., Slattengren, N., Teranishi, K., Wilke, J., Bettencourt, M., Bova, S.,
Franko, K., Lin, P., Grant, R., Hammond, S., Olivier, S., Kale, L., Jain, N., Mikida,
E., Aiken, A., Bauer, M., Lee, W., Slaughter, E., Treichler, S., Berzins, M., Har-
man, T., Humphrey, A., Schmidt, J., Sunderland, D., McCormick, P., Gutierrez, S.,
Schulz, M., Bhatele, A., Boehme, D., Bremer, P., Gamblin, T.: ASC ATDM level
2 milestone #5325: asynchronous many-task runtime system analysis and assess-
ment for next generation platforms. Technical report, Sandia National Laboratories
(2015)

https://www.alcf.anl.gov/mira

Scalable Data Management of the Uintah Simulation Framework 239

8. Berzins, M., Beckvermit, J., Harman, T., Bezdjian, A., Humphrey, A., Meng, Q.,
Schmidt, J., Wight, C.: Extending the uintah framework through the petascale
modeling of detonation in arrays of high explosive devices. SIAM J. Sci. Comput.
38(5), 101–122 (2016)

9. Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas,
K., Miller, M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A.,
Garth, C., Bethel, E.W., Camp, D., Rübel, O., Durant, M., Favre, J.M., Navrátil,
P.: VisIt: an end-user tool for visualizing and analyzing very large data. In: High
Performance Visualization-Enabling Extreme-Scale Scientific Insight, pp. 357–372
(2012)

10. HDF5 home page. http://www.hdfgroup.org/HDF5/
11. Humphrey, A., Harman, T., Berzins, M., Smith, P.: A scalable algorithm for radia-

tive heat transfer using reverse Monte Carlo ray tracing. In: Kunkel, J.M., Ludwig,
T. (eds.) ISC High Performance 2015. LNCS, vol. 9137, pp. 212–230. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20119-1 16

12. Humphrey, A., Sunderland, D., Harman, T., Berzins, M.: Radiative heat transfer
calculation on 16384 GPUs using a reverse Monte Carlo ray tracing approach with
adaptive mesh refinement. In: 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 1222–1231, May 2016

13. Kumar, S., Vishwanath, V., Carns, P., Levine, J., Latham, R., Scorzelli, G., Kolla,
H., Grout, R., Ross, R., Papka, M., Chen, J., Pascucci, V.: Efficient data restruc-
turing and aggregation for I/O acceleration in PIDX. In: 2012 International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC),
pp. 1–11, November 2012

14. Li, J., Liao, W.-K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham,
R., Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: a high-performance
scientific I/O interface. In: Proceedings of SC 2003: High Performance Networking
and Computing, Phoenix, AZ. IEEE Computer Society Press, November 2003

15. Lofstead, J., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In:
Proceedings of the 6th International Workshop on Challenges of Large Applications
in Distributed Environments, CLADE 2008, pp. 15–24. ACM, New York, June 2008

16. Lustre home page. http://lustre.org
17. Meng, Q., Humphrey, A., Schmidt, J., Berzins, M.: Investigating applications

portability with the Uintah DAG-based runtime system on petascale supercomput-
ers. In: Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC 2013, pp. 96:1–96:12. ACM, New York
(2013)

18. U. D. of Energy: Exascale computing project (2017). https://exascaleproject.org/
19. Peterson, B., Humphrey, A., Schmidt, J., Berzins, M.: Addressing global data

dependencies in heterogeneous asynchronous runtime systems on GPUs. In: Third
International Workshop on Extreme Scale Programming Models and Middleware,
ESPM2. IEEE Press (2017, submitted)

20. Russell, J.: Doug Kothe on the race to build exascale applications (2017). https://
www.hpcwire.com/2017/05/29/doug-kothe-race-build-exascale-applications/

21. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing
clusters. In: Proceedings of the 2002 Conference on File and Storage Technologies
(FAST), pp. 231–244 (2002)

22. Scientific Computing and Imaging Institute: Uintah web page (2015). http://www.
uintah.utah.edu/

http://www.hdfgroup.org/HDF5/
https://doi.org/10.1007/978-3-319-20119-1_16
http://lustre.org
https://exascaleproject.org/
https://www.hpcwire.com/2017/05/29/doug-kothe-race-build-exascale-applications/
https://www.hpcwire.com/2017/05/29/doug-kothe-race-build-exascale-applications/
http://www.uintah.utah.edu/
http://www.uintah.utah.edu/

240 S. Kumar et al.

23. Shan, H., Antypas, K., Shalf, J.: Characterizing and predicting the I/O perfor-
mance of HPC applications using a parameterized synthetic benchmark. In: Pro-
ceedings of Supercomputing, November 2008

24. Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther,
J., Navratil, P.: OSPRay - a CPU ray tracing framework for scientific visualization.
IEEE Trans. Visual. Comput. Graph. 23(1), 931–940 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Linear Algebra

High Performance LOBPCG Method
for Solving Multiple Eigenvalues
of Hubbard Model: Efficiency

of Communication Avoiding Neumann
Expansion Preconditioner

Susumu Yamada1(B), Toshiyuki Imamura2, and Masahiko Machida1

1 Japan Atomic Energy Agency, Kashiwa, Chiba, Japan
yamada.susumu@jaea.go.jp

2 RIKEN, Kobe, Hyogo, Japan

Abstract. The exact diagonalization method is a high accuracy numer-
ical approach for solving the Hubbard model of a system of electrons with
strong correlation. The method solves for the eigenvalues and eigenvec-
tors of the Hamiltonian matrix derived from the Hubbard model. Since
the Hamiltonian is a huge sparse symmetric matrix, it was expected that
the LOBPCG method with an appropriate preconditioner could be used
to solve the problem in a short time. This turned out to be the case
as the LOBPCG method with a suitable preconditioner succeeded in
solving the ground state (the smallest eigenvalue and its corresponding
eigenvector) of the Hamiltonian. In order to solve for multiple eigenvalues
of the Hamiltonian in a short time, we use a preconditioner based on the
Neumann expansion which uses approximate eigenvalues and eigenvec-
tors given by LOBPCG iteration. We apply a communication avoiding
strategy, which was developed considering the physical properties of the
Hubbard model, to the preconditioner. Our numerical experiments on
two parallel computers show that the LOBPCG method coupled with
the Neumann preconditioner and the communication avoiding strategy
improves convergence and achieves excellent scalability when solving for
multiple eigenvalues.

1 Introduction

Since the High-Tc superconductor was discovered many physicists have tried
to understand the mechanism behind the superconductivity. It is believed that
strong electron correlations underlie the phenomenon, however the exact mech-
anism is not yet fully understood. One of the numerical approaches to the prob-
lem is the exact diagonalization method. In this method the eigenvalue problem
is solved for the Hamiltonian derived exactly from the Hubbard model [1,2],
which is a model of a strongly-correlated electron system. When we solve the
ground state (the smallest eigenvalue and its corresponding eigenvector) of the
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 243–256, 2018.
https://doi.org/10.1007/978-3-319-69953-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_14&domain=pdf

244 S. Yamada et al.

Fig. 1. Algorithm of LOBPCG method for matrix A. Here the matrix T is a precon-
ditioner.

Hamiltonian, we can understand its properties at absolute zero (−273.15 ◦C).
Many computational methods for the problem have been proposed. Since the
Hamiltonian from the Hubbard model is a huge sparse symmetric matrix, an
iteration method, such as the Lanczos method [3] or the LOBPCG method (see
Fig. 1) [4,5], is usually utilized for solving the eigenvalue problem.

The convergence of the LOBPCG method depends strongly on the use of
a preconditioner. We previously confirmed that the zero-shift point Jacobi pre-
conditioner, which is a shift-and-invert preconditioner [6] using an approximate
eigenvalue, gives excellent convergence properties for the Hubbard model with
the trapping potential [7]. However, we also reported that the benefit of the pre-
conditioner strongly depends on the characteristics of the non-zero elements of
the Hamiltonian and that the preconditioner does not always improve the con-
vergence [8]. Therefore we proposed a novel preconditioner using the Neumann
expansion for solving the ground state of the Hamiltonian and demonstrated
that this preconditioner improves convergence for a Hamiltonian that is diffi-
cult to solve with the zero-shift point Jacobi preconditioner [8]. Moreover we
applied a communication avoiding strategy, which was developed considering
the properties of the Hubbard model, to the preconditioner.

In order to understand more details of strongly correlated electron systems in
particular properties at temperatures near absolute zero, we must solve for the
several smallest eigenvalues and corresponding eigenvectors of the Hamiltonian.
The LOBPCG method can solve multiple eigenvalues by using a block of vectors.

In this paper, we extend the Neumann expansion preconditioner to the
LOBPCG method for solving multiple eigenvalues and corresponding eigenvec-
tors. Moreover, we demonstrate that the preconditioner improves the conver-
gence properties and can achieve excellent parallel performance.

High Performance LOBPCG Method for Solving Multiple Eigenvalues 245

The paper is structured as follows. In Sect. 2 we briefly introduce related
work for solving the ground state of the Hubbard model using the LOBPCG
method. Section 3 describes the use of the Neumann expansion preconditioner
with the communication avoiding strategy for solving for multiple eigenvalues
and their corresponding eigenvectors. Section 4 demonstrates the parallel perfor-
mance of the algorithm on the SGI ICE X and K supercomputers. A summary
and conclusions are given in Sect. 5.

2 Related Work

2.1 Hamiltonian-Vector Multiplication

When solving the ground state of a symmetric matrix using the LOBPCG
method, the most time-consuming operation is the matrix-vector multiplication.
The Hamiltonian derived from the Hubbard model (see Fig. 2) is

H = −t
∑

i,j,σ

c†
jσciσ +

∑

i

Uini↑ni↓, (1)

where t is the hopping parameter from one site to another, and Ui is the repulsive
energy for double occupation of the i-th site by two electrons [1,2,7]. Quantities
ci,σ, c†

i,σ and ni,σ are the annihilation, creation, and number operator of an
electron with pseudo-spin σ on the i-th site, respectively. The indices in formula
(1) for the Hamiltonian denote the possible states for electrons in the model.
The dimension of the Hamiltonian for the ns-site Hubbard model is

(
ns

n↑

)
×

(
ns

n↓

)
,

where n↑ and n↓ are the number of the up-spin and down-spin electrons,
respectively.

The diagonal element in formula (1) is derived from the repulsive energy Ui in
the corresponding state. The hopping parameter t affects non-zero elements with

Fig. 2. A schematic figure of the 2-dimensional Hubbard model, where t is the hopping
parameter and U is the repulsive energy for double occupation of a site. Up arrows and
down arrows correspond to up-spin and down-spin electrons, respectively.

246 S. Yamada et al.

column-index corresponding to the original state and row-index corresponding
to the state after hopping. Since the ratio U/t greatly affects the properties of
the model, we have to execute many simulations varying this ratio to reveal the
properties of the model.

When considering the physical properties of the model, we can split the
Hamiltonian-vector multiplication as

Hv = Dv + (I↓ ⊗ A↑)v + (A↓ ⊗ I↑)v, (2)

where I↑(↓), A↑(↓) and D are the identity matrix, a sparse symmetric matrix
derived from the hopping of an up-spin electron (a down-spin electron), and
a diagonal matrix from the repulsive energy, respectively [7]. Since there is no
regularity in the state change by electron hopping, the distribution of non-zero
elements in matrix A↑(↓) is irregular.

Next, a matrix V is constructed by the following procedures from a vector v.
First, decompose the vector v into n blocks, and order in the two-dimensional
manner as follows,

v = (v1,1, v2,1, . . . , vm↑,1︸ ︷︷ ︸
the first block

, v1,2, v2,2, . . . , vm↑,2︸ ︷︷ ︸
the second block

, · · · , v1,m↓ , v2,m↓ , . . . , vm↑,m↓︸ ︷︷ ︸
the m↓-th block

)T ,

where m↑ and m↓ are the dimensions of the Hamiltonian for up-spin and down-
spin electrons, i.e.

m↑ =
(

ns

n↑

)
,m↓ =

(
ns

n↓

)
.

The subscripts on each element of v formally indicate the row and column within
the matrix V . Therefore V is a dense matrix. The k-th elements of the matrix D,
dk, are used in the same manner to define a new matrix D̄. The multiplication
in Eq. (2) can then be written as

V new
i,j = D̄i,jVi,j +

∑

k

A↑i,kVk,j +
∑

k

Vi,kA↓j,k (3)

where the subscript i, j of the matrix is represented as the (i, j)-th element and
V and D̄. Accordingly we can parallelize the multiplication Y = HV (≡ Hv) as
follows:

CAL 1: Y c = D̄c � V c + A↑V c,
COM 1: all-to-all communication from V c to V r,
CAL 2: W r = V rAT

↓ ,
COM 2: all-to-all communication from W r to W c,
CAL 3: Y c = Y c + W c.

where superscripts c and r denote column wise and row wise partitioning of the
matrix data for the parallel calculation. The operator � means an element wise
multiplication. The parallelization strategy requires two all-to-all communication
operations per multiplication.

High Performance LOBPCG Method for Solving Multiple Eigenvalues 247

2.2 Preconditioner of LOBPCG Method for Solving the Ground
State of Hubbard Model

Zero-Shift Point Jacobi Preconditioner. A suitable preconditioner
improves the convergence properties of the LOBPCG method. As a conse-
quence many preconditioners have been proposed. Preconditioners for the Hamil-
tonian derived from the Hubbard model also have been proposed. For the
Hubbard model, the zero-shift point Jacobi (ZSPJ) preconditioner, which is a
shift-and-invert preconditioner using an approximate eigenvalue obtained during
LOBPCG iteration, has excellent convergence properties for Hamiltonians where
the diagonal elements predominate over the off-diagonal elements, i.e. cases
where the repulsive energy U is large [7,8].

Neumann Expansion Preconditioner. For the Hubbard model with a small
repulsive energy, a preconditioner using the Neumann expansion was previously
proposed [8]. The expansion is

(I − M)−1 = I + M + M2 + M3 + · · · . (4)

The expansion converges when the operator norm of the matrix M is less than
1 (||M ||op < 1) [9]. Here the matrix M is

M = I − 2
λmax − λmin

(H − λminI),

where λmin and λmax are the smallest and largest eigenvalues, respectively. When
the exact eigenvalues are utilized for λmin and λmax, ||M ||op is equal to 1. Since
the LOBPCG method calculates an approximation of the smallest eigenvalue, we
consider the residual error of this approximation and make a low estimate of λmin.
The Gershgorin circle theorem is used to assign a λmax that is an overestimate of
the true value. The inequality ||M ||op < 1 is hence obeyed and the expansion (4)
can converge, i.e. the inverse matrix of 2

λmax−λmin
(H − λminI). The expansion

is an effective preconditioner for the smallest eigenvalue λmin. In practice the
Gershgorin circle theorem may give estimates for λmax that are much too large.
Multiplying by a damping factor α can help alleviate this inefficiency. We found
0.9 to be an appropriate α in numerical tests.

2.3 Communication Avoiding Neumann Expansion Preconditioner
for Hubbard Model

When we execute the LOBPCG method with the s-th order Neumann expansion
preconditioner, we calculate s + 1 matrix-vector multiplications, Hv, H2v, . . .,
and Hs+1v, per iteration. As the multiplications (I↓ ⊗ A↑) and (A↓ ⊗ I↑) are
commutative Yamada et al. proposed a communication avoiding strategy for the
Hamiltonian-vector multiplication [8]. Then, H2 is given as

H2 = (I↓ ⊗ A↑)(D + (I↓ ⊗ A↑)) + (A↓ ⊗ I↑)(D + (A↓ ⊗ I↑))

+ D(D + (I↓ ⊗ A↑) + (A↓ ⊗ I↑)) + (I↓ ⊗ A↑)(A↓ ⊗ I↑) + (A↓ ⊗ I↑)(I↓ ⊗ A↑)

= (I↓ ⊗ A↑)(D + (I↓ ⊗ A↑) + 2(A↓ ⊗ I↑))

+ (A↓ ⊗ I↑)(D + (A↓ ⊗ I↑)) + D(D + (I↓ ⊗ A↑) + (A↓ ⊗ I↑)).

248 S. Yamada et al.

As a result, Y1 = Hv and Y2 = H2v can be calculated by the following algorithm:

CAL 1: Y c = D̄c � V c + A↑V c,
COM 1: all-to-all communication from V c to V r,
CAL 2: W r = V rAT

↓ ,
COM 2: all-to-all communication from W r to W c,
CAL 3: Y c

1 = Y c + W c,
CAL 4: Y c = Y c

1 + W c,
CAL 5: Y c = D̄c � Y c

1 + A↑Y c,
CAL 6: W r = D̄r � V r + W r,
CAL 7: W r = W rAT

↓ ,
COM 3: all-to-all communication from W r to W c,
CAL 8: Y c

2 = Y c + W c.

The algorithm requires three all-to-all communication operations. On the other
hand, when using the original algorithm described in Sect. 2.1, four all-to-all com-
munication operations are required to calculate the same multiplication. How-
ever, the new algorithm has extra calculations, CAL 4 and CAL 6, as compared
to the original one. Therefore when the cost of one all-to-all communication oper-
ation is larger than that of the extra calculations, we expect to achieve speedup
with the communication avoiding strategy. The algorithm can not be directly
applied to the multiplication Hs+1 for s ≥ 2. In this case, the multiplication
Hs+1 is calculated by appropriately combining Hv and H2v operations.

3 Neumann Expansion Preconditioner for Multiple
Eigenvalues of Hubbard Model

3.1 How to Calculate Multiple Eigenvalues
Using LOBPCG Method

The LOBPCG method for solving the m smallest eigenvalues and corresponding
eigenvectors carries out recurrence with m vectors simultaneously (see Fig. 3). In
this algorithm, the generalized eigenvalue problem has to be solved. We can solve
the problem using the LAPACK function dsyev, if the matrix SB is a positive
definite matrix. Although theoretically SB is always a positive definite matrix,
numerically this is not always the case. The reason is that the norms of the
vectors w

(i)
k and p

(i)
k (i = 1, 2, . . . ,m) become small as the LOBPCG iteration

converges, and it is possible that trailing digits are lost in the calculation of
SB . Therefore we set the matrix SB to the identity matrix by orthogonalizing
the vectors per iteration. In the following numerical tests, we utilize the TSQR
method for the orthgonalization [10,11].

High Performance LOBPCG Method for Solving Multiple Eigenvalues 249

Fig. 3. LOBPCG method for solving the m smallest eigenvalues and corresponding
eigenvectors. T (i) is a preconditioner for the i-th smallest eigenvalues. This algorithm
requires m matrix-vector multiplication operations and m preconditioned ones per
iteration.

3.2 Neumann Expansion Preconditioner of LOBPCG Method
for Solving Multiple Eigenvalues

When we calculate multiple eigenvalues (and corresponding eigenvectors) using
the LOBPCG method, we can individually apply a preconditioning operation
to each vector corresponding to the eigenvectors. We set the matrix Mi using
the Neumann expansion preconditioner for the i-th smallest eigenvalue λi of the
Hamiltonian as

Mi = I − 2
λmax − λi

(H − λiI).

Since we obtain approximate eigenvalues after each iteration of the LOBPCG
method, we consider the residual errors of these approximations to define an
appropriate λi. The matrix Mi has (i− 1) eigenvalues whose absolute values are
greater than or equal to 1. In this case, the Neumann expansion using Mi can
not converge. The eigenvectors corresponding to the eigenvalues agree with those
corresponding to the eigenvalues λ1, λ2, . . ., λi−1 of the Hamiltonian, and then,
they are calculated during the LOBPCG iteration simultaneously. Accordingly,
we orthogonalize the vectors x

(i)
k , w

(i)
k , and p

(i)
k (i = 1, 2, . . . , m) in the order that

takes away the components of the vectors x
(1)
k , x

(2)
k , . . ., x

(i−1)
k from w

(i)
k given

250 S. Yamada et al.

by the Neumann expansion preconditioner using Mi. That is, we orthogonal the
vectors utilizing the algorithm including the following operation

w
(j)
k := w

(j)
k −

j−1∑

i=1

(w(j)
k , x

(i)
k)x(i)

k . (5)

The formula (5) can approximately remove the components of the eigenvectors
corresponding to the eigenvalues, whose absolute values are greater than or equal
to 1, from the preconditioned vectors. Therefore we expect that the Neumann
expansion using Mi becomes an appropriate preconditioner for solving for mul-
tiple eigenvalues.

4 Performance Result

4.1 Computational Performance and Convergence Property

We examined the computational performance and convergence properties of the
LOBPCG method. We solved the 2-D 4 × 5-site Hubbard model with 5 up-spin
electrons and 5 down-spin ones. The dimension of the Hamiltonian derived from
the model is about 240 million. The number of non-zero off-diagonal elements is
about 1.6 billion. We solved for one, five and 10 eigenvalues (and corresponding
eigenvectors) of the Hamiltonian on 768 cores (64 MPI processes × 12 OpenMP
threads) of the SGI ICE X supercomputer (see Table 1) in Japan Atomic Energy
Agency (JAEA). Table 2 shows the results for a weak interaction case (U/t = 1)
and a strong one (U/t = 10). Table 3 shows the elapsed times of some represen-
tative operations.

The results for U/t = 1 indicate that point Jacobi (PJ) and zero-shift point
Jacobi (ZSPJ) preconditioners hardly improve the convergence compared to
without using a preconditioner at all. When we solve for many eigenvalues, the
PJ and ZSPJ preconditioners have little effect on the speed of the calculation.
On the other hand, the Neumann expansion preconditioner can decrease the
number of iterations required for convergence. Moreover, the larger the Neu-
mann expansion series s, the fewer iterations required. When we solve for only

Table 1. Details of SGI ICE X

Processor Intel Xeon E5-2680v3 (2.5 GHz, 30 MB L2 cache)

FLOPS per processor 480 GFLOPS

Number of cores per CPU 12

Number of processors per node 2

Memory of node 64 GB

Memory bandwidth 68 GB/s

Network Infini Band 6.8 GB/s

Compiler Intel compiler

High Performance LOBPCG Method for Solving Multiple Eigenvalues 251

Table 2. Elapsed time and number of iterations for convergence of LOBPCG method
using zero-shift point Jacobi (ZSPJ), Neumann expansion (NE), or communication
avoiding Neumann expansion (CANE) preconditioner. Here, s is the number of the
Neumann expansion series.

(a) One eigenvalue (The ground state)

Number of iterations (top) & Elapsed time (sec) (bottom)

No precon. PJ ZSPJ NE CANE

s = 1 s = 2 s = 3 s = 1 s = 2 s = 3

U/t = 1 133 133 132 69 59 46 69 59 46

9.16 9.19 9.13 8.79 11.06 10.78 7.40 9.18 8.94

U/t = 10 184 132 124 95 81 65 94 81 64

13.03 9.08 8.61 12.07 14.65 15.62 10.05 12.62 12.79

(b) 5 eigenvalues

Number of iterations (top) & Elapsed time (sec) (bottom)

No precon. PJ ZSPJ NE CANE

s = 1 s = 2 s = 3 s = 1 s = 2 s = 3

U/t = 1 199 190 168 81 77 59 86 72 54

171.75 164.57 145.28 89.44 103.31 93.69 87.89 91.21 77.16

U/t = 10 293 217 240 159 156 108 155 142 105

250.77 186.35 204.97 172.90 208.80 171.37 156.41 179.12 149.59

(c) 10 eigenvalues

Number of iterations (top) & Elapsed time (sec) (bottom)

No precon. PJ ZSPJ NE CANE

s = 1 s = 2 s = 3 s = 1 s = 2 s = 3

U/t = 1 551 777 624 319 257 184 340 302 198

1221.55 1672.69 1369.91 911.56 897.79 759.40 863.57 936.35 680.48

U/t = 10 398 298 313 232 184 161 201 177 137

996.19 740.98 763.42 720.22 704.14 705.03 579.98 607.46 515.60

the smallest eigenvalue, the total elapsed time increases as s increases. The rea-
son is that the elapsed time of the Hamiltonian-vector multiplication operation
is dominant over the whole calculation for solving the only smallest eigenvalue
(see Table 3). When we solve multiple eigenvalues, the TSQR operation becomes
dominant. Therefore when the series number s becomes large, it is possible to
achieve speedup of the computation.

Next, we discuss the results for U/t = 10. The results indicate that the PJ
preconditioner improves the convergence properties. On the other hand, ZSPJ for
small m improves convergence, however, its convergence properties when solving
for multiple eigenvalues are almost the same as those for the PJ preconditioner.
When we solve for multiple eigenvalues using the Neumann expansion precondi-
tioner, the solution is obtained faster than using the PJ or ZSPJ preconditioners.
Moreover, as the Neumann expansion series s increases, the Neumann expansion

252 S. Yamada et al.

Table 3. Elapsed time for operations per iteration. This table shows the results using
the zero-shift point Jacobi (ZSPJ), Neumann expansion (NE), and communication
avoiding Neumann expansion (CANE). Here, the Neumann expansion series s is equal
to 1. For m = 1, instead of executing TSQR, we calculate SB ,moreover, ZSPJ precon-
ditioner is calculated together with x, p, X, P .

Elapse time per iteration (sec)

m = 1 m = 5 m = 10

ZSPJ NE CANE ZSPJ NE CANE ZSPJ NE CANE

Hw (& H2w) 0.061 0.117 0.100 0.276 0.545 0.448 0.568 1.088 0.909

TSQR — — — 0.407 0.408 0.407 1.498 1.503 1.502

SA (& SB) 0.007 0.007 0.007 0.073 0.073 0.073 0.255 0.257 0.254

x, p, X, P 0.008 0.007 0.007 0.107 0.122 0.121 0.301 0.331 0.332

Preconditioner — 0.003 0.003 0.018 0.015 0.014 0.035 0.030 0.028

Table 4. Speedup ratio for the elapsed time per iteration using the Neumann expansion
preconditioner and communication avoiding strategy.

Speedup ratio

m = 1 m = 5 m = 10

s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 s = 1 s = 2 s = 3

U/t = 1 1.19 1.20 1.21 1.08 1.06 1.11 1.13 1.13 1.20

U/t = 10 1.19 1.16 1.20 1.08 1.06 1.11 1.08 1.12 1.16

preconditioner improves the convergence properties and the total elapsed time
decreases, especially when m is large.

Finally, we talk about the effect of the communication avoiding strategy.
Table 4 shows the speedup ratio for the elapsed time using the Neumann expan-
sion preconditioner per iteration and the communication avoiding strategy. In
all cases the communication avoiding strategy realizes speedup. When we solve
for only the smallest eigenvalue (and its corresponding eigenvector), the speedup
ratio is almost the same as that for the matrix-vector multiplication, because the
multiplication cost is dominant. On the other hand, when we solve for multiple
eigenvalues, the calculation cost except the multiplication becomes dominant.
Therefore the speedup ratio is a little smaller than that for only the multipli-
cation. Furthermore, when the Neumann expansion series s is equal to 3, we
confirm that the ratio improves. In this case, since four multiplications (Hw,
H2w, H3w and H4w) are executed per iteration, the ratio of the multiplication
cost increases. Moreover, we can execute four multiplication operations by two
communication avoiding multiplications. Therefore, the ratio for s = 3 is better
than that for s = 1.

High Performance LOBPCG Method for Solving Multiple Eigenvalues 253

4.2 Parallel Performance

In order to examine the parallel performance of the LOBPCG method using the
Neumann expansion preconditioner, we solved for the 10 smallest eigenvalues
and corresponding eigenvectors of the Hamiltonian derived from the 4× 5-site
Hubbard model for U/t = 1 with 6 up-spin and 6 down-spin electrons. We
used the LOBPCG method with ZSPJ, NE, and CANE preconditioners using
hybrid parallelization on SGI ICEX in JAEA and the K computer in RIKEN
(see Table 5). The results are shown in Table 6. The results indicate that all
preconditioners achieve excellent parallel efficiency. The communication avoiding
strategy on SGI ICEX decreases the elapsed time per iteration by about 15%.
On the other hand, the communication avoiding strategy on the K computer
did not realize speedup when using a small number of cores. The ratio of the
network bandwidth to FLOPS per node of the K computer is larger than that
of SGI ICEX, so it is possible that the cost of the extra calculations (CAL 4 &
CAL 6) is larger than that of the all-to-all communication operation. However
since the cost of the all-to-all communication operation increases as the number
of the cores increases, the strategy realizes speedup on 4096 cores. Therefore, the
strategy has a potential of speedup for parallel computing using a sufficiently
large number of cores, even if the ratio of the network bandwidth to FLOPS is
large.

Although the LOBPCG method using NE has four times more Hamiltonian-
vector multiplications per iteration than the method with ZSPJ, the former takes
about twice the elapsed time of the latter. The reason is that the calculation oper-
ations except the multiplication is dominant in this case. Therefore, we conclude
that in order to solve for multiple eigenvalues of the Hamiltonian derived from
the Hubbard model using the LOBPCG method in a short computation time, it
is crucial to reduce the number of the iterations for the convergence even if the
calculation cost of the preconditioner is large.

Table 5. Details of K computer

Processor SPARCTM 64 VIIIfx (2 GHz, 6 MB L2 cache)

FLOPS per processor 128 GFLOPS

Number of cores per CPU 8

Number of processors per node 1

Memory of node 16 GB

Memory bandwidth 64 GB/s

Network Torus network (Tofu) 5 GB/s

Compiler Fujitsu compiler

254 S. Yamada et al.

Table 6. Parallel performance of LOBPCG method on SGI ICEX and K computer.
This table shows the number of iterations, the total elapsed time, and the elapsed time
per iteration of LOBPCG method using zero-shift point Jacobi (ZSPJ), Neumann
expansion (NE), or communication avoiding Neumann expansion (CANE) precondi-
tioner. Here, the Neumann expansion series s is 3.

(a) SGI ICEX

Number of iterations (top)

Elapsed time (sec) (middle)

Elapsed time per iteration (sec) (bottom)

ZSPJ NE CANE

64 MPI × 12 OpenMP 591 226 225

9501.694 5886.533 4921.302

16.077 26.047 21.872

128 MPI × 12 OpenMP 605 246 229

4611.478 3662.846 2909.048

7.622 14.890 12.703

256 MPI × 12 OpenMP 601 244 226

2259.070 2043.231 1603.456

3.759 8.374 7.095

(b) K computer

Number of iterations (top)

Elapsed time (sec) (middle)

Elapsed time per iteration (sec) (bottom)

ZSPJ NE CANE

128 MPI × 8 OpenMP 503 209 230

5775.971 3752.884 4596.063

11.483 17.956 19.983

256 MPI × 8 OpenMP 551 224 303

3231.566 2085.268 2974.883

5.865 9.309 9.818

512 MPI × 8 OpenMP 862 243 250

2548.534 1327.093 1130.652

2.957 5.461 4.523

5 Conclusions

In this paper we applied the Neumann expansion preconditioner to the LOBPCG
method to solve for multiple eigenvalues and corresponding eigenvectors of the
Hamiltonian derived from the Hubbard model. We examined the convergence
properties and parallel performance of the algorithms. Since the norm of the
matrix used in the Neumann expansion should be less than 1, we transform

High Performance LOBPCG Method for Solving Multiple Eigenvalues 255

it using approximate eigenvalues calculated by the LOBPCG iteration and the
upper bounds of the eigenvalues by the Gershgorin circle theorem. Moreover,
we orthogonalize the iteration vectors in the order that removes the components
of the eigenvectors corresponding to the eigenvalues, whose absolute values are
greater than or equal to 1, from the preconditioned vectors.

The Neumann expansion preconditioner with the communication avoiding
strategy can achieve speedup even for problems which are hardly improved by
the conventional preconditioners. Furthermore, a numerical experiment indicated
that the LOBPCG method using this preconditioner has excellent parallel effi-
ciency on thousands cores, and the communication avoiding strategy based on
the property of the Hubbard model realizes speedup for parallel computers if a
sufficiently large number of cores are used. Therefore, we confirm that the precon-
ditioner based on the Neumann expansion is suitable for solving the eigenvalue
problem derived from the Hubbard model using the LOBPCG method.

Acknowledgments. Computations in this study were performed on the SGI ICE X
at the JAEA and the K computer at RIKEN Advanced Institute for Computational
Science (project ID:ra000005). This research was partially supported by JSPS KAK-
ENHI Grant Number 15K00178.

References

1. Rasetti, M. (ed.): The Hubbard Model: Recent Results. World Scientific, Singapore
(1991)

2. Montorsi, A. (ed.): The Hubbard Model. World Scientific, Singapore (1992)
3. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigen-

value Computations, vol. 1: Theory. SIAM, Philadelphia (2002)
4. Knyazev, A.V.: Preconditioned eigensolvers - an oxymoron? Electron. Trans.

Numer. Anal. 7, 104–123 (1998)
5. Knyazev, A.V.: Toward the optimal eigensolver: locally optimal block precondi-

tioned conjugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001)
6. Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Revised Edition.

SIAM (2011)
7. Yamada, S., Imamura, T., Machida, M.: 16.447 TFlops and 159-Billion-dimensional

exact-diagonalization for trapped Fermion-Hubbard Model on the Earth Simulator.
In: Proceedings of SC 2005 (2005)

8. Yamada, S., Imamura, T., Machida, M.: Communication avoiding Neumann expan-
sion preconditioner for LOBPCG method: convergence property of exact diagonal-
ization method for Hubbard model. In: Proceedings of ParCo 2017 (2017, accepted)

9. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia (1994)

10. Langou, J.: AllReduce algorithms: application to Householder QR factorization. In:
Proceedings of the 2007 International Conference on Preconditioning Techniques
for Large Sparse Matrix Problems in Scientific and Industrial Applications, pp.
103–106 (2007)

11. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-avoiding par-
alleland sequential QR factorizations, Technical report, Electrical Engineering and
Computer Sciences, University of California Berkeley (2008)

256 S. Yamada et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Application of a Preconditioned
Chebyshev Basis

Communication-Avoiding Conjugate
Gradient Method to a Multiphase

Thermal-Hydraulic CFD Code

Yasuhiro Idomura1(B), Takuya Ina1, Akie Mayumi1, Susumu Yamada1,
and Toshiyuki Imamura2

1 Japan Atomic Energy Agency, Kashiwa, Chiba 227-0871, Japan
idomura.yasuhiro@jaea.go.jp

2 RIKEN, Kobe, Hyogo 650-0047, Japan

Abstract. A preconditioned Chebyshev basis communication-avoiding
conjugate gradient method (P-CBCG) is applied to the pressure Pois-
son equation in a multiphase thermal-hydraulic CFD code JUPITER,
and its computational performance and convergence properties are com-
pared against a preconditioned conjugate gradient (P-CG) method and
a preconditioned communication-avoiding conjugate gradient (P-CACG)
method on the Oakforest-PACS, which consists of 8,208 KNLs. The P-
CBCG method reduces the number of collective communications with
keeping the robustness of convergence properties. Compared with the
P-CACG method, an order of magnitude larger communication-avoiding
steps are enabled by the improved robustness. It is shown that the P-
CBCG method is 1.38× and 1.17× faster than the P-CG and P-CACG
methods at 2,000 processors, respectively.

1 Introduction

Krylov subspace methods are widely used for solving linear systems given by
extreme scale sparse matrices, and thus, their scalability is one of critical issues
towards exascale computing. In nuclear engineering, exascale computing is needed
for Computational Fluid Dynamics (CFD) simulations of turbulent flows such as
multiphase thermal-hydraulic simulations of nuclear reactors and fusion plasma
simulations. In these CFD simulations, implicit solvers based on Krylov subspace
methods occupy dominant computational costs, and the scalability of such CFD
simulations largely depends on the performance of Krylov solvers.

The current Peta-scale machines are characterized by extreme concurrency
reaching at ∼100 k computing nodes. In addition to this feature, on future
exascale machines, which may be based on many-core processors or acceler-
ators, significant acceleration of computation is expected. In Ref. [1], we opti-
mized stencil computation kernels from CFD simulations on the latest many-core

c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 257–273, 2018.
https://doi.org/10.1007/978-3-319-69953-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_15&domain=pdf

258 Y. Idomura et al.

processors and GPUs, and significant performance gains were achieved. However,
the accelerated computation revealed severe bottlenecks of communication.

Krylov solvers involve local halo data communications for stencil compu-
tations or sparse matrix vector operations SpMVs, and global data reduction
communications for inner product operations in orthogonalization procedures
for basis vectors. Although communication overlap techniques [2] may reduce
the former latency, it can not be applied to the latter. In order to resolve this
issue at mathematics or algorithm levels, in Refs. [3,4], we have introduced
communication-avoiding (CA) Krylov methods to a fusion plasma turbulence
code GT5D [5] and a multiphase thermal-hydraulic CFD code JUPITER [6].

The implicit solver in the GT5D is well-conditioned, and the communication-
avoiding general minimum residual (CA-GMRES) method [7] was stable for large
CA-steps s > 10. On the other hand, the Poisson solver in the JUPITER is
ill-conditioned, and the convergence of the left-preconditioned communication-
avoiding conjugate gradient (P-CACG) method [7] was limited for s ≤ 3. Even
with s = 3, the strong scaling of the JUPITER on the K-computer [8] was
dramatically improved by reducing the number of global data reduction commu-
nications to 1/s. However, for practical use, it is difficult to operate CA Krylov
solvers at the upper limit of CA-steps, because the Poisson operator is time
dependent and its condition number may increase in time. Therefore, we need
to use more robust CA Krylov methods at CA-steps well below the upper limit,
beyond which they become numerically unstable. In order to resolve this issue,
in this work, we introduce the preconditioned Chebyshev basis communication-
avoiding conjugate gradient (P-CBCG) method to the JUPITER, and examine
its robustness and computational performance on the Oakforest-PACS, which
consists of 8,208 KNLs.

The reminder of this paper is organized as follows. Related works are reviewed
in Sect. 2. In Sect. 3, we explain CA Krylov subspace methods used in this work.
In Sect. 4, we discuss numerical properties and kernel performances of CA Krylov
solvers. In Sect. 5, we present the convergence property of CA Krylov methods
and the computational performances of CA Krylov solvers on the JAEA ICEX
and the Oakforest-PACS. Finally, a summary is given in Sect. 6.

2 Related Works

The CACG method is based on the so-called s-step CG method, in which the
data dependency between SpMV and inner product operations in the standard
CG method is removed. Van Rosendale [9] first developed a s-step version of
the CG method. Chronopoulos and Gear [10] called their own variant of the CG
method as the s-step CG method. However, the above works did not change
SpMV operations for generating the s-step basis. Toledo optimized the compu-
tation of the s-step basis in the s-step CG method [11], in which the number
of words transferred between levels of the memory hierarchy is reduced. The
CACG method by Hoemmen [7] reduced communications between levels of the
memory hierarchy and between processors by a matrix power kernel (MPK) [12].

Application of a Preconditioned Chebyshev Basis 259

Carson [13] showed the performance of the CACG method on the Hopper super-
computer using a simple Poisson model problem.

CA-preconditioning is based on sparse approximate inverses with the same
sparsity pattern as the matrix A, or block Jacobi (BJ) and polynomial precon-
ditioners [9,11,14]. For instance, in BJ preconditioning, each processor indepen-
dently solves its local problem. However, when the local preconditioner has data
dependency over the whole local problem as in ILU factorization, it is difficult to
construct a MPK without additional communications, because each local SpMV
requires preconditioned input vector elements from neighboring processors. To
avoid the additional communications, Yamazaki et al. [15] proposed an under-
lap approach, in which each subdomain is divided into an inner part and the
remaining surface part, and preconditioning for the latter is approximated by
point Jacobi preconditioning. However, in our previous work [3], it was shown
that for ill-conditioned problems given by the JUPITER, the underlap approach
leads to significant convergence degradation, and a hybrid CA approach, in which
SpMVs and BJ preconditioning are unchanged and CA is applied only to inner
product operations, was proposed.

In most of performance studies [4,13,15], CA Krylov methods were applied
to well-conditioned problems, where CA-steps are extended for s > 10. How-
ever, in Ref. [3], it was shown that for ill-conditioned problems given by the
JUPITER, the P-CACG method is numerically stable only within a few CA-
steps even with the original BJ preconditioning. This issue is attributed to the
monomial basis vectors, which are aligned to the eigenvector with the maximum
eigenvalue as s increases, and the other eigen-components become relatively
smaller and are hidden by the round-off errors. This violates the linear inde-
pendency of the monomial basis vectors, and makes them ill-conditioned, when
each basis vectors are not orthogonalized after creating it. To resolve this issue,
Hoemmen [7] proposed to use the Newton basis vectors and the Chebyshev basis
vectors. Suda et al. [16] proposed the P-CBCG method, which was tested with
point Jacobi preconditioning on the K-computer [17]. In this work, we apply
the P-CBCG method with BJ preconditioning to the JUPITER, compare its
convergence property and numerical stability against the P-CACG method, and
demonstrate its computational performance on the Oakforest-PACS.

3 Krylov Solvers in JUPITER Code

3.1 Code Overview

In the JUPITER code [6], thermal-hydraulics of the molten material in nuclear
reactors is described by the equations of continuity, Navier-Stokes, and energy,
assuming Newtonian and incompressible viscous fluids. The dynamics of gas,
liquid, and solid phases of multiple components consisting of fuel pellets, fuel
cladding, the channel box, the absorber, reactor internal components, and the
atmosphere are described by an advection equation of the volume of fluid (VOF)
function. The main computational cost (∼90%) comes from computation of the
pressure Poisson equation, because the Poisson operator given by the density

260 Y. Idomura et al.

has extreme contrast ∼107 between gas and solid phases, and is ill-conditioned.
The Poisson equation is discretized by the second order accurate centered finite
difference scheme (7 stencils) in the Cartesian grid system (x, y, z). The linear
system of the pressure Poisson equation, which is a symmetric block diago-
nal sparse matrix, is solved using Krylov subspace methods explained in the
following subsections. These Krylov solvers use the compressed diagonal stor-
age (CDS) format, which enables highly efficient direct memory access for the
block diagonal sparse matrix than the compressed sparse row (CSR) format,
which is commonly used in many matrix libraries, and are parallelized using a
MPI+OpenMP hybrid parallelization model, in which MPI is used for coarse
3D domain decomposition in (x, y, z) and fine 1D domain decomposition in z is
applied to each domain via OpenMP. BJ preconditioning is applied to each fine
subdomain so that it is computed in thread parallel.

3.2 Preconditioned Conjugate Gradient (P-CG) Method

In the original version of the JUPITER, the pressure Poisson equation was com-
puted using the P-CG method [18] with BJ preconditioning, in which ILU factor-
ization [18] is applied to each block. In the P-CG method in Algorithm 1, a single
iteration consists of SpMV, BJ preconditioning, two inner product operations,
and three vector operations (AXPYs). Here, the SpMV requires a local halo
data communication per iteration, and the inner product operations need two
global data reduction communications (All reduce) per iteration. One All reduce
at line 4 transfers two elements including the norm of residual vector, while the
other All reduce at line 8 sends one element.

Algorithm 1. Preconditioned Conjugate Gradient (P-CG) method
Input: Ax = b, Initial guess x1

Output: Approximate solution xi

1: r1 := b − Ax1, z1 = M−1r1, p1 := z1

2: for j = 1, 2, ... until convergence do
3: Compute w := Apj

4: αj := 〈rj , zj〉/〈w, pj〉
5: xj+1 := xj + αjpj

6: rj+1 := rj − αjw
7: zj+1 := M−1rj+1

8: βj := 〈rj+1, zj+1〉/〈rj , zj〉
9: pj+1 := zj+1 + βjpj

10: end for

3.3 Preconditioned Communication-Avoiding Conjugate Gradient
(P-CACG) Method

The P-CACG method in Algorithm 2 [7] is based on a three term recurrence
variant of CG (CG3) method [18]. The CG3 method is decomposed into the outer
loop and the inner s-step loop, and the algorithm is modified so that the latter
is processed without any communication. At the k-th outer loop, firstly, the

Application of a Preconditioned Chebyshev Basis 261

Algorithm 2. Preconditioned Communication Avoiding CG (P-CACG) method
Input: Ax = b, Initial guess x1

Output: Approximate solution xi

1: z0 := 0, z1 := b − Ax1

2: q0 := 0, q1 := M−1z1

3: for k = 0, 1, 2, ... until convergence do
4: vsk+1 := zsk+1

5: Compute V k (vsk+1, M
−1Avsk+1, ..., (M

−1A)svsk+1)
6: Compute W k (M−1W k = V k)
7: Gk,k−1 := V ∗

kZk−1, Gkk := V ∗
kW k

8: Gk =

(
Dk−1 G∗

k,k−1

Gk,k−1 Gkk

)

9: for j = 1 to s do
10: Compute dsk+j that satisfies Aqsk+j = [Zk−1, W k]dsk+j and M−1Aqsk+j =

[Qk−1, V k]dsk+j

11: Compute gsk+j that satisfies zsk+j = [Zk−1, W k]gsk+j and qsk+j =
[Qk−1, V k]gsk+j

12: μsk+j := g∗
sk+jGkgsk+j

13: νsk+j := g∗
sk+jGkdsk+j

14: γsk+j := μsk+j/νsk+j

15: if sk + j = 1 then
16: ρsk+j := 1
17: else
18: ρsk+j := (1 − γsk+j

γsk+j−1
· μsk+j

μsk+j−1
· 1

ρsk+j−1
)−1

19: end if
20: usk+j := [Qk−1, V k]dsk+j

21: ysk+j := [Zk−1, W k]dsk+j

22: xsk+j+1 := ρsk+j(xsk+j + γsk+jqsk+j) + (1 − ρsk+j)xsk+j−1

23: qsk+j+1 := ρsk+j(qsk+j + γsk+jusk+j) + (1 − ρsk+j)qsk+j−1

24: zsk+j+1 := ρsk+j(zsk+j + γsk+jysk+j) + (1 − ρsk+j)zsk+j−1

25: end for
26: end for

s-step monomial basis vectors V k (line 5) and the corresponding preconditioned
basis vectors W k (line 6) are generated at once. Secondly, the Gram matrix
Gk (line 8) is computed for the inner product operations, which are replaced
as μ = 〈z, q〉 = g∗

sk+jGkgsk+j (line 12) and ν = 〈Aq, q〉 = g∗
sk+jGkdsk+j (line

13). Here, dsk+j (line 10) and gsk+j (line 11) are defined so that they satisfy
Aqsk+j = [Zk−1,W k]dsk+j and zsk+j = [Zk−1,W k]gsk+j , respectively. Here, x∗

denotes its transpose. At the j-th inner loop, these coefficients are computed to
obtain the inner products, and then, the solution vector xsk+j (line 22) and two
sets of the residual vectors, the unpreconditioned residual vector zsk+j (line 24)
and the preconditioned residual vector qsk+j (line 23), are updated by the three
term recurrence formulae. In exact arithmetic, s iterations of the P-CG3 method
and one outer loop iteration of the P-CACG method are equivalent.

In Ref. [3], we compared convergence properties of the pressure Poisson solver
between the original BJ preconditioning and CA preconditioning based on the

262 Y. Idomura et al.

underlap approach [15], and significant convergence degradation was observed
with the latter preconditioning. In addition, if one uses a MPK with CA precon-
ditioning, s-step halo data is transferred at once. The number of halo data com-
munication directions are significantly increased from 6 (bidirectional in x, y, z)
to 26 (including three dimensional diagonal directions), and redundant compu-
tations are needed for the halo data. In order to avoid these issues, in this work,
we use the BJ preconditioning with a hybrid CA approach [3]. In the P-CACG
method, dominant computational costs come from the s-step SpMVs (line 5) and
the following BJ preconditioning (line 6) in the outer loop, GEMM operations for
constructing the Gram matrix (line 7) in the outer loop, and three vector opera-
tions for the three term recurrence formulae (lines 22–24) in the inner loop. Here,
the size of GEMM operations depends on s, and thus, their arithmetic inten-
sity is increased with s. If one applies cache blocking optimization, coefficients
of the three term recurrence formulae can be reused for s-steps, and the arith-
metic intensity of three vector operations is also improved by extending s. The
SpMV requires one local halo data communication per inner iteration as in the
P-CG method, while the Gram matrix computation needs only one All reduce
for s(s + 1) elements of Gk,k−1 and (s + 2)(s + 1)/2 upper-triangular elements
of Gk,k per outer iteration. In addition, we compute the norm of residual vector
rsk = b − Axsk+1 for the convergence check, which require one All reduce per
outer iteration. Therefore, the P-CACG method requires two All reduces per
outer iteration.

3.4 Preconditioned Chebyshev Basis Communication-Avoiding
Conjugate Gradient (P-CBCG) Method

The P-CBCG method [16] is shown in Algorithm 3. Unlike the P-CACG method
which is based on the CG3 method, the P-CBCG method computes two term
recurrences as in the P-CG method. The inner product operations are performed
using the so-called look-unrolling technique [9] instead of a Gram matrix app-
roach in the P-CACG method. A multi-step CG method constructed using the
above approach is computed using s-step Chebyshev basis vectors. Here, the pre-
conditioned Chebyshev basis vectors (line 10) are computed using Algorithm 4.
In this algorithm, the basis vectors are generated using Tj(AM−1), which is
the j-th Chebyshev polynomials scaled and shifted within [λmin, λmax] and thus,
satisfies |Tj(AM−1)| < 1, where λmin and λmax are the minimum and maxi-
mum eigenvalues of AM−1. In the monomial basis vectors, the generated vectors
are aligned to the eigenvector with λmax as s increases, and the other eigen-
components become relatively smaller and are hidden by the round-off errors.
This violates the linear independency of the monomial basis vectors, and makes
them ill-conditioned, when each basis vector is not orthogonalized after creating
it. On the other hand, the minimax property of Chebyshev polynomials helps
to keep the basis vectors well-conditioned without orthogonalizing each basis
vector. By using this method, one can construct a Krylov subspace, which is
mathematically equivalent to that given by the monomial basis vectors, with
much less impact of the round-off errors, and s can be extended compared with

Application of a Preconditioned Chebyshev Basis 263

Algorithm 3. Preconditioned Chebyshev Basis communication avoiding CG
(P-CBCG) method
Input: Ax = b, Initial guess x0

Output: Approximate solution xi

1: r0 := b − Ax0

2: Compute S0 (T0(AM−1)r0, T1(AM−1)r0, ..., Ts−1(AM−1)r0)
3: Q0 = S0

4: for k = 0, 1, 2, ... until convergence do
5: Compute Q∗

kAQk

6: Compute Q∗
krsk

7: ak := (Q∗
kAQk)−1Q∗

krsk

8: xs(k+1) := xsk + Qkak

9: rs(k+1) := rsk − AQkak

10: Compute Sk+1 (T0(AM−1)rs(k+1), T1(AM−1)rs(k+1), ..., Ts−1(AM−1)rs(k+1))
11: Compute Q∗

kASk+1

12: Bk := (Q∗
kAQk)−1Q∗

kASk+1

13: Qk+1 := Sk+1 − QkBk

14: AQk+1 := ASk+1 + AQkBk

15: end for

CA Krylov methods based on the monomial basis vectors. In this work, λmax is
computed by a power method, while λmin is approximated as zero.

In the P-CBCG method, dominant computational costs come from the pre-
conditioned Chebyshev basis vector generation involving the SpMVs and the BJ
preconditioning (line 10) and the remaining matrix computations. The SpMVs
at line 10 require s local halo data communications, while the matrix computa-
tions at lines 5, 11 need global data reduction communications. Therefore, the
P-CBCG method requires two All reduces per s-steps. One All reduce at lines 5,
6 transfers s(s+1)/2 upper-triangular elements of Q∗

kAQk, s elements of Q∗
krsk,

and one element for the norm of residual vector, while the other All reduce sends
s2 elements of Q∗

kASk+1.

Algorithm 4. Preconditioned Chebyshev basis
Input: rsk, Approximate minimum/maximum eigenvalues of AM−1, λmin, λmax

Output: Sk (z̃0, z̃1, ..., z̃s−1), ASk (Az̃0, Az̃1, ..., Az̃s−1)
1: η := 2/(λmax − λmin)
2: ζ := (λmax + λmin)/(λmax − λmin)
3: z0 := rsk

4: z̃0 := M−1z0

5: z1 := ηAz̃0 − ζz0

6: z̃1 := M−1z1

7: for j = 2, 3, ..., s do
8: zj := 2ηAz̃j−1 − 2ζzj−1 − zj−2

9: z̃j := M−1zj

10: end for

264 Y. Idomura et al.

4 Kernel Performance Analysis

4.1 Computing Platforms

In this work, we estimate computing performances of the P-CG, P-CACG, and
P-CBCG solvers on computing platforms in Table 1. The JAEA ICEX is based on
the Xeon E5-2680v3 processor (Haswell) and the dual plane 4×FDR Infiniband
with a hyper cube topology, and the Oakforest-PACS (KNL) consists of the
Xeon Phi 7250 processor (Knights Landing) and the Omni Path with a fat tree
topology. The compilers used are the Intel Fortran compiler 16.0.1 with the Intel
MPI library 5.0 (-O3 -mcmodel= large -qopenmp -fpp -align array64byte -no-
prec-div -fma -xHost) and the Intel Fortran compiler 17.0.4 with the Intel MPI
library 2017 (-O3 -mcmodel= large -qopenmp -fpp -align array64byte -no-prec-
div -fma -axMIC-AVX512) on ICEX and KNL, respectively. In this work, cross-
platform comparisons are performed using the same number of processors. Since
ICEX is based on a NUMA architecture with two processors per node, we assign
two MPI processes per node. As for OpenMP parallelization, we use 12 and 68
threads on ICEX and KNL, respectively. On KNL, we choose 68 threads without
hyper threading to avoid performance degradation in MPI communications [4].
Although KNL has hierarchical memory architecture consisting of MCDRAM
(16 GByte, B∼480 GByte/s) and DDR4 (96 GByte), we suppress the problem
size below 16 GB per node and use only MCDRAM in a flat mode.

In this section, we analyze a single processor performance for the three solvers
using a small problem size of N = 104 × 104 × 265, which corresponds to a
typical problem size on a single processor. The achieved performance is compared
against the modified roofline model [19], in which a theoretical processing time
of each kernel is estimated by the sum of costs for floating point operations
and memory access, tRL = f/F + b/B. Here, f and b are the numbers of
floating point operations and memory access of the kernel. F and B are the

Table 1. Specifications of the JAEA ICEX and the Oakforest-PACS (KNL).

ICEX KNL

Number of nodes 2,510 8,208

Total performance [PFlops] 2.41 25.00

Number of cores per node 12 × 2 68

Peak performance F [GFlops/processor] 480 3046

STREAM bandwidth B [GByte/s/processor] 58 480(MCDRAM)

B/F 0.12 0.16

Cache [MB/cores] 30/12 1/2

Memory per node [GByte] 64 16

Interconnect bandwidth [GByte/s] 13.6 12.5

Application of a Preconditioned Chebyshev Basis 265

peak performance and the STREAM memory bandwidth of the processor. The
performance ratios of F and B between ICEX and KNL are 6.3× and 8.6×,
respectively.

Table 2. Kernel performance analysis (Floating point operation f [Flop/grid], Mem-
ory access b [Byte/grid], Arithmetic intensity f/b, Roofline time tRL = f/F + b/B
[ns/grid], Peak performance F [Flops], STREAM bandwidth B [Byte/s], Elapse time
t [ns/grid], Sustained performance P [GFlops], Roofline ratio RRL = tRL/t, and
ICEX/KNL ratio RICEX) in the kernel benchmarks using a single processor of ICEX
and KNL.

Algorithm Kernel f b f/b ICEX KNL

tRL t P RRL tRL t P RRL RICEX

P-CG SpMV 15.00 80.00 0.19 1.40 1.94 7.75 0.72 0.17 0.28 52.78 0.60 6.81

BJ 20.00 128.00 0.16 2.24 2.53 7.90 0.88 0.27 0.46 43.26 0.59 5.48

Vector 4.00 40.00 0.10 0.69 0.72 5.55 0.96 0.08 0.10 39.74 0.84 7.16

Total 39.00 248.00 0.16 4.33 5.19 7.52 0.84 0.53 0.85 46.03 0.62 6.12

P-CACG (s = 3) SpMV 13.00 80.00 0.16 1.40 1.83 7.11 0.76 0.17 0.24 54.59 0.72 7.68

BJ 14.00 120.00 0.12 2.09 2.02 6.94 1.03 0.25 0.44 31.87 0.58 4.59

Gram 18.67 29.33 0.64 0.54 0.54 34.70 1.01 0.07 0.13 142.86 0.51 4.12

3-term 41.67 80.00 0.52 1.46 1.42 29.26 1.02 0.18 0.49 84.20 0.36 2.88

Total 87.33 309.33 0.28 5.49 5.81 15.04 0.94 0.67 1.30 67.03 0.52 4.46

P-CBCG (s = 12) CB 30.58 228.67 0.13 3.98 4.91 6.22 0.81 0.49 0.89 34.46 0.55 5.54

Matrix 93.17 83.33 1.12 1.62 1.79 51.98 0.91 0.20 0.63 147.14 0.32 2.83

Total 123.75 312.00 0.40 5.61 6.71 18.45 0.84 0.69 1.52 81.38 0.45 4.41

4.2 P-CG Solver

Computational kernels of the P-CG method consist mainly of SpMV (lines 3, 4),
BJ (lines 7, 8), and Vector (AXPYs, lines 5, 6, 9). Here, SpMV and BJ involve
the following inner product operations in the same loop. The numbers of floating
point operations f and memory access b and the resulting arithmetic intensity
f/b of each kernel are summarized in Table 2. Since the pressure Poisson equation
is solved using the second order accurate centered finite difference scheme, SpMV
and BJ have relatively low arithmetic intensity f/b < 0.2. In addition, the
remaining AXPYs are memory-intensive kernels with f/b = 0.1. Therefore, the
high memory bandwidth on KNL has a great impact on the acceleration of
the P-CG solver, and the performance ratio between ICEX and KNL exceeds
RICEX > 6. Although AXPYs in Vector achieve ideal sustained performances
with the performance ratio against the roofline model RRL ∼ 0.9 both on ICEX
and KNL, stencil computations in SpMV and BJ show performance degradation
from RRL ∼ 0.8 on ICEX to RRL ∼ 0.6 on KNL.

4.3 P-CACG Solver

Computational kernels of the P-CACG method consist mainly of SpMV (lines
5, 6), BJ (lines 5, 6), Gram (lines 7, 8), and 3-term (lines 20–24). The arith-
metic intensity of the P-CACG method changes depending on s, because the

266 Y. Idomura et al.

arithmetic intensity of Gram and 3-term are proportional to s. Gram scales as
f = 2(s+ 1)(2s+1)/s and b = 8(3s+2)/s. 3-term scales as f = (8s2+12s+2)/s
and b = 48(s + 2)/s, where the s-dependency comes from cache blocking opti-
mization [3]. In Table 2, the kernel performance is summarized at s = 3, which is
the upper limit of CA-steps in the benchmark problem in Sect. 5. SpMV and BJ
in the P-CACG method have lower f and b than the P-CG method, because they
do not involve inner product operations. Compared with SpMV and BJ, Gram
and 3-term have higher arithmetic intensity f/b > 0.5, and thus, an impact
of additional computation in the P-CACG method on the total computational
cost (∼1.12× on ICEX) is much lower than the increase of f (∼2.24×) from
the P-CG method. These compute-intensive kernels achieve ideal performances
with RRL ∼ 1 on ICEX. However, they show significant performance degrada-
tion with RRL ∼ 0.4 on KNL, and thus, the performance ratio is limited to
RICEX ∼ 4.46.

4.4 P-CBCG Solver

Computational kernels of the P-CACG method consist mainly of the Cheby-
shev basis computation CB (line 10), and the remaining matrix computations
Matrix. The arithmetic intensity of the P-CBCG method depends on s as in
the P-CACG method. CB scales as f = 2(9s + 4)/s and b = 8(4s + 35)/s, and
Matrix scales as f = (7s+2)(s+1)/s and b = 40(2s+1)/s. In Table 2, the kernel
performance is summarized for s = 12, which is used in the benchmark prob-
lem in Sect. 5. Although f of the P-CBCG method becomes 3.17× larger than
the P-CG method, the increase of computational cost is suppressed to 1.3× on
ICEX, because of the improved arithmetic intensity. However, on KNL, the per-
formance ratio between the P-CG and P-CBCG methods is expanded to 1.79×,
because the compute-intensive Matrix kernel shows performance degradation
from RRL ∼ 0.9 on ICEX to RRL ∼ 0.3 on KNL. As a result, the performance
ratio between ICEX and KNL is limited to RICEX ∼ 4.41.

5 Numerical Experiment

5.1 Convergence Property

In the present numerical experiment, we compute nonlinear evolutions of molten
debris in a single fuel assembly component of nuclear reactor (see Fig. 1). The
problem size is chosen as N = 800 × 500 × 3, 540 ∼ 1.4 × 109, which was used
also in the former works [3,6]. The problem treats multi-phase flows consisting
of gas and multi-component liquid and solid of fuel pellets, fuel cladding, the
channel box, the absorber, and the other reactor internal components. The con-
vergence property and the computational performance are investigated for fully
developed multi-phase flows, which give the largest iteration number. Because of
the large problem size and the extreme density contrast of multi-phase flows, the
pressure Poisson equation is ill-conditioned, and the P-CG solver is converged

Application of a Preconditioned Chebyshev Basis 267

Fig. 1. Visualization of nonlinearly evolved multiphase flows of molten debris in reactor
internal components computed by the JUPITER with N = 800 × 500 × 3, 540.

with ∼ 6, 000 iterations (see Fig. 2). Here, the convergence condition is given by
the relative residual error of |b − Ax|/|b| < 10−8.

The convergence properties of the P-CG, P-CACG, P-CBCG, and P-MBCG
solvers are summarized in Fig. 2. Here, the P-MBCG method is a variant of the P-
CBCG method, in which the Chebyshev basis vectors at lines 2, 10 are replaced by
the monomial basis vectors Sk(rsk, (AM−1)rsk, (AM−1)2rsk, ..., (AM−1)s−1rsk).
Although the P-MBCG method is mathematically similar to the P-CACG
method, the former uses the two term recurrence formulae, while the latter is
based on the CG3 method or the three term recurrence formulae. In Ref. [20],
it was shown that Krylov subspace methods based on three term recurrences
give significantly less accurate residuals than those with two term recurrences.
In this work, we examine this point for CA Krylov subspace methods. As shown
in Ref. [3], the convergence of the P-CACG solver is limited to s = 3, while in the
P-MBCG solver, the convergence is somewhat extended to s = 5. On the other
hand, in the P-CBCG method, the convergence property is dramatically extended
to s = 40. These observations show that the main cause of the convergence degra-
dation is not the three term recurrence formulae, but the ill-conditioned monomial
basis vectors. Another important property is in the P-CBCG solver, the conver-
gence property becomes worse gradually above the upper limit of CA-steps, while
the P-CACG and P-MBCG solvers breaks down immediately above the upper
limit. This property is important for practical use in extreme-scale CFD simula-
tions.

268 Y. Idomura et al.

Fig. 2. Comparisons of convergence properties among the P-CG, P-CACG, P-CBCG,
and P-MBCG (a variant of the P-CBCG method using the monomial basis vectors)
solvers. The relative residual error |b − Ax|/|b| is plotted for the JUPITER with N =
800 × 500 × 3, 540. The computation is performed using 800 processors on ICEX.

5.2 Strong Scaling Test

In the P-CACG solver, we use s = 3, which is the upper limit of CA-steps from
the viewpoint of numerical stability. On the other hand, the choice of s in the

Application of a Preconditioned Chebyshev Basis 269

Fig. 3. Strong scaling of the P-CG, P-CACG(s = 3), and P-CBCG(s = 12) solvers
using 500, 1,000, and 2,000 processors (MPI processes) on ICEX and KNL. The cost
distribution in a single time step is shown.

P-CBCG solver is rather flexible, and the optimum s depends on the following
factors. Firstly, the number of All reduce is reduced to 1/s compared to the P-CG
method. Here, the communication data size scales as ∼s2. Secondly, the numbers
of floating point operations and memory access per iteration in Matrix kernel scale
as f ∼ s and b ∼ const., respectively, and the arithmetic intensity of Matrix scales
as f/b ∼ s. Thirdly, cache efficiency of CB is affected by the number of basis vec-
tors. Therefore, the computational performance of each kernel varies depending

270 Y. Idomura et al.

on s. Finally, the communication performance is also affected when the data size
is changed from a latency bound regime to a bandwidth bound regime. Although
a simple performance model was presented in Refs. [13,17], we need more detailed
performance models to predict the above complex behaviors. In this work, we
chose s = 12 from s-scan numerical experiments.

The strong scaling of the P-CG, P-CACG, and P-CBCG solvers are summa-
rized in Fig. 3. In the strong scaling test, we use 500, 1,000, and 2,000 processors
on ICEX and KNL, respectively. On ICEX, all Krylov solvers show good strong
scaling, because the computation part is dominant in all cases and the commu-
nication part is suppressed below ∼10 s. Therefore, the P-CACG and P-CBCG
solvers are slower than the P-CG solver, because of additional computation in
CA Krylov methods. On the other hand, on KNL, the computation part is signif-
icantly accelerated (3.5 × ∼5.1×) and the communication part is comparable or
slower (0.3×∼1.1×) compared to ICEX. Here, the cause of slower communication
performance on KNL is still under investigation. As a result, the remaining com-
munication part, in particular, All reduce becomes a severe bottleneck. On KNL,
the cost of All reduce in the P-CG solver increases with the number of processors.
This tendency is observed even in the P-CACG solver. However, in the P-CBCG
solver, the cost increase of All reduce is suppressed, and at 2,000 processors, it is
reduced to ∼1/3 and ∼1/2 compared to the P-CG and P-CACG solvers, respec-
tively. Because of this CA feature, the best performance on KNL is obtained by
the P-CBCG solver, and the P-CBCG solver is 1.38× and 1.17× faster than the
P-CG and P-CACG solvers at 2,000 processors, respectively.

It is noted that in Ref. [3], the P-CACG solver on the K-computer showed ideal
cost reduction of All reduce by 1/s. However, in the present numerical experiment,
the cost reduction of All reduce from the P-CG solver is limited to ∼2/3 and ∼1/3
in the P-CACG and P-CBCG solvers, respectively. These performance ratios are
far above the ideal one 1/s. In order to understand this issue, more detailed perfor-
mance analysis for All reduce is needed. Another issue is that the cost of halo data
communications increases in the P-CBCG solver, while the number of SpMVs is
almost the same as the other solvers. It is confirmed that this cost becomes com-
parable to that in the P-CACG solver, when the number of CA-steps is reduced
to s = 3. Therefore, the performance degradation of halo data communications
seems to depend on the memory usage, which increases with s. These issues will
be addressed in the future work.

6 Summary

In this work, we applied the P-CBCG method to the pressure Poisson equation in
the JUPITER. We analyzed numerical properties of the P-CACG and P-CBCG
methods in detail, and compared it against the P-CG method, which was used
in the original code. The P-CACG and P-CBCG methods reduce data reduction
communications to 1/s, but additional computation is needed for CA procedures.
The P-CACG (s = 3) and P-CBCG (s = 12) methods have ∼2× and ∼3× larger
f , while the increase in b is only ∼1.25×. Because of the improved arithmetic inten-
sity f/b, the resulting computational costs of the P-CACG and P-CBCG solvers

Application of a Preconditioned Chebyshev Basis 271

on a single processor were respectively suppressed to ∼1.1× and ∼1.3× on ICEX,
while they were expanded to ∼1.5× and ∼1.8× on KNL.

We tested convergence properties of CA Krylov subspace methods based on
the monomial basis vectors (P-CACG, P-MBCG) and the Chebyshev basis vec-
tors (P-CBCG). In the comparison between the P-CACG and P-MBCG methods,
which are based on three term recurrences and two term recurrences, the latter
showed slightly improved convergence. However, the convergence of both solvers
were limited for s � 10. On the other hand, the convergence of the P-CBCG
method was extended to s ∼ 40, and the robustness of CA Krylov solvers was
dramatically improved.

Strong scaling tests of the P-CG, P-CACG (s = 3), and P-CBCG (s = 12)
solvers were performed using 500, 1,000, and 2,000 processors on ICEX and KNL.
On ICEX, the computational costs were dominated by the computation part,
and all three solvers showed good strong scaling. As the communication part is
minor, the P-CG solver was fastest on ICEX. On the other hand, on KNL, the
computation part was significantly accelerated, and the remaining communica-
tion part, in particular, All reduce became a severe bottleneck. By reducing the
cost of All reduce, the best performance was achieved by the P-CBCG solver, and
the P-CBCG solver is 1.38× and 1.17× faster than the P-CG and P-CACG solvers
at 2,000 processors, respectively. As the P-CBCG method satisfies both high com-
putational performance and excellent robustness, it is promising algorithm for
extreme scale simulations on future exascale machines with limited network and
memory bandwidths.

Acknowledgement. The authors would like to thank Dr. S. Yamashita for provid-
ing the JUPITER for the present benchmark, and Dr. T. Kawamura for the visual-
ization image. This work is supported by the MEXT (Grant for Post-K priority issue
No.6: Development of Innovative Clean Energy). Computations were performed on the
Oakforest-PACS (Univ. Tokyo/Univ. Tsukuba) and the ICEX (JAEA).

References

1. Asahi, Y., et al.: Optimization of fusion Kernels on accelerators with indirect or
strided memory access patterns. IEEE Trans. Parallel Distrib. Syst. 28(7), 1974–
1988 (2017)

2. Idomura, Y., et al.: Communication-overlap techniques for improved strong scaling
of Gyrokinetic Eulerian code beyond 100k cores on the K-computer. Int. J. High
Perform. Comput. Appl. 28(1), 73–86 (2014)

3. Mayumi, A., et al.: Left-preconditioned communication-avoiding conjugate gradient
methods for multiphase CFD simulations on the K computer. In: Proceedings of the
7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems,
ScalA 2016, Piscataway, NJ, USA, pp. 17–24. IEEE Press (2016)

4. Idomura, Y., Ina, T., Mayumi, A., Yamada, S., Matsumoto, K., Asahi, Y., Ima-
mura, T.: Application of a communication-avoiding generalized minimal residual
method to a gyrokinetic five dimensional Eulerian code on many core platforms. In:
Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems, ScalA 2017, New York, NY, USA, pp. 7:1–7:8. ACM (2017)

272 Y. Idomura et al.

5. Idomura, Y., et al.: Study of ion turbulent transport and profile formations using
global gyrokinetic full-f Vlasov simulation. Nucl. Fusion 49, 065029 (2009)

6. Yamashita, S., Ina, T., Idomura, Y., Yoshida, H.: A numerical simulation method
for molten material behavior in nuclear reactors. Nucl. Eng. Des. 322(Suppl. C),
301–312 (2017)

7. Hoemmen, M.: Communication-avoiding Krylov subspace methods. Ph.D. thesis,
University of California, Berkeley (2010)

8. Fujitsu Global: K computer. http://www.fujitsu.com/global/about/businesspolicy/
tech/k/

9. Van Rosendale, J.: Minimizing inner product data dependencies in conjugate gra-
dient iteration. NASA contractor report (1983)

10. Chronopoulos, A., Gear, C.: s-step iterative methods for symmetric linear systems.
J. Comput. Appl. Math. 25(2), 153–168 (1989)

11. Toledo, S.A.: Quantitative performance modeling of scientific computations and
creating locality in numerical algorithms. Ph.D. thesis, Massachusetts Institute of
Technology (1995)

12. Demmel, J., Hoemmen, M., Mohiyuddin, M., Yelick, K.: Avoiding communication
in sparse matrix computations. In: 2008 IEEE International Symposium on Parallel
and Distributed Processing, pp. 1–12, April 2008

13. Carson, E.C.: Communication-avoiding Krylov subspace methods in theory and
practice. Ph.D. thesis, University of California, Berkeley (2015)

14. Chronopoulos, A., Gear, C.W.: Implementation of preconditioned s-step conjugate
gradient methods on a multiprocessor system with memory hierarchy. Technical
report, Department of Computer Science, Illinois University, Urbana, USA (1987)

15. Yamazaki, I., Anzt, H., Tomov, S., Hoemmen, M., Dongarra, J.: Improving the per-
formance of CA-GMRES on multicores with multiple GPUs. In: 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 382–391, May
2014

16. Suda, R., Cong, L., Watanabe, D., Kumagai, Y., Fujii, A., Tanaka, T.:
Communication-avoiding CG method: new direction of Krylov subspace methods
towards exa-scale computing. RIMS Kôkyûroku 1995, 102–111 (2016)

17. Kumagai, Y., Fujii, A., Tanaka, T., Hirota, Y., Fukaya, T., Imamura, T., Suda,
R.: Performance analysis of the Chebyshev basis conjugate gradient method on
the K computer. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K.,
Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 74–85. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-32149-3 8

18. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

19. Shimokawabe, T., et al.: An 80-fold speedup, 15.0 TFlops full GPU acceleration
of non-hydrostatic weather model ASUCA production code. In: 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–11, November 2010

20. Gutknecht, M.H., Strakos, Z.: Accuracy of two three-term and three two-term recur-
rences for Krylov space solvers. SIAM J. Matrix Anal. Appl. 22(1), 213–229 (2000)

http://www.fujitsu.com/global/about/businesspolicy/tech/k/
http://www.fujitsu.com/global/about/businesspolicy/tech/k/
https://doi.org/10.1007/978-3-319-32149-3_8

Application of a Preconditioned Chebyshev Basis 273

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Optimization of Hierarchical Matrix
Computation on GPU

Satoshi Ohshima1(B), Ichitaro Yamazaki2, Akihiro Ida3, and Rio Yokota4

1 Kyushu University, Fukuoka, Japan
ohshima@cc.kyushu-u.ac.jp

2 University of Tennessee, Knoxville, USA
iyamazak@icl.utk.edu

3 The University of Tokyo, Tokyo, Japan
ida@cc.u-tokyo.ac.jp

4 Tokyo Institute of Technology, Tokyo, Japan
rioyokota@gsic.titech.ac.jp

Abstract. The demand for dense matrix computation in large scale and
complex simulations is increasing; however, the memory capacity of cur-
rent computer system is insufficient for such simulations. Hierarchical
matrix method (H-matrices) is attracting attention as a computational
method that can reduce the memory requirements of dense matrix com-
putations. However, the computation of H-matrices is more complex than
that of dense and sparse matrices; thus, accelerating the H-matrices is
required. We focus on H-matrix - vector multiplication (HMVM) on a
single NVIDIA Tesla P100 GPU. We implement five GPU kernels and
compare execution times among various processors (the Broadwell-EP,
Skylake-SP, and Knights Landing) by OpenMP. The results show that,
although an HMVM kernel can compute many small GEMV kernels, merg-
ing such kernels to a single GPU kernel was the most effective implemen-
tation. Moreover, the performance of BATCHED BLAS in the MAGMA
library was comparable to that of the manually tuned GPU kernel.

1 Introduction

The scale of computer simulations continues to increase as hardware capability
advances from post-Peta to Exascale. At such scales, the asymptotic complexity
of both computation and memory is a serious bottleneck if they are not (near)
linear. In addition, the deep memory hierarchy and heterogeneity of such systems
are a challenge for existing algorithms. A fundamental change in the underlying
algorithms for scientific computing is required to facilitate exascale simulations,
i.e., (near) linear scaling algorithms with high data locality and asynchronicity
are required.

In scientific computing, the most common algorithmic components are linear
algebra routines, e.g., matrix - vector multiplication, matrix-matrix multiplica-
tion, factorization, and eigenvalue problems. The performance of these compo-
nents has been used as a proxy to measure the performance of large scale systems.
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 274–292, 2018.
https://doi.org/10.1007/978-3-319-69953-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_16&domain=pdf

Optimization of Hierarchical Matrix Computation on GPU 275

Note that the general usefulness of the high performance LINPACK benchmark for
supercomputers has long been disputed, and recent advancements of dense linear
algebra methods with near linear complexity could be the final nail in the coffin.

Densematrices requiresO(N2) storage andhave amultiplication/factorization
cost of O(N3). Hierarchical low-rank approximation methods, such as H-matrices
[1], hierarchical semi-separable matrices [2], hierarchical off-diagonal low-rank
matrices [3], and hierarchical interpolative factorization methods [4], reduce this
storage requirement to O(N log N) and the multiplication/factorization cost to
O(N logq N), where, q denotes a positive number. With such methods, there is no
point performing large scale dense linear algebra operations directly. Note that,
we refer to all hierarchical low-rank approximation methods as H-matrices in this
paper for simplicity.

H-matrices subdivide a dense matrix recursively, i.e., off-diagonal block divi-
sion terminates at a coarse level, whereas diagonal blocks are divided until a
constant block size obtained regardless of the problem size. Here, off-diagonal
blocks are compressed using low-rank approximation, which is critical to achiev-
ing O(N log N) storage and O(N logq N) arithmetic complexity. Recently, H-
matrices have attracted increasing attention; however, such efforts have a math-
ematical and algebraic focus. As a result, few parallel implementations of the
H-matrix code have been proposed.

In this paper, we focus on a parallel implementation. Specifically, we target
matrix - vector multiplications on GPUs. Of the many scientific applications that
involve solving large dense matrices, we selected electric field analysis based on
boundary integral formulation. Our results demonstrate that orders of magnitude
speedup can be obtained by merging many matrix - vector computations into a
single GPU kernel and proper implementation of batched BLAS operations in
the MAGMA library [5–7].

The remainder of this paper is organized as follows. An overview of the H-
matrices and its basic computation are presented in Sect. 2. In Sect. 3, we focus
on H-matrix - vector multiplication (HMVM) and propose various single GPU
implementations. Performance evaluation results are presented and discussed in
Sect. 4, and conclusions and suggestions for future work are given in Sect. 5.

2 Hierarchical Matrix Method (H-matrices)

H-matrices are an approximation technique that can be applied to the dense
matrices in boundary integral equations and kernel summation. The O(N2)
storage requirement O(N3) factorization cost of H-matrices can be reduced to
O(N logq N). Therefore, H-matrices allow calculations at scales that are oth-
erwise impossible. In the following, we describe the formulation of H-matrices
using boundary integral problems as an example.

2.1 Formulation of H-matrices for Boundary Integral Problems

Let H be a Hilbert space of functions in a (d − 1)-dimensional domain Ω ⊂ R
d

and H’ be the dual space of H. For u ∈ H, f ∈ H ′, and a kernel function of a

276 S. Ohshima et al.

convolution operator g: R
d×Ω → R, we consider following the integral equation:

∫
Ω

g(x, y)u(y)dy = f. (1)

To calculate (1) numerically, we divide domain Ω into elements Ωh = {ωj :
j ∈ J}, where J is an index set. When we use weighted residual methods, the
function u is approximated from a d-dimensional subspace Hh ⊂ H. Given a basis
(ϕi)∈I of Hh for an index set I := {1, ..., N}, the approximant uh ∈ Hh to u can
be expressed using a coefficient vector φ = (φi)i∈I that satisfies uh =

∑
i∈I φiϕi.

Note that the supports of the basis Ωh
ϕi

:= supp ϕi are assembled from the sets
ωj . Equation (1) is reduced to the following system of linear equations.

Aφ = B. (2)

Here, assume that we have two subsets (i.e., clusters) s, t ∈ I, where the
corresponding domains are defined as follows:

Ωh
s :=

⋃
i∈s

suppϕi, Ωh
t :=

⋃
i∈t

supp ϕi. (3)

A cluster pair (s, t) is ‘admissible’, if the Euclidian distance between Ωh
s and Ωh

t

is sufficiently large compared to their diameters:

min{diam(Ωh
s),diam(Ωh

t)} ≤ η dist(Ωh
s , Ωh

t), (4)

where η is a positive constant number depending on the kernel function g and
the division Ωh. For the domain corresponding to the admissible cluster pairs
x ∈ Ωh

s , y ∈ Ωh
t , we assume that the kernel function can be approximated at

certain accuracy using a degenerate kernel such as

g(x, y) ∼=
k∑

ν=1

gν
1 (x)gν

2 (y), (5)

where k is a positive number. Such kernel functions are employed in various scien-
tific applications, e.g., electric field analysis, mechanical analysis, and earthquake
cycle simulations. The kernel functions in such applications can be written as
follows:

g(x, y) ∈ span({|x − y|−p, p > 0}). (6)

When we consider static electric field analysis as a practical example, the
kernel function is given by

g(x, y) =
1

4πε
|x − y|−1. (7)

Here, ε denotes the electric permittivity. Figure 1 shows the calculation result
when a surface charge method is used to calculate the electrical charge on the
surface of the conductors. We divided the surface of the conductor into triangular
elements and used step functions as the base function ϕi of the BEM.

Optimization of Hierarchical Matrix Computation on GPU 277

Fig. 1. Calculated surface
charge density and triangular
elements dividing the conductor
surface.

Fig. 2. Partition structure of H-matrix ÃK
H for

the two-sphere model in Fig. 1. Dark and light red
blocks represent dense sub-matrices and low-rank
sub-matrices, respectively. (Color figure online)

An H-matrix ÃK
H , the approximation of A in (2), is characterized by a parti-

tion H of N×N with blocks h = sh×th ∈ H and block-wise rank K (Fig. 2). Note
that most off-diagonal blocks in ÃK

H have a low-rank, and the diagonal blocks
remain dense. A low-rank matrix ÃK

H |h, which approximates a sub-matrix AH|h
of the original matrix corresponding to block h, is expressed as

ÃK
H |h :=

kh∑
ν=1

vν(wν)T , (8)

where vν ∈ R
sh , wν ∈ R

th , and kh ≤ K. Typically, the upper limit K of the
ranks of sub-matrices is set such that ||A − ÃK

H ||F ≤ ε for a given tolerance ε.
For x, b ∈ R

I , we consider the following equation:

ÃK
Hx = b. (9)

To solve (9), we use a Krylov subspace method, such as the BiCGSTAB method.
The HACApK library [8] and ppOpen-APPL/BEM [9,10] implement these com-
putations in parallel and distributed computer environments using the MPI and
OpenMP.

2.2 BiCGSTAB Method for the Hierarchical Matrix

We select BiCGSTAB method to solve (2) because the coefficient matrices are
not positive definite. Similar to the BiCGSTAB method for a dense matrix, most
of the execution time of the BiCGSTAB method for an H-matrix is spent in
HMVM. Low-rank sub-matrix - vector multiplication involves two dense matrix
- vector multiplications; therefore, HMVM results in many dense matrix - vector
multiplications (Fig. 3). Figure 4 shows the pseudo code of the HMVM kernel
in ppOpen-APPL/BEM which is optimized for multi-core CPUs. The original
code was implemented in Fortran; however, to develop a GPU version of HMVM,
we have developed a C version that is nearly the same as the algorithm in the
original code. Hereafter, we refer to this kernel as the OMP kernel.

278 S. Ohshima et al.

Fig. 3. HMVM calculation

Fig. 4. Pseudo code of the HMVM kernel (OMP kernel); the range of the loops in each
sub-matrix - vector multiplication depends on the target leaves.

HMVM comprises many low-rank sub-matrix - vector multiplications for off-
diagonal blocks and dense sub-matrix - vector multiplications for diagonal blocks.
These matrix - vector calculations correspond to the leaves of a tree structure;
thus, we refer to both low-rank sub-matrix - vector multiplication and dense sub-
matrix - vector multiplication as leaves. This parallel implementation requires
atomic addition because multiple leaves may have partial values of the same
index of the result vector. Although it can be eliminated using atomic opera-
tions in each matrix - vector multiplications, the OMP kernel merges partial
results after sub-matrix - vector multiplication because atomic operations in
sub-matrix - vector multiplication incur additional computation cost and can-
not obtain better performance than previous implementations. Note that the
length of the parallel loop is sufficient for current parallel processors because our
target matrices have greater than thousands of leaves.

3 H-matrix Computation on GPU

The BiCGSTAB method employs basic matrix and vector operations. Here,
HMVM is a dominant component in terms of the time to solution. Therefore, we

Optimization of Hierarchical Matrix Computation on GPU 279

Fig. 5. Pseudo code of the HMVM kernel with CUBLAS (CUBLAS kernel); red text
indicates functions executed on the GPU. (Color figure online)

Fig. 6. Pseudo code of the HMVM kernel with MKL (MKL kernel); red text indicates
MKL functions. (Color figure online)

consider a GPU implementation of HMVM on an NVIDIA Tesla P100 (Pascal
architecture) GPU [11].

3.1 BLAS GEMV

As discussed in Sect. 2, HMVM consists of many dense sub-matrix - vector mul-
tiplications. A dense matrix - vector multiplication can be replaced by the well-
known general matrix vector product calculation (GEMV) in BLAS, and this
calculation is provided by some BLAS libraries for NVIDIA GPUs, e.g., the
CUBLAS [12] and MAGMA libraries. Therefore, using these BLAS libraries, we
can implement HMVM relatively easily. Here, we use CUBLAS for GPUs. In
addition, to compare performance, we also implement HMVM using the Math
Kernel Library (MKL) for CPUs. Hereafter, we refer to these kernels as the
CUBLAS and MKL kernels. Figures 5 and 6 show the pseudo code of an HMVM
kernel using the CUBLAS and MKL kernels, respectively.

3.2 Simple GEMV Kernels

BLAS libraries are useful; however, they cannot always achieve optimal perfor-
mance. Generally, such libraries perform optimally for large matrix calculations.

280 S. Ohshima et al.

Fig. 7. Pseudo code of the HMVM kernel with CUDA (SIMPLE kernel); the entire
GPU kernel calculates a single GEMV, and each thread block calculates one GEMV
row.

In contrast, HMVM involves many small GEMV calculations. With GPUs, if the
CUBLAS GEMV function is used in HMVM, performance will be low because
of the lack of parallelism. Moreover, launching GPU kernels requires significant
time. In addition, the CUBLAS kernel launches a GEMV kernel for each leaf;
thus, the incurred overhead will increase execution time.

To evaluate and reduce this overhead, we implemented two HMVM kernels
using CUDA.

The first is a GEMV kernel that performs a single GEMV calculation using
the entire GPU, and each thread block calculates one GEMV row. Threads in
the thread block multiply the matrix and vector elements and calculate the
total value using a reduction operation. The reduction algorithm is based on an
optimized example code in the CUDA toolkit, which we refer to as the SIMPLE
kernel. Figure 7 shows the pseudo code of an HMVM kernel using the SIMPLE
kernel. The execution form (i.e., the number of thread block and threads per
block) is an optimization parameter.

Note that many of the GEMV calculations in the HMVM are small; thus, it
is difficult for the SIMPLE kernel to obtain sufficient performance. To improve
performance, some parts of the GPU should calculate a single GEMV in par-
allel. Thus, we developed an advanced kernel in which a single GEMV kernel
is calculated by one thread block, and each line in a single GEMV is calcu-
lated by a single warp. Moreover, to eliminate data transfer between the CPU
and GPU, two GEMV calculations in low-rank sub-matrix - vector multipli-
cation are merged to a single GPU kernel, and shared memory is used rather

Optimization of Hierarchical Matrix Computation on GPU 281

Fig. 8. Pseudo code of the HMVM kernel with CUDA (ASYNC kernel); one thread
block calculates one GEMV, each warp in the thread blocks calculates a single line,
two GEMV calculations of low-rank sub-matrix - vector multiplication are merged into
a single GPU kernel, and multiple GPU kernels are launched asynchronously.

than global memory. Note that we refer to this kernel as the ASYNC kernel.
Figure 8 shows the pseudo code of an HMVM kernel with the ASYNC kernel.
Here, the execution form is also an optimization parameter, similar to the SIM-
PLE kernel ; however, the number of thread blocks is always one and multiple
GPU kernels are launched concurrently using CUDA stream. Moreover, atomic
function is used to merge the partial results because the atomic addition oper-
ation of the P100 is fast enough and this implementation can make memory
management easy.

3.3 All-in-One Kernel

It is well known that launching a GPU kernel requires much more time than
launching a function executed on a CPU. In previous HMVM kernels, the number
of launched GPU kernels has depended on the number of leaves; therefore, GPU
kernels are launched many times, which may degrade performance. To address

282 S. Ohshima et al.

Fig. 9. Pseudo code of the HMVM kernel with CUDA (A1 kernel); the entire HMVM
calculation is executed by a single GPU kernel.

this issue, we have created a new GPU kernel that calculates all sub-matrix -
vector multiplications using a single GPU kernel, which we refer to as the A1
kernel.

Figure 9 shows the pseudo code of an HMVM kernel with the A1 kernel. In
this kernel, each leaf is calculated by a single warp, and the basic algorithm
of each leaf is similar to that of the ASYNC kernel. Although the loop for the
number of leaves is executed on the CPU in the ASYNC kernel, this loop is
executed on the GPU in the A1 kernel. Similar to the ASYNC kernel, here, the
execution form is an optimization parameter.

3.4 BATCHED BLAS

Similar to HMVM, many small BLAS calculations are required in various
applications, such as machine learning, graph analysis, and multi-physics. To

Optimization of Hierarchical Matrix Computation on GPU 283

Fig. 10. Example interface of BATCHED MAGMA BLAS (magmablas dgemv
vbatched).

Fig. 11. Pseudo code of the HMVM kernel with BATCHED MAGMA BLAS
(BATCHED kernel).

accelerate many small BLAS calculations, batched BLAS has been proposed by
several BLAS library developers. For example, MKL, MAGMA, and CUBLAS
provide batched BLAS functions. Although gemm is the main target function
of batched BLAS, MAGMA provides batched gemv functions for a GPU [13].
Figure 10 shows one of the interfaces of the batched gemv function in MAGMA.

Note that we implemented an HMVM kernel using the batched gemv func-
tion of MAGMA [14]. Figure 11 shows the pseudo code of our HMVM ker-
nel with BATCHED MAGMA BLAS, which we refer to as the BATCHED
kernel. In this kernel, the calculation information is constructed in the loop
of leaves on the CPU, and the GPU calculates the entire HMVM calcu-
lation using the magmablas dgemv vbatched atomic function. Note that the
magmablas dgemv vbatched atomic function is not the original BATCHED
MAGMA function, i.e., it is a function that we modified to use atomic addi-
tion to produce the results.

4 Performance Evaluation

4.1 Execution Environment

In this section, we discuss the performance obtained on the Reedbush-H super-
computer system at the Information Technology Center, The University of
Tokyo [15]. Here, we used the Intel compiler 16.0.4.258 and CUDA 8.0.44.
We used the following main compiler options: -qopenmp -O3 -xCORE-AVX2
-mkl=sequential for the Intel compiler (icc and ifort) and -O3 -gencode

284 S. Ohshima et al.

Table 1. Execution environment.

Processor Xeon E5-2695 v4 Tesla P100

Architecture Broadwell-EP (BDW) Pascal

cores 18 3584 (64 cores × 56 SMs)

Clock speed 2.1 GHz (upto 3.3 GHz) 1328 MHz (upto 1480 MHz)

Peak performance (DP) 604.8 GFLOPS 5.3 TFLOPS

Memory type &
bandwidth (STREAM
Triad)

DDR4 65 GB/s HBM2 550 GB/s

Processor Xeon Gold 6140 Xeon Phi 7150

Architecture Skylake-SP (SKX) Knights Landing (KNL)

cores 18 68

Clock speed 2.3 GHz (upto 3.7 GHz) 1.4 GHz (upto 1.6 GHz)

Peak performance (DP) 1324.8 GFLOPS 3046.4 GFLOPS

Memory type (STREAM
Triad) & bandwidth

DDR4 95 GB/s MCDRAM 495 GB/s
DDR4 85 GB/s

arch=compute 60, code="sm 60,compute 60" for CUDA (nvcc). The MKL ker-
nel is called at the multi-threaded region; thus, sequential MKL is linked. Note
that threaded MKL obtained near by the same performance in all cases. Here,
we used MAGMA BLAS 2.2.

Moreover, to compare performance with other current processors, we mea-
sured the performance on a Skylake-SP CPU and a Knights Landing processor.
The Skylake-SP processor is installed in the ITO supercomputer system (test
operation) at Kyushu University [16], and Intel compiler 17.0.4 with -qopenmp
-O3 -xCORE-AVX512 -mkl=sequential compiler options was used. The Knights
Landing processor is installed in the Oakforest-PACS at JCAHPC [17] and Intel
compiler 17.0.4 with -qopenmp -O3 -xMIC-AVX512 -mkl=sequential compiler
options was used.

Table 1 shows the hardware specifications of all target hardware. Note that
we focus on the performance of a single socket in this paper. The execution
times of the Broadwell-EP (BDW) and Skylake-SP (SKX) were measured using
all 18 CPU cores. The cluster mode of Knights Landing (KNL) was the quadrant
mode, and the memory mode was flat (i.e., only MCDRAM was used). Note that
the KNL execution times were measured using 64 threads with scatter affinity
and hyper-threading degrades performance.

4.2 Target Data

The four matrices in Table 2 are the target matrices of this evaluation. These
matrices were generated from electric field analysis problems. Here, the 10ts and
100ts matrices were generated from a problem with a single spherical object,

Optimization of Hierarchical Matrix Computation on GPU 285

Table 2. Target matrices.

Matrix name 10ts 216h human 1x1 100ts

Number of lines 10,400 21,600 19,664 101,250

Number of leaves 23,290 50,098 46,618 222,274

Number of approximate matrices pairs 8,430 17,002 16,202 89,534

Number of small dense matrices 14,860 33,096 30,416 132,740

Amount of H-matrix (MByte) 136 295 298 2,050

and the 216h matrix was generated from a problem with two spherical objects.
In addition, a human 1x1 matrix was generated from a problem with a single
human-shaped object.

The sizes of the low-rank sub-matrices and small dense sub-matrix of each
target matrix are shown in Fig. 12, where the two left graphs of each matrix
show the size of the low-rank sub-matrices and the right shows the size of the
small dense sub-matrix.

With the 10ts and 100ts matrices, the size of the approximate matrices ndt
and ndl was less than approximately 200 (some were close to 700). Note that all
ranks kt were very small (the largest was 23). With the small dense matrices,
all matrix lengths were less than 100, and many were less than 30.

With the 216h and human 1x1 matrices, the aspect ratio of the small dense
matrices was similar to that of the 10ts and 100ts matrices. With the approxi-
mate matrices, although kt was greater than that of the 10ts and 100ts matrices,
the aspect ratio was similar. However, although nearly all ndt and ndl lengths
were less than 1000, a few matrices had ndt and ndl lengths that were greater
than 5000.

Note that the sizes of these matrices depend on the target matrix. Moreover,
the size is controlled by the matrix assembling algorithm and HACApK param-
eters. The above sizes were generated using current usual HACApK parameter
settings. It is expected that optimizing the matrix size will affect HMVM per-
formance, and this will be the focus of future work.

4.3 Performance Evaluation

In this subsection, we discuss execution time and performance. Note that the
dominant part of the BiCGSTAB method is HMVM; therefore we focus on the
execution time of the HMVM. Moreover, the BiCGSTAB method does not mod-
ify the matrix data in its own kernel; thus, the each execution time does not
include the time required to perform data transfer between the main memory
and the GPU in the main iteration of the BiCGSTAB method. Figures 13 and
14 show the execution times for the target matrices. All times are the average
execution time of 100 HMVM calculations in 50 BiCGSTAB iterations. As men-
tioned in the previous section, although the execution form (i.e., grid layout) of
the SIMPLE, ASYNC, and A1 kernels are the optimization parameters, only

286 S. Ohshima et al.

(a) Matrix size of a 10ts matrix

(b) Matrix size of a 216h matrix

(c) Matrix size of a human 1x1 matrix

(d) Matrix size of a 100ts matrix

Fig. 12. Matrix sizes.

the fastest cases are shown and the chosen forms are shown at Table 3. Note that
the ASYNC kernel launches many GEMV kernels asynchronously with a single
thread block. The “#leaves” grids of the A1 kernel indicate that the number of
thread blocks is equal to the number of leaves, and the outermost GPU kernel
loop is eliminated.

Figure 13(a) shows the execution times of all measurements on the Reedbush-
H. As can be seen, the CUBLAS, SIMPLE, and ASYNC kernels were too slow

Optimization of Hierarchical Matrix Computation on GPU 287

for a performance comparison with the fast kernels. Figure 13(b) shows graphs
with a limited Y-axis from Fig. 13(a). Relative to the CPU execution time, the
OMP and MKL kernels obtained nearly the same performance with all target
matrices. Focusing on the GPU execution time, it is clear that the execution
times of the CUBLAS, SIMPLE, and ASYNC kernels were much greater than
that of the A1 and BATCHED kernels. The major difference between these two
groups is the number of launched GPU kernels. As mentioned in the previous
section, launching GPU kernels requires more time than executing functions
on the CPU and causes long execution times with the three slower kernels.
Therefore, although the ASYNC kernel improves the performance compared to
the CUBLAS and SIMPLE kernels, its performance is much slower than that
of the A1 and BATCHED kernels. On the other hand, the A1 and BATCHED
kernels obtained much higher performance than the other kernels. Note that the
A1 kernel showed better performance than the BATCHED kernel because the
batched functions in MAGMA BLAS include computations that are unnecessary
for HMVM calculation or the execution form is unoptimized.

The execution time ratio of the OMP kernel (BDW) to the A1 kernel was
17.37% with the 10ts matrix, 24.22% with the 216h matrix, 18.18% with the
human 1x1 matrix, and 14.45% with the 100ts matrix, and the execution time
ratio of the OMP kernel (BDW) to the BATCHED kernel was 34.39% with the
10ts matrix, 32.07% with the 216h matrix, 31.43% with the human 1x1 matrix,
and 21.67% with the 100ts matrix. Considering that the calculation performance
ratio of the GPU to CPU was 11.4% and the memory performance was 10.5%,
there might be room to improve the GPU implementation.

Figure 14 shows the execution times of the A1 kernel, BATCHED kernel, and
CPU (i.e., the OMP and MKL kernels) on the Broadwell-EP (BDW), Skylake-
SP (SKX), and Knights Landing (KNL). All times of the KNL are the average
execution time of 100 HMVM calculations in 50 BiCGSTAB iterations, but that
of the SKX are average execution time of greater than 10 iterations because of
the resource limitation of the test operation.

Relative to the performance of SKX, both the OMP and MKL kernels
required nearly 30% less execution time than the OMP kernel of the BDW.
By considering the performance gap between the BDW and SKX in terms of
specification, i.e., the SKX has 45% greater memory bandwidth and more than
200% greater calculation performance than the BDW, it was expected that the
SKX would obtain higher performance than 30%. However, HMVM calculation
involves various loop length, and it is not a suitable calculation for AVX512;
therefore, the obtained performance is not unexpected. On the other hand, there
are large differences between the OMP kernel and MKL kernel of the KNL. How-
ever, it is difficult to describe the reason why the performance of the MKL kernel
was unstable because the MKL implementation is undisclosed. There might be
room to improve the KNL implementation. By considering the performance gap
between the BDW and KNL in terms of specification, i.e., the KNL has 7.6 times
greater memory bandwidth and 5.0 times greater calculation performance than
the BDW. The OMP kernel of the KNL obtained 34% to 57% better perfor-

288 S. Ohshima et al.

(a) all kernels

(b) limited Y-axis of (a)

Fig. 13. Execution times of HMVM on Reedbush-H

Fig. 14. HMVM execution times.

mance than the OMP kernel of the BDW. Similar to the SKX, the KNL has
much higher peak performance than the BDW; thus the performance improve-
ment of the KNL is insufficient relative to the performance gap between the
BDW and KNL.

Figure 15 shows the entire execution time of the BiCGSTAB method in
all target environments. Here, although the iteration count was not exactly
the same, only the total computation times are compared. Nearly all vector
and matrix calculations of the BiCGSTAB method were executed on the GPU
with the A1 kernel. Similarly, nearly all vector and matrix calculations of the

Optimization of Hierarchical Matrix Computation on GPU 289

Table 3. Best execution form of each GPU kernel: number of thread block and threads
per thread block

10ts 216h human 1x1 100ts

SIMPLE 168, 64 112, 64 168, 64 168, 64

ASYNC 1, 256 1, 256 1, 256 1, 224

A1 #leaves, 96 #leaves, 256 #leaves, 256 #leaves, 192

Fig. 15. BiCGSTAB execution times: BDW, SKX, and KNL were the fastest with
OMP and MKL kernels

BiCGSTAB method were executed on the GPU using MAGMA BLAS with the
BATCHED kernel. To simplify the evaluation, only the shortest times of the
OMP and MKL kernels for each hardware configuration are shown. The execu-
tion times of the A1 and BATCHED kernels were less than that of the other
processors, and the A1 kernel demonstrated the fastest performance with all
target matrices. Note that the SKX was faster than the BDW for all matrices
and was faster than the KNL with the 10ts, 216h, and human 1x1 matrices.
However, the KNL showed a shorter execution time than the BDW and SKX
with the 100ts matrix. The reason for this may be that the 100ts matrix has
a greater number of large sub-matrices than the other matrices. Note that the
larger target matrix, the greater performance KNL obtained relatively.

5 Conclusion

Using H-matrices is an essential technique to solve large and complex computer
simulations using a small amount of memory. In this paper, we focus on the
BiCGSTAB method with H-matrices for electric analysis problems on GPUs.
Since matrix - vector multiplication is a dominant part of the execution time of
the BiCGSTAB method, we primarily focused on the performance and imple-
mentation of HMVM. We implemented five GPU kernel variations and compared
the execution times of several CPUs and a manycore processor. The results
indicate that, because HMVM requires many small GEMV computations and
launching GPU kernels requires a long time, merging the computation of GEMV

290 S. Ohshima et al.

kernels into a single kernel (i.e., the A1 kernel) was the most effective implemen-
tation. This implementation obtained much better performance among the com-
pared processors. Moreover, the BATCHED BLAS function of MAGMA, which
executes many BLAS computations using a single GPU kernel (BATCHED ker-
nel), obtained good performance. Although the performance of the BATCHED
kernel was less than that of the A1 kernel with all matrices, developing the A1
kernel requires much more time and labor than the BATCHED kernel. There-
fore, it would be beneficial to implement an A1 kernel -based HMVM library in
HACApK. In the best case, the execution time ratio of the OMP kernel on the
Broadwell-EP to the A1 kernel was 14.45% with the 100ts matrix. Owing to the
higher HMVM performance, the BiCGSTAB method with A1 kernel demon-
strated overall better performance than the other kernels on the GPU (i.e., the
NVIDIA Tesla P100), as well as the Skylake-SP and Knights Landing hardware.

Note that various opportunities for future work remain. For example, we are
currently implementing and evaluating in the multi-GPU and multi-nodes envi-
ronments. In such environments, load balancing and data transfer optimization
are very important, and to accelerate data transfer between GPUs, the data
layout in GPU memory may have a significant impact on performance. Simpli-
fication of partition structure of H-matrices used in lattice H-matrices would be
required to improve load balancing and communication pattern [18]. Currently,
it is uncertain whether the A1 and BATCHED kernels have good data lay-
outs. The data layouts of approximate and small dense matrices can be modified
by configuring the parameters of the matrix assembly process in the HACApK
library. The relationship between the data layout of matrices and performance is
an interesting topic. Moreover, optimization of the execution forms of GPU ker-
nel in A1 kernel to various target matrices is an important issue; thus, evaluating
the performance of various matrices is required. In addition, we are considering
providing an implementation of our HMVM kernel in HACApK.

Acknowledgements. This work was partially supported by JSPS KAKENHI Grant
Number 17H01749, JST/CREST, German Priority Programme 1648 Software for Exas-
cale Computing (SPPEXA-II), and “Joint Usage/Research Center for Interdisciplinary
Large-scale Information Infrastructures” and “High Performance Computing Infras-
tructure” in Japan (Project ID: jh160041). Computations were primarily performed
using the computer facilities at the Information Technology Center, The University
of Tokyo (Reedbush), the Research Institute for Information Technology, Kyushu
University (ITO), and JCAHPC (Oakforest-PACS).

References

1. Hackbusch, W.: A sparse matrix arithmetic based on H-Matrices, Part I: introduc-
tion to h-matrices. Computing 62, 89–108 (1999)

2. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., Pals, T.: A fast solver for
HSS representations via sparse matrices. SIAM J. Matrix Anal. Appl. 29(1), 67–81
(2006)

3. Ambikasaran, S.: Fast Algorithms for Dense Numerical Linear Algebra and Appli-
cations. Ph.D thesis, Stanford University (2013)

Optimization of Hierarchical Matrix Computation on GPU 291

4. Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators:
differential equations. Commun. Pure Appl. Math. 69(8), 1415–1451 (2016)

5. MAGMA: MAGMA (2017). http://icl.cs.utk.edu/magma/. Accessed 11 Aug 2017
6. Dongarra, J., Duff, I., Gates, M., Haidar, A., Hammarling, S., Higham, N.J., Hogg,

J., Lara, P.V., Zounon, M., Relton, S.D., Tomov, S.: A Proposed API for Batched
Basic Linear Algebra Subprograms. Draft Report, May 2016 (2016)

7. Batched BLAS: Batched BLAS (2017). http://icl.utk.edu/bblas/. Accessed 23 Dec
2017

8. Ida, A., Iwashita, T., Mifune, T., Takahashi, Y.: Parallel hierarchical matrices
with adaptive cross approximation on symmetric multiprocessing clusters. J. Inf.
Process. 22(4), 642–650 (2014)

9. Iwashita, T., Ida, A., Mifune, T., Takahashi, Y.: Software framework for parallel
BEM analyses with H-matrices using MPI and OpenMP. Procedia Comput. Sci.
108, 2200–2209 (2017). International Conference on Computational Science, ICCS
2017, Zurich, Switzerland, 12–14 June 2017

10. ppOpen-HPC: Open Source Infrastructure for Development and Execution of
Large-Scale Scientific Applications on Post-Peta-Scale Supercomputers with
Automatic Tuning (AT) (2017). http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/.
Accessed 11 Aug 2017

11. NVIDIA: Tesla P100 Most Advanced Data Center Accelerator (2017). http://www.
nvidia.com/object/tesla-p100.html. Accessed 11 Aug 2017

12. NVIDIA: cuBLAS: CUDA Toolkit Documentation (2017). http://docs.nvidia.com/
cuda/cublas/. Accessed 11 Aug 2017

13. Dong, T., Haidar, A., Tomov, S., Dongarra, J.: Optimizing the SVD bidiagonaliza-
tion process for a batch of small matrices. Procedia Comput. Sci. 108, 1008–1018
(2017). International Conference on Computational Science, ICCS 2017, Zurich,
Switzerland, 12–14 June 2017

14. Yamazaki, I., Abdelfattah, A., Ida, A., Ohshima, S., Tomov, S., Yokota, R.,
Dongarra, J.: Analyzing Performance of BiCGStab with Hierarchical Matrix on
GPU cluster. In: 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (2018, in press)

15. Information Technology Center, The University of Tokyo: Reedbush Super-
computer System (2017). http://www.cc.u-tokyo.ac.jp/system/reedbush/index-e.
html. Accessed 08 Aug 2017

16. Research Institute for Information Technology, Kyushu University: Supercomputer
system ITO (2018). https://www.cc.kyushu-u.ac.jp/scp/system/ITO/. Accessed
09 Feb 2018 (in Japanese)

17. JCAHPC (Joint Center for Advanced HPC): Oakforest-PACS (2018). http://
jcahpc.jp/eng/ofp intro.html. Accessed 09 Feb 2018

18. Ida, A.: Lattice H-matrices on distributed-memory systems. In: 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS) (2018, in press)

http://icl.cs.utk.edu/magma/
http://icl.utk.edu/bblas/
http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-p100.html
http://docs.nvidia.com/cuda/cublas/
http://docs.nvidia.com/cuda/cublas/
http://www.cc.u-tokyo.ac.jp/system/reedbush/index-e.html
http://www.cc.u-tokyo.ac.jp/system/reedbush/index-e.html
https://www.cc.kyushu-u.ac.jp/scp/system/ITO/
http://jcahpc.jp/eng/ofp_intro.html
http://jcahpc.jp/eng/ofp_intro.html

292 S. Ohshima et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Erratum to: Machine Learning Predictions
for Underestimation of Job Runtime

on HPC System

Jian Guo , Akihiro Nomura, Ryan Barton, Haoyu Zhang,
and Satoshi Matsuoka

Erratum to:
Chapter “Machine Learning Predictions for Underestimation
of Job Runtime on HPC System” in: R. Yokota and
W. Wu (Eds.): Supercomputing Frontiers, LNCS 10776,
https://doi.org/10.1007/978-3-319-69953-0_11

The original version of this chapter contained an error. The affiliation of the second
author was incorrect. The original chapter has been corrected.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-69953-0_11

© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. E1–E2, 2018.
https://doi.org/10.1007/978-3-319-69953-0_17

http://orcid.org/0000-0002-9678-9960
https://doi.org/10.1007/978-3-319-69953-0_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_17&domain=pdf
https://doi.org/10.1007/978-3-319-69953-0_11

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

E2 J. Guo et al.

http://creativecommons.org/licenses/by/4.0/

Author Index

Bao, Jinzhen 30
Barton, Ryan 179
Baruah, Pallav Kumar 18
Berzins, Martin 219
Boku, Taisuke 109

Cao, Thang 199
Chen, Pin 3
Chen, Zhiguang 90
Cheng, Peng 90
Colombet, Laurent 159

Dirand, Estelle 159
Dong, Dezun 30
Du, Yunfei 3, 90

Gu, Junmin 51
Guo, Jian 179

Harada, Masaaki 146
Hariyama, Masanori 146
Harman, Todd 219
Harris, Derek 219
He, Yuan 199
Hiradate, Yuki 146
Humphrey, Alan 219

Ibrahim, Shadi 70
Ida, Akihiro 274
Idomura, Yasuhiro 128, 257
Imamura, Toshiyuki 243, 257
Ina, Takuya 257
Isaac, Ben 219

Klasky, Scott 51
Kondo, Masaaki 199
Kumar, Sidharth 219

Li, Jiahui 3
Lu, Yutong 90

Machida, Masahiko 243
Matsumura, Kazuaki 109

Matsuoka, Satoshi 109, 179
Mayumi, Akie 257

Nomura, Akihiro 179

Ohshima, Satoshi 274
Onodera, Naoyuki 128

Pascucci, Valerio 219
Peterson, Brad 219
Petruzza, Steve 219
Podhorszki, Norbert 51
Podobas, Artur 109

Qiang, Ji 51

Raffin, Bruno 159

Sahoo, Manuj Subhankar 18
Sato, Mitsuhisa 109
Schmidt, John A. 219

Thornock, Jeremy 219

Usher, Will 219

Wada, Yasutaka 199
Waidyasooriya, Hasitha Muthumala 146
Wu, Kesheng 51

Xu, Jun 3

Yamada, Susumu 243, 257
Yamazaki, Ichitaro 274
Yan, Xin 3
Yildiz, Orcun 70
Yokota, Rio 274

Zhang, Haoyu 179
Zhao, Baokang 30

	Preface
	Organization
	Contents
	Big Data
	HHVSF: A Framework to Accelerate Drug-Based High-Throughput Virtual Screening on High-Performance Computers
	Abstract
	1 Introduction
	2 Experimental and Computational Details
	2.1 Task Management
	2.1.1 Task Scheduling
	2.1.2 Preemptive Scheduling Algorithm
	2.1.3 Fault Tolerance

	2.2 Data Management
	2.2.1 NoSQL Database for Storage
	2.2.2 Data Relocation
	2.2.3 Data Analysis

	2.3 Simulation Parameters and Data Sets
	2.3.1 ADV
	2.3.2 WEGA

	3 Results and Discussion
	3.1 Load Balance
	3.2 Throughput with Data
	3.3 Scalability
	3.4 Fault Tolerance

	4 Conclusions
	Acknowledgments
	References

	HBasechainDB – A Scalable Blockchain Framework on Hadoop Ecosystem
	1 Introduction
	2 Background and Related Work
	3 Terminology
	4 Architecture
	4.1 Data Model of Transaction
	4.2 Design Details
	4.3 Exploiting HBase

	5 Implementation Details
	6 Performance
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References

	DETOUR: A Large-Scale Non-blocking Optical Data Center Fabric
	1 Introduction
	2 DETOUR Architecture Overview
	3 The Control Loop
	3.1 Traffic Demand Estimation
	3.2 Wavelength Assignment
	3.3 Reconfiguration

	4 Evaluation
	4.1 Simulation Setting
	4.2 Network Practical Throughput
	4.3 Overall FCT and Energy Consumption
	4.4 Network Performance on Reconfiguration
	4.5 Overhead of the Central Controller

	5 Related Work
	6 Conclusion
	References

	Querying Large Scientific Data Sets with Adaptable IO System ADIOS
	1 Introduction
	2 Related Work
	2.1 High-Level IO Libraries
	2.2 In Situ Processing
	2.3 Querying and Indexing
	2.4 Application Use Cases

	3 ADIOS Overview
	4 In Situ Indexing
	5 Query API
	5.1 Array Data Model
	5.2 Query Use Cases
	5.3 Additional Design Considerations

	6 Query Performance
	7 Summary
	References

	On the Performance of Spark on HPC Systems: Towards a Complete Picture
	1 Introduction
	2 Methodology
	2.1 Platform Description
	2.2 Spark Deployment
	2.3 Workloads

	3 Experimental Results
	3.1 How Does Latency Affect the Application Performance?
	3.2 The Role of Contention
	3.3 Impact of the File System Configuration
	3.4 Burst Buffers: Impact of Their Capacities and Location

	4 Discussion and Implications
	5 Related Work
	6 Conclusion and Future Work
	References

	Experiences of Converging Big Data Analytics Frameworks with High Performance Computing Systems
	Abstract
	1 Introduction
	2 Background
	2.1 HDFS vs Lustre
	2.2 Alluxio

	3 Experiment and Analysis
	3.1 Experiment Setup
	3.2 Data Access Middleware
	3.3 The Impact of Storage Architecture

	4 Optimization and Evaluation
	4.1 Shared Map Output Shuffle Strategy
	4.2 File Metadata Cache Layer
	4.3 Evaluation

	5 Related Work
	6 Conclusion
	Acknowledgment
	References

	GPU/FPGA
	MACC: An OpenACC Transpiler for Automatic Multi-GPU Use
	1 Introduction
	2 Related Work
	3 Overview of OpenACC
	3.1 Execution Model
	3.2 Memory Model
	3.3 A Motivational Example

	4 MACC: A OpenACC Transpiler for Multi-GPU Use
	4.1 Execution on Multi-GPU Environments
	4.2 Generating Host-to/from-GPU and GPU-to-GPU Communcation Patterns
	4.3 Data-Flow Analysis
	4.4 Output Formats
	4.5 Polyhedral Extension

	5 Experimental Methodology
	5.1 Implementation
	5.2 Topology Options
	5.3 Environment
	5.4 Benchmarks

	6 Results
	7 Conclusion
	References

	Acceleration of Wind Simulation Using Locally Mesh-Refined Lattice Boltzmann Method on GPU-Rich Supercomputers
	Abstract
	1 Introduction
	2 Lattice Boltzmann Method
	2.1 Single Relaxation Time Model
	2.2 Cumulant Relaxation Time Model
	2.3 Boundary Treatment

	3 Adaptive Mesh Refinement (AMR) Method
	3.1 Block-Structured AMR Method
	3.2 LBM with AMR

	4 Implementation and Optimization
	4.1 CPU and GPU Implementation
	4.2 Optimization for GPU Computation

	5 Numerical Verification and Validation
	5.1 Lid-Driven Cavity Flow
	5.2 Wind Tunnel Test

	6 Performance on the TSUBAME 3 Supercomputer
	6.1 Performance on a Single Process
	6.2 Performance on Multiple Processes in a Single Node
	6.3 Performance on Multiple Nodes
	6.4 Estimation of Performance in Wind Simulation

	7 Summary and Conclusions
	Acknowledgements
	References

	Architecture of an FPGA-Based Heterogeneous System for Code-Search Problems
	1 Introduction
	2 Code-Search Problems
	2.1 Extremal Doubly Even Self-dual Code Search

	3 FPGA-Based Heterogeneous Architecture
	3.1 Exploiting the Parallelism
	3.2 Overall Architecture of the FPGA-Based Heterogeneous System
	3.3 k-out-of-n Code Generation
	3.4 Matrix Calculation and Hamming Weight

	4 Evaluation
	5 Conclusion
	References

	Performance Tools
	TINS: A Task-Based Dynamic Helper Core Strategy for In Situ Analytics
	1 Introduction
	2 Related Work
	3 The TINS Framework
	3.1 Work Stealing and TBB
	3.2 In Situ Processing with Tasks
	3.3 Spawning Analytics and Simulation Tasks
	3.4 Resource Sharing Policies
	3.5 Plugin System

	4 Experimental Evaluation
	4.1 ExaStamp Molecular Dynamics Code
	4.2 Analytics
	4.3 I/O Middlewares
	4.4 Experimental Setups
	4.5 Results

	5 Conclusion
	References

	Machine Learning Predictions for Underestimation of Job Runtime on HPC System
	1 Introduction
	2 Related Work
	3 Data Collection and Feature Engineering
	3.1 Gathering TSUBAME DATA
	3.2 Feature Engineering

	4 Performance Metrics and Algorithm Coverage for Binary Classification Problem on Imbalanced Dataset
	4.1 Metrics for Evaluating Imbalanced Data
	4.2 Machine Learning Algorithms for Imbalanced Data

	5 Experiment Results and Analysis
	5.1 Classification with Entire Dataset
	5.2 Classification with Subset Dataset Categorized by Scientific Application Name
	5.3 Feature Importance
	5.4 Discussion

	6 Conclusions and Future Work
	References

	A Power Management Framework with Simple DSL for Automatic Power-Performance Optimization on Power-Constrained HPC Systems
	1 Introduction
	2 Related Work
	2.1 Power-Performance Optimization
	2.2 Interfaces to Control Power-Knobs
	2.3 Performance Profiling and Analysis Tools
	2.4 Domain Specific Language to Describe System Performance and Configuration
	2.5 Towards a Versatile Power Management Framework

	3 The Proposed Power Management Framework
	3.1 Overview and Power Management Workflow Control
	3.2 Application Instrumentation for Profiling and Optimization
	3.3 Power Control and Application Optimization
	3.4 Machine Specification and Setting
	3.5 Hardware Calibration

	4 DSL to Control Power Management Workflow
	4.1 Semantics of the DSL
	4.2 Implementation of the DSL Interpreter

	5 Case Studies and Evaluation
	5.1 Case Study 1: Peak Power Demand as the Power Cap for Applications
	5.2 Case Study 2: Average Power Demand as the Power Cap for Applications
	5.3 Case Study 3: Power Cap to Satisfy a User-Defined Deadline While Minimizing Power Consumption

	6 Conclusions
	References

	Scalable Data Management of the Uintah Simulation Framework for Next-Generation Engineering Problems with Radiation
	1 Introduction
	2 Background
	2.1 Uintah Simulation Framework
	2.2 Related Work
	2.3 System Configuration
	2.4 Target Boiler Problem

	3 Restructured Parallel I/O
	3.1 Parameter Study
	3.2 Production Run Weak Scaling Results

	4 Scalable Visualization with OSPRay
	5 Radiation Modeling: Spatial Transport Sweeps
	5.1 Solving the Radiation Transport Equation
	5.2 Discrete Ordinates
	5.3 Reverse Monte Carlo Ray Tracing
	5.4 Spatial Transport Sweeps Method
	5.5 Sweeps: Scaling and Performance Results

	6 Mira Production Cases – Results
	7 Conclusions
	References

	Linear Algebra
	High Performance LOBPCG Method for Solving Multiple Eigenvalues of Hubbard Model: Efficiency of Communication Avoiding Neumann Expansion Preconditioner
	1 Introduction
	2 Related Work
	2.1 Hamiltonian-Vector Multiplication
	2.2 Preconditioner of LOBPCG Method for Solving the Ground State of Hubbard Model
	2.3 Communication Avoiding Neumann Expansion Preconditioner for Hubbard Model

	3 Neumann Expansion Preconditioner for Multiple Eigenvalues of Hubbard Model
	3.1 How to Calculate Multiple Eigenvalues Using LOBPCG Method
	3.2 Neumann Expansion Preconditioner of LOBPCG Method for Solving Multiple Eigenvalues

	4 Performance Result
	4.1 Computational Performance and Convergence Property
	4.2 Parallel Performance

	5 Conclusions
	References

	Application of a Preconditioned Chebyshev Basis Communication-Avoiding Conjugate Gradient Method to a Multiphase Thermal-Hydraulic CFD Code
	1 Introduction
	2 Related Works
	3 Krylov Solvers in JUPITER Code
	3.1 Code Overview
	3.2 Preconditioned Conjugate Gradient (P-CG) Method
	3.3 Preconditioned Communication-Avoiding Conjugate Gradient (P-CACG) Method
	3.4 Preconditioned Chebyshev Basis Communication-Avoiding Conjugate Gradient (P-CBCG) Method

	4 Kernel Performance Analysis
	4.1 Computing Platforms
	4.2 P-CG Solver
	4.3 P-CACG Solver
	4.4 P-CBCG Solver

	5 Numerical Experiment
	5.1 Convergence Property
	5.2 Strong Scaling Test

	6 Summary
	References

	Optimization of Hierarchical Matrix Computation on GPU
	1 Introduction
	2 Hierarchical Matrix Method (H-matrices)
	2.1 Formulation of H-matrices for Boundary Integral Problems
	2.2 BiCGSTAB Method for the Hierarchical Matrix

	3 H-matrix Computation on GPU
	3.1 BLAS GEMV
	3.2 Simple GEMV Kernels
	3.3 All-in-One Kernel
	3.4 BATCHED BLAS

	4 Performance Evaluation
	4.1 Execution Environment
	4.2 Target Data
	4.3 Performance Evaluation

	5 Conclusion
	References

	Erratum to: Machine Learning Predictions for Underestimation of Job Runtime on HPC System
	Erratum to: Chapter “Machine Learning Predictions for Underestimation of Job Runtime on HPC System” in: R. Yokota and W. Wu (Eds.): Supercomputing Frontiers, LNCS 10776, https://doi.org/10.1007/978-3-319-69953-0_11

	Author Index

