A Comprehensive Guide to Machine Learning

Soroush Nasiriany, Garrett Thomas, William Wang, Alex Yang
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

June 24, 2019

http://snasiriany.me/
http://gwthomas.github.io/
https://williamwwang.github.io/

About

CS 189 is the Machine Learning course at UC Berkeley. In this guide we have created a com-
prehensive course guide in order to share our knowledge with students and the general public,
and hopefully draw the interest of students from other universities to Berkeley’s Machine Learning
curriculum.

This guide was started by CS 189 TAs Soroush Nasiriany and Garrett Thomas in Fall 2017, with
the assistance of William Wang and Alex Yang.

We owe gratitude to Professors Anant Sahai, Stella Yu, and Jennifer Listgarten, as this book is
heavily inspired from their lectures. In addition, we are indebted to Professor Jonathan Shewchuk
for his machine learning notes, from which we drew inspiration.

The latest version of this document can be found either at http://www.eecs189.org/ or http:
//snasiriany.me/cs189/. Please report any mistakes to the staff, and contact the authors if you
wish to redistribute this document.

Notation
Notation Meaning
R set, of real numbers
R” set (vector space) of n-tuples of real numbers, endowed with the usual inner product
Rm*n set (vector space) of m-by-n matrices
i Kronecker delta, i.e. 6;; =1 if ¢ = j, 0 otherwise
Vf(x) gradient of the function f at x
V2f(x) Hessian of the function f at x
p(X) distribution of random variable X
p(z) probability density /mass function evaluated at x
E[X] expected value of random variable X
Var(X) variance of random variable X
Cov(X,Y) | covariance of random variables X and Y

Other notes:

e Vectors and matrices are in bold (e.g. x,A). This is true for vectors in R™ as well as for
vectors in general vector spaces. We generally use Greek letters for scalars and capital Roman
letters for matrices and random variables.

o We assume that vectors are column vectors, i.e. that a vector in R™ can be interpreted as an
n-by-1 matrix. As such, taking the transpose of a vector is well-defined (and produces a row
vector, which is a 1-by-n matrix).

http://www.eecs189.org/
http://snasiriany.me/
http://gwthomas.github.io/
https://williamwwang.github.io/
http://people.eecs.berkeley.edu/~sahai/
https://www1.icsi.berkeley.edu/~stellayu/
http://www.jennifer.listgarten.com/
https://people.eecs.berkeley.edu/~jrs/
https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf
http://www.eecs189.org/
http://snasiriany.me/cs189/
http://snasiriany.me/cs189/

Contents

1 Regression I 5
1.1 Ordinary Least Squares 5
1.2 Ridge Regression e 8
1.3 Feature Engineering e 11
1.4 Hyperparameters and Validation L L. 12

2 Regression 11 17
2.1 MLE and MAP for Regression (Part I) 17
2.2 Bias-Variance Tradeoff 23
2.3 Multivariate Gaussians L e 30
2.4 MLE and MAP for Regression (Part II) 37
2.5 Kernels and Ridge Regression 44
2.6 Sparse Least Squares e 50
2.7 Total Least Squares e e 57

3 Dimensionality Reduction 63
3.1 Principal Component Analysis 63
3.2 Canonical Correlation Analysis L 0 o 70

4 Beyond Least Squares: Optimization and Neural Networks 79
4.1 Nonlinear Least Squares e 79
4.2 Optimization e e 81
4.3 Gradient Descent L 82
4.4 Line Search L e 88
4.5 Convex Optimization 89
4.6 Newton’s Method 93
4.7 Gauss-Newton Algorithm 96
4.8 Neural Networks e e e 97
4.9 Training Neural Networks 103

CONTENTS

Classification 107
5.1 Generative vs. Discriminative Classification 107
5.2 Least Squares Support Vector Machine 0. 109
5.3 Logistic Regression L 113
5.4 Gaussian Discriminant Analysis o oL L o 121
5.5 Support Vector Machines 127
5.6 Duality e 134
5.7 Nearest Neighbor Classification 145
Clustering 151
6.1 K-means Clustering 152
6.2 Mixture of Gaussians L 155
6.3 Expectation Maximization (EM) Algorithm 156
Decision Tree Learning 163
7.1 Decision Trees. e e 163
7.2 Random Forests 168
7.3 Boosting 169
Deep Learning 175
8.1 Convolutional Neural Networks, 175
8.2 CNN Architectures 182

8.3 Visualizing and Understanding CNNs 185

Chapter 1

Regression 1

Our goal in machine learning is to extract a relationship from data. In regression tasks, this
relationship takes the form of a function y = f(x), where y € R is some quantity that can be
predicted from an input x € R, which should for the time being be thought of as some collection
of numerical measurements. The true relationship f is unknown to us, and our aim is to recover it
as well as we can from data. Our end product is a function § = h(x), called the hypothesis, that
should approximate f. We assume that we have access to a dataset D = {(x;,y;)}_,, where each
pair (x;,y;) is an example (possibly noisy or otherwise approximate) of the input-output mapping
to be learned. Since learning arbitrary functions is intractable, we restrict ourselves to some
hypothesis class H of allowable functions. More specifically, we typically employ a parametric
model, meaning that there is some finite-dimensional vector w € R?, the elements of which are
known as parameters or weights, that controls the behavior of the function. That is,

hw(x) = g(x, W)

for some other function g. The hypothesis class is then the set of all functions induced by the
possible choices of the parameters w:

H = {hw | w € RY}

After designating a cost function L, which measures how poorly the predictions g of the hypothesis
match the true output y, we can proceed to search for the parameters that best fit the data by
minimizing this function:

w"* = argmin L(w)
w

1.1 Ordinary Least Squares

Ordinary least squares (OLS) is one of the simplest regression problems, but it is well-understood
and practically useful. It is a linear regression problem, which means that we take hy to be of
the form hy(x) = x'w. We want

6 CHAPTER 1. REGRESSION I

for each i = 1,...,n. This set of equations can be written in matrix form as
Y1 X1 w1
T
Yn Xn Wq
Yy X W

In words, the matrix X € R™? has the input datapoint x; as its ith row. This matrix is some-
times called the design matrix. Usually n > d, meaning that there are more datapoints than
measurements.

There will in general be no exact solution to the equation y = Xw (even if the data were perfect,
consider how many equations and variables there are), but we can find an approximate solution by
minimizing the sum (or equivalently, the mean) of the squared errors:

n

L(w) =) (xi'w —y;)* = min | Xw — |3
i=1

Now that we have formulated an optimization problem, we want to go about solving it. We will see
that the particular structure of OLS allows us to compute a closed-form expression for a globally
optimal solution, which we denote w{.

Approach 1: Vector calculus

Calculus is the primary mathematical workhorse for studying the optimization of differentiable
functions. Recall the following important result: if L : R* — R is continuously differentiable, then
any local optimum w* satisfies VL(w*) = 0. In the OLS case,
L(w) = | Xw —y||3

= (Xw - y)'(Xw —y)

= (Xw) Xw - (Xw)y -y Xw+y'y

=wX'Xw— 2WTXTy + yTy
Using the following results from matrix calculus

Vx(a'x) =a
Vx(x'Ax) = (A + ANx
the gradient of L is easily seen to be
VL(W) = Vi (W X' Xw — 2w Xy + yTy)
= V(WX Xw) — 2V4(Ww'X'y) + Vi (y'y)
———

0
= 2X"Xw — 2X'y

where in the last line we have used the symmetry of X'X to simplify X'X + (X'X)" = 2X'X.
Setting the gradient to 0, we conclude that any optimum w4 satisfies

X'Xwi =Xy

1.1. ORDINARY LEAST SQUARES 7

If X is full rank, then X'X is as well (assuming n > d), so we can solve for a unique solution
Wi = (XTX)_ley

Note: Although we write (X'X)~!, in practice one would not actually compute the inverse; it
is more numerically stable to solve the linear system of equations above (e.g. with Gaussian
elimination).

In this derivation we have used the condition VL(w*) = 0, which is a necessary but not sufficient
condition for optimality. We found a critical point, but in general such a point could be a local
minimum, a local maximum, or a saddle point. Fortunately, in this case the objective function
is convex, which implies that any critical point is indeed a global minimum. To show that L is
convex, it suffices to compute the Hessian of L, which in this case is

ViL(w) = 2X'X
and show that this is positive semi-definite:

vw, w' (2X'X)w = 2(Xw) Xw = 2||Xw]|]2 >0

Approach 2: Orthogonal projection

There is also a linear algebraic way to arrive at the same solution: orthogonal projections.

Recall that if V' is an inner product space and S a subspace of V', then any v € V' can be decomposed
uniquely in the form

V=Vg+Vv)

where vg € S and v, € S+. Here S is the orthogonal complement of S, i.e. the set of vectors
that are perpendicular to every vector in S.

The orthogonal projection onto S, denoted Pg, is the linear operator that maps v to vg in the
decomposition above. An important property of the orthogonal projection is that

v —Psv| < |lv—s]
for all s € S, with equality if and only if s = Pgv. That is,

Pgv = argmin ||v — s||
ses

Proof. By the Pythagorean theorem,

Iv—sl?= v = Psv+Psv —s|? = v — Psv|’ + |[Psv — 5|2 > |v — Psv]?
—_——— —\—

est €S

with equality holding if and only if |[Psv — s||> = 0, i.e. s = Pgv. Taking square roots on both
sides gives ||v —s|| > ||v — Psv|| as claimed (since norms are nonnegative). O

Here is a visual representation of the argument above:

8 CHAPTER 1. REGRESSION I

In the OLS case,

Wos = argmin [Xw — y][3
W

But observe that the set of vectors that can be written Xw for some w € R¢ is precisely the range
of X, which we know to be a subspace of R", so

: 2 : 2
_ — Xw —
L. Iz = yllz = min [[Xw — yll3

By pattern matching with the earlier optimality statement about Pg, we observe that Pugex)y =
Xwy, s, where w§ ¢ is any optimum for the right-hand side. The projected point Xw¢, ¢ is always
unique, but if X is full rank (again assuming n > d), then the optimum w is also unique (as
expected). This is because X being full rank means that the columns of X are linearly independent,
in which case there is a one-to-one correspondence between w and Xw.

To solve for w}, , we need the following fact!:
null(X") = range(X)*

Since we are projecting onto range(X), the orthogonality condition for optimality is that y — Py L
range(X), i.e. y — Xw} ¢ € null(X"). This leads to the equation

X'(y — Xwp,5) =0

which is equivalent to
XTXWgLs =Xy

as before.

1.2 Ridge Regression

While Ordinary Least Squares can be used for solving linear least squares problems, it falls short
due to numerical instability and generalization issues. Numerical instability arises when the features
of the data are close to collinear (leading to linearly dependent feature columns), causing the input

1 This result is often stated as part of the Fundamental Theorem of Linear Algebra.

1.2. RIDGE REGRESSION 9

matrix X to lose its rank or have singular values that very close to 0. Why are small singular values
bad? Let us illustrate this via the singular value decomposition (SVD) of X:

X =UxV'

where U € R™*" 3 € R"*4 V € R4, In the context of OLS, we must have that X' X is invertible,
or equivalently, rank(X'X) = rank(X'") = rank(X) = d. Assuming that X and X' are full column
rank d, we can express the SVD of X as

X:U[E(J)d] v

where 34 € R¥9 is a diagonal matrix with strictly positive entries. Now let’s try to expand the
(X™X)~! term in OLS using the SVD of X:

X'X)"'=(V[Z, 0JUU F(ﬂ vt

=(V[Zs 0]1 ﬁd] vt
= (VEV) Tl = (V) THE) TV = vEVT

This means that (X'X)~! will have singular values that are the squared inverse of the singular
values of X, potentially leading to extremely large singular values when the singular value of X are
close to 0. Such excessively large singular values can be very problematic for numerical stability
purposes. In addition, abnormally high values to the optimal w solution would prevent OLS from
generalizing to unseen data.

There is a very simple solution to these issues: penalize the entries of w from becoming too large.
We can do this by adding a penalty term constraining the norm of w. For a fixed, small scalar
A > 0, we now have:
. 2 2
min [Xw — y||3 + Awl3

Note that the A in our objective function is a hyperparameter that measures the sensitivity to
the values in w. Just like the degree in polynomial features, A is a value that we must choose
arbitrarily through validation. Let’s expand the terms of the objective function:

L(w) = [|Xw — y[j3 + Al w3
=wX'Xw-—2w'X'y+y'y+ \w'w

Finally take the gradient of the objective and find the value of w that achieves 0 for the gradient:

VwL(w)=0
2X'Xw —2X'y + 2 \w =0
(X'X +\D)w =Xy
Wiinae = (XX + A1) "' Xy

This value is guaranteed to achieve the (unique) global minimum, because the objective function
is strongly convex. To show that f is strongly convex, it suffices to compute the Hessian of f,
which in this case is

V2L(w) = 2XTX 4 2AI

10 CHAPTER 1. REGRESSION I

and show that this is positive definite (PD):

Yw #0, w (X'X + A\)w = (Xw) Xw + Aw'w = | Xw]|3 + A|w|3 >0

Since the Hessian is positive definite, we can equivalently say that the eigenvalues of the Hessian are
strictly positive and that the objective function is strongly convex. A useful property of strongly
convex functions is that they have a unique optimum point, so the solution to ridge regression is
unique. We cannot make such guarantees about ordinary least squares, because the corresponding
Hessian could have eigenvalues that are 0. Let us explore the case in OLS when the Hessian has
a 0 eigenvalue. In this context, the term X'X is not invertible, but this does not imply that no
solution exists! In OLS, there always exists a solution, and when the Hessian is PD that solution
is unique; when the Hessian is PSD, there are infinitely many solutions. (There always exists a
solution to the expression X'Xw = X'y, because the range of X'X and the range space of X'
are equivalent; since X'y lies in the range of X', it must equivalently lie in the range of X'X and
therefore there always exists a w that satisfies the equation X'Xw = X'y.)

The technique we just described is known as ridge regression. Note that now the expression
XX + AI is invertible, regardless of rank of X. Let’s find (XX + AI)~! through SVD:

- . —1
(XTX 4 A1)~ = (V T ooluu E’ 8} A4 AI)
22 0 _ —1
= (v|% o vTear
52 o] § -1
= (V|3 AV vony

—1
_ 2 0 T
@q04+gv
2101 0 !
_ 7‘+ T
(P g

— (V1) Fg oM 0} Ty

0 pY |
2 -1
0 i1

Now with our slight tweak, the matrix XX + AI has become full rank and thus invertible. The

singular values have become ﬁ and %, meaning that the singular values are guaranteed to be

at most %, solving our numerical instability issues. Furthermore, we have partially solved the

overfitting issue. By penalizing the norm of x, we encourage the weights corresponding to relevant
features that capture the main structure of the true model, and penalize the weights corresponding
to complex features that only serve to fine tune the model and fit noise in the data.

1.3. FEATURE ENGINEERING 11
1.3 Feature Engineering

We’ve seen that the least-squares optimization problem
min | Xw — y|13
w

represents the “best-fit” linear model, by projecting y onto the subspace spanned by the columns
of X. However, the true input-output relationship y = f(x) may be nonlinear, so it is useful to
consider nonlinear models as well. It turns out that we can still do this under the framework of
linear least-squares, by augmenting the data with new features. In particular, we devise some
function ¢ : RY — R?, called a feature map, that maps each raw data point x € R into a vector
of features ¢p(x). The hypothesis function then writes

d
() = 37 w165 (0) = WTb(x0)

Note that the resulting model is still linear with respect to the features, but it is nonlinear with
respect to the original data if ¢ is nonlinear. The component functions ¢; are sometimes called
basis functions because our hypothesis is a linear combination of them. In the simplest case, we
could just use the components of x as features (i.e. ¢j(x) = z;), but in general it is helpful to
disambiguate the features of an example from the example’s entries.

We can then use least-squares to estimate the weights w, just as before. To do this, we replace the
original data matrix X € R™*¢ by & € R™*¢, which has ¢(x;)" as its ith row:

min || ®w — |3
w

Example: Fitting Ellipses

Let’s use least-squares to estimate the parameters of an ellipse from data.

Assume that we have n data points D = {(x14,x2,;)};—;, which may be noisy (i.e. could be off the
actual orbit). Our goal is to determine the relationship between x; and xs.

We assume that the ellipse from which the points were generated has the form
w1TT + wexs + w31 T + Wary + WiTe = 1
where the coefficients wy, ..., ws are the parameters we wish to estimate.
We formulate the problem with least-squares:
min ||®w — 1|3
w
where

2 2
i1 Top1 T1,1T21 T11 T21

2 2
P Tig T2 T12X22 T12 T22

2
Tin T2n Tinl2n Tin T2n

In this case, the feature map ¢ is given by
¢(X) = (:1’%7 JI%, Xr1X2,T1, 1172)

Note that there is no “target” vector y here, so this is not a traditional regression problem, but it
still fits into the framework of least-squares.

12 CHAPTER 1. REGRESSION I

Polynomial Features

The example above demonstrates an important class of features known as polynomial features.
Remember that a polynomial is linear combination of monomial basis terms. Monomials can be
classified in two ways, by their degree and dimension:

Degree
A 0 1 2 3
Dimension
1 (univariate) 1 x x? 3
2 (bivariate) 1 x,20 22,22, 2910 23,03, 2320, 1122

A Dbig reason we care polynomial features is that any smooth function can be approximated ar-
bitrarily closely by some polynomial.? For this reason, polynomials are said to be universal
approximators.

One downside of polynomials is that as their degree increases, their number of terms increases
rapidly. Specifically, one can use a “stars and bars” style combinatorial argument? to show that a
polynomial of degree d in ¢ variables has

C+d\ (£+d)
¢ !

terms. To get an idea for how quickly this quantity grows, consider a few examples:

/ d 1 3) 10 25
1 2 4 6 11 26
3 4 20 56 286 3276
5) 6 56 252 3003 142506
10 | 11 | 286 3003 184756 183579396
25 | 26 | 3276 | 142506 | 183579396 | 126410606437752

Later we will learn about the kernel trick, a clever mathematical method that allows us to
circumvent this rapidly growing cost in certain cases.

1.4 Hyperparameters and Validation

As above, consider a hypothesis of the form

d
() = 37 w165 (0) = WTb(x0)

2 Taylor’s theorem gives more precise statements about the approximation error.

3 We count the number of distinct monomials of degree at most d in ¢ variables x1,...,z, or equivalently, the number of
distinct monomials of degree exactly d in ¢ + 1 variables g = 1,21 ...,z¢. Every monomial has the form rlgo z’Z’Z where

ko + -+ + k¢ = d. This corresponds to an arrangement of d stars and £ bars, where the number of stars between consecutive
bars (or the ends of the expression) gives the degree of that ordered variable. For example,

K| kokok | wk xéx‘i’x%
The number of unique ways to arrange these stars and bars is the number of ways to choose the positions of the ¢ bars out
of the total £ + d slots, i.e. £+ d choose £. (You could also pick the positions of the d stars out of the total £ + d slots; the
expression is symmetric in ¢ and d.)

1.4. HYPERPARAMETERS AND VALIDATION 13

Observe that the model order d is not one of the decision variables being optimized when we fit to
the data. For this reason d is called a hyperparameter. We might say more specifically that it is
a model hyperparameter, since it determines the structure of the model.

For another example, recall ridge regression, in which we add an ¢? penalty on the parameters
w:
. 2 2
min [|Xw — y|f5 + Afwll3

The regularization weight A is also a hyperparameter, as it is fixed during the minimization above.
However A, unlike the previously discussed hyperparameter d, is not a part of the model. Rather,
it is an aspect of the optimization procedure used to fit the model, so we say it is an optimization
hyperparameter. Hyperparameters tend to fall into one of these two categories.

Since hyperparameters are not determined by the data-fitting optimization procedure, how should
we choose their values? A suitable answer to this question requires some discussion of the different
types of error at play.

Types of Error

We have seen that it is common to minimize some measure of how poorly our hypothesis fits the
data we have, but what we actually care about is how well the hypothesis predicts future data.
Let us try to formally distinguish the various types of error. Assume that the data are distributed
according to some (unknown) distribution D, and that we have a loss function ¢ : R x R — R,
which is to measure the error between the true output y and our estimate § = h(x). The risk (or
true error) of a particular hypothesis h € H is the expected loss over the whole data distribution:

R(h) = E(x,y)ND[E(h(X)v y)]
Ideally, we would find the hypothesis that minimizes the risk, i.e.

h* = argmin R(h)
heH

However, computing this expectation is impossible because we do not have access to the true data

distribution. Rather, we have access to samples (x;, y;) 19 D. These enable us to approximate the
real problem we care about by minimizing the empirical risk (or training error)

RTRAIN(h) = %Zf(h(xi%yi)
=1

But since we have a finite number of samples, the hypothesis that performs the best on the training
data is not necessarily the best on the whole data distribution. In particular, if we both train and
evaluate the hypothesis using the same data points, the training error will be a very biased estimate
of the true error, since the hypothesis has been chosen specifically to perform well on those points.
This phenomenon is sometimes referred to as “data incest”.

A common solution is to set aside some portion (say 30%) of the data, to be called the validation
set, which is disjoint from the training set and not allowed to be used when fitting the model:

Validation Training

14 CHAPTER 1. REGRESSION I

We can use this validation set to estimate the true error by the validation error
1 m
Rysn(h) = — Zg(h(leal)v y;/al)

m “
=1

With this estimate, we have a simple method for choosing hyperparameter values: try a bunch of
configurations of the hyperparameters and choose the one that yields the lowest validation error.

The effect of hyperparameters on error

Note that as we add more features to a linear model, training error can only decrease. This is
because the optimizer can set w; = 0 if feature ¢ cannot be used to reduce training error.

Training Error

Model Order

Adding more features tends to reduce true error as long as the additional features are useful
predictors of the output. However, if we keep adding features, these begin to fit noise in the
training data instead of the true signal, causing true error to actually increase. This phenomenon
is known as overfitting.

True Error

Model Order

The validation error tracks the true error reasonably well as long as the validation set is sufficiently
large. The regularization hyperparameter A has a somewhat different effect on training error.
Observe that if A = 0, we recover the exact OLS problem, which is directly minimizing the training
error. As) increases, the optimizer places less emphasis on the training error and more emphasis
on reducing the magnitude of the parameters. This leads to a degradation in training error as A
grows:

1.4. HYPERPARAMETERS AND VALIDATION 15

Training Error

Regularization Weight

Cross-validation

Setting aside a validation set works well, but comes at a cost, since we cannot use the validation
data for training. Since having more data generally improves the quality of the trained model,
we may prefer not to let that data go to waste, especially if we have little data to begin with
and/or collecting more data is expensive. Cross-validation is an alternative to having a dedicated
validation set.

k-fold cross-validation works as follows:

1. Shuffle the data and partition it into k equally-sized (or as equal as possible) blocks.
2. Fori=1,...,k,
e Train the model on all the data except block i.

e Evaluate the model (i.e. compute the validation error) using block i.

1 2 3 4) 6 k
validate train
train validate train
train validate train

3. Average the k validation errors; this is our final estimate of the true error.

Observe that, although every datapoint is used for evaluation at some time or another, the model
is always evaluated on a different set of points than it was trained on, thereby cleverly avoiding the
“data incest” problem mentioned earlier.

Note also that this process (except for the shuffling and partitioning) must be repeated for every
hyperparameter configuration we wish to test. This is the principle drawback of k-fold cross-
validation as compared to using a held-out validation set — there is roughly k£ times as much
computation required. This is not a big deal for the relatively small linear models that we’ve seen
so far, but it can be prohibitively expensive when the model takes a long time to train, as is the
case in the Big Data regime or when using neural networks.

16

CHAPTER 1.

REGRESSION 1

Chapter 2

Regression 11

2.1 MLE and MAP for Regression (Part I)

So far, we’ve explored two approaches of the regression framework, Ordinary Least Squares and
Ridge Regression:

Wors = argmin ||y — XWH%
W

Wripep = argmin ||y — XWH% + /\HWH%
w

One question that arises is why we specifically use the ¢? norm to measure the error of our predic-
tions, and to penalize the model parameters. We will justify this design choice by exploring the
statistical interpretations of regression — namely, we will employ Gaussians, MLE and MAP to
validate what we’ve done so far through a different lens.

Probabilistic Model

In the context of supervised learning, we assume that there exists a true underlying model
mapping inputs to outputs:

fix o f(x)
The true model is unknown to us, and our goal is to find a hypothesis model that best represents
the true model. The only information that we have about the true model is via a dataset

D = {(xi,4:) }iza
where x; € R? is the input and y; € R is the observation, a noisy version of the true output f (x;):
Yi=f(xi) + Zi

We assume that x; is a fixed value (which implies that f(x;) is fixed as well), while Z; is a random
variable (which implies that Y; is a random variable as well). We always assume that Z; has zero
mean, because otherwise there would be systematic bias in our observations. The Z;’s could be
Gaussian, uniform, Laplacian, etc... In most contexts, we us assume that they are independent
identically distributed (i.i.d) Gaussians: Z; Py N(0,0?). We can therefore say that Y; is a
random variable whose probability distribution is given by

Y SN (f(x:),0%)

17

18 CHAPTER 2. REGRESSION II

Now that we have defined the model and data, we wish to find a hypothesis model hg (parameterized
by) that best captures the relationships in the data, while possibly taking into account prior beliefs
that we have about the true model. We can represent this as a probability problem, where the goal
is to find the optimal model that maximizes our probability.

Maximum Likelihood Estimation

In Maximum Likelihood Estimation (MLE), the goal is to find the hypothesis model that
maximizes the probability of the data. If we parameterize the set of hypothesis models with 8, we
can express the problem as

Oyu: = argmax £(0; D) = p(data = D | true model = hg)
0

The quantity £(0) that we are maximizing is also known as the likelihood, hence the term MLE.
Substituting our representation of D we have

- arggnax L(0;X,y)=p(Y1,-- - Yn | X1,...,Xn,0)

Note that we implicitly condition on the x;’s, because we treat them as fized values of the data. The
only randomness in our data comes from the y;’s (since they are noisy versions of the true values
f(x;)). We can further simplify the problem by working with the log likelihood ¢(0;X,y) =
log £(0;X,y)
Oyis = arg max L£(0;X,y) = argmax ¢(0; X,y)
0 0

With logs we are still working with the same problem, because logarithms are monotonic functions.
In other words we have that:

P(A) < P(B) < logP(A) <log P(B)
Let’s decompose the log likelihood:
(0;X,y) =logp(y1, - yn | X1, ., %0, 0) = log | [p(vi | x:,0) = Y log[p(yi | xi,0)]
i=1 i=1

We decoupled the probabilities from each datapoints because their corresponding noise components
are independent. Note that the logs allow us to work with sums rather products, simplifying
the problem — one reason why the log likelihood is such a powerful tool. Each individual term
p(yi | xi,0) comes from a Gaussian

Yi| 0 ~ N (he(xi),07)
Continuing with logs:
Oyir = argmax £(0; X, y) (2.1)
0
= arg max lo N 2.2
g0 ; glp(yi | xi,0)] (2.2)

= arg max — (i WW) — nlogV2no (2.3)

202
0 i—1

2.1. MLE AND MAP FOR REGRESSION (PART I) 19

= arg min (Z WM) + nlog V2ro (2.4)

202

Note that in step (4) we turned the problem from a maximization problem to a minimization
problem by negating the objective. In step (5) we eliminated the second term and the denominator
in the first term, because they do not depend on the variables we are trying to optimize over.

Now let’s look at the case of regression — our hypothesis has the form hg(x;) = x;'0, where
0 € R%, where d is the number of dimensions of our featurized datapoints. For this specific setting,
the problem becomes:

n
; . Tp\2
O\.x = arg min g (yi —x; 0)
ocr

This is just the Ordinary Least Squares (OLS) problem! We just proved that OLS and MLE for
regression lead to the same answer! We conclude that MLE is a probabilistic justification for why
using squared error (which is the basis of OLS) is a good metric for evaluating a regression model.

Maximum a Posteriori

In Maximum a Posteriori (MAP) Estimation, the goal is to find the model, for which the data
maximizes the probability of the model:

Oviap = arg max p(true model = hy | data = D)
]

The probability distribution that we are maximizing is known as the posterior. Maximizing this
term directly is often infeasible, so we we use Bayes’ Rule to re-express the objective.

Ovinp = arg max p(true model = hg | data = D)
]

p(data = D | true model = hg) - p(true model = hg)
= arg max
0 p(data = D)
= arg max p(data = D | true model = hg) - p(true model = hyg)
0

= arg max log p(data = D | true model = hg) + log p(true model = hg)
0

= argmin — log p(data = D | true model = hg) — log p(true model = hyg)
(4

We treat p(data = D) as a constant value because it does not depend on the variables we are
optimizing over. Notice that MAP is just like MLE, except we add a term p(true model = hg) to
our objective. This term is the prior over our true model. Adding the prior has the effect of favoring
certain models over others a priori, regardless of the dataset. Note the MLE is a special case of
MAP, when the prior does not treat any model more favorably over other models. Concretely, we
have that

Orvinr = arg;nin —(izllog[p(yi | X, 0)]) — log[p(0)]

20 CHAPTER 2. REGRESSION II

Again, just as in MLE, notice that we implicitly condition on the x;’s because we treat them as

constants. Also, let us assume as before that the noise terms are i.i.d. Gaussians: N; Y N(0,0?%).
For the prior term P(@®), we assume that the components §; are i.i.d. Gaussians:

iid
0;~ N (0, 07)

Using this specific information, we now have:

Oy1p = arg min

(2?_1<yi - he<xi>>2> . S0 —0;,)?

P 202 207
n 0,2 d
= arg;nin Z(yl — hg(xi))2 + o2 Z(HJ 9]0)2
i=1 Jj=1

Let’s look again at the case for linear regression to illustrate the effect of the prior term when
0;, = 0. In this context, we refer to the linear hypothesis function hg(x) = 0'x.

n 0_2 d
0\ap = arg min 2:(3/Z —x;0)*+ — Z 9]2
S Th =1

This is just the Ridge Regression problem! We just proved that Ridge Regression and MAP for
regression lead to the same answer! We can simply set A = Z>. We conclude that MAP is a

probabilistic justification for adding the penalized ridge term in P}iidge Regression.

MLE vs. MAP

Based on our analysis of Ordinary Least Squares Regression and Ridge Regression, we should
expect to see MAP perform better than MLE. But is that always the case? Let us visit a simple
2D problem where

f(x) = slope - z + intercept
Suppose we already know the true underlying model parameters:
(slope™, intercept™) = (0.5, 1.0)

we would like to know what parameters MLE and MAP will select, after providing them with some
dataset D. Let’s start with MLE:

2.1. MLE AND MAP FOR REGRESSION (PART I) 21

intercept

slope

The diagram above shows the the contours of the likelihood distribution in model space. The gray
dot represents the true underlying model. MLE chooses the point that maximizes the likelihood,
which is indicated by the green dot. As we can see, MLE chooses a reasonable hypothesis, but
this hypothesis lies in a region on high variance, which indicates a high level of uncertainty in the
predicted model. A slightly different dataset could significantly alter the predicted model.

Now, let’s take a look at the hypothesis model from MAP. One question that arises is where the
prior should be centered and what its variance should be. This depends on our belief of what the
true underlying model is. If we have reason to believe that the model weights should all be small,

then the prior should be centered at zero with a small variance. Let’s look at MAP for a prior that
is centered at zero:

ridge prior

==

intercept
intercept

—_————
—_——

L \m\
PRI\
2

-1.5 -1

For reference, we have marked the MLE estimation from before as the green point and the true
model as the gray point. The prior distribution is indicated by the diagram on the left, and

22 CHAPTER 2. REGRESSION II

the posterior distribution is indicated by the diagram on the right. MAP chooses the point that
maximizes the posterior probability, which is approximately (0.70,0.25). Using a prior centered
at zero leads us to skew our prediction of the model weights toward the origin, leading to a less
accurate hypothesis than MLE. However, the posterior has significantly less variance, meaning that
the point that MAP chooses is less likely to overfit to the noise in the dataset.

Let’s say in our case that we have reason to believe that both model weights should be centered
around the 0.5 to 1 range.

good prior

=
——

=====—
-——
——

intercept
intercept

Our prediction is now close to that of MLE, with the added benefit that there is significantly less
variance. However, if we believe the model weights should be centered around the -0.5 to -1 range,
we would make a much poorer prediction than MLE.

bad prior

intercept
intercept

il

-2

As always, in order to compare our beliefs to see which prior works best in practice, we should use
cross validation!

2.2. BIAS-VARIANCE TRADEOFF 23

2.2 Bias-Variance Tradeoff

Recall from our previous discussion on supervised learning, that for a fixed input x the correspond-
ing measurement Y is a noisy measurement of the true underlying response f(x):

Y=fx)+7Z2

Where Z is a zero-mean random variable, and is typically represented as a Gaussian distribution.
Our goal in regression is to recover the underlying model f(.) as closely as possible. We previously
mentioned MLE and MAP as two techniques that try to find of reasonable approximation to f(.)
by solving a probabilistic objective. We briefly compared the effectiveness of MLE and MAP, and
noted that the effectiveness of MAP is in large part dependent on the prior over the parameters we
optimize over. One question that naturally arises is: how exactly can we measure the effectiveness
of a hypothesis model? In this section, we would like to form a theoretical metric that can exactly
measure the effectiveness of a hypothesis function h. Keep in mind that this is only a theoretical
metric that cannot be measured in real life, but it can be approximated via empirical experiments
— more on this later.

Before we introduce the metric, let’s make a few subtle statements about the data and hypothesis.
As you may recall from our previous discussion on MLE and MAP, we had a dataset

D = {(%i,¥i) }i=1

In that context, we treated the x;’s in our dataset D as fized values. In this case however, we treat
the x;’s as values sampled from random variables X;. That is, D is a random variable, consisting
of random variables X; and Y;. For some arbitrary test input x, h(x; D) depends on the random
variable D that was used to train h. Since D is random, we will have a slightly different hypothesis
model h(x;D) every time we use a new dataset. Note that x and D are completely independent
from one another — x is a test point, while D consists of the training data.

Metric

Our objective is to, for a fixed test point x, evaluate how closely the hypothesis can estimate the
noisy observation Y corresponding to x. Note that we have denoted x here as a lowercase letter
because we are treating it as a fixed constant, while we have denoted the Y and D as uppercase
letters because we are treating them as random variables. Y and D as independent random
variables, because our x and Y have no relation to the set of X;’s and Y;’s in D. Again, we can
view D as the training data, and (x,Y") as a test point — the test point x is probably not even in
the training set D! Mathematically, we express our metric as the expected squared error between
the hypothesis and the observation Y = f(x) + Z:

e(x;h) = E[(h(x; D) —Y)?]
The expectation here is over two random variables, D and Y:
Ep,y|(h(x; D) — Y)?| = Ep[Ey|[(h(x; D) — Y)*|D]

Note that the error is w.r.t the observation Y and not the true underlying model f(x), because we
do not know the true model and only have access to the noisy observations from the true model.

24 CHAPTER 2. REGRESSION II

Bias-Variance Decomposition

The error metric is difficult to interpret and work with, so let’s try to decompose it into parts that
are easier to understand. Before we start, let’s find the expectation and variance of Y:

EY] =E[f(x) + Z] = f(x) + E[Z] = f(x)
Var(Y) = Var(f(x) + Z) = Var(Z)

Also, in general for any random variable X, we have that

Var(X) = E[(X — E[X])?] = E[X?] - E[X]? = E[X?] = Var(X) + E[X]?
Let’s use these facts to decompose the error:

e(x;h) = E[(h(x; D) = Y)?] = E[h(x; D)’] + E[Y?] - 2E[h(x; D) - Y]

Var(h(x; D)) + E[h(x; D)J?) + (Var(¥) + E[Y]2> — 9E[h(x; D)] - E[Y]
E[h(x; D)) — 2E[h(x; D)] - E[Y] + E[Y}Q) + Var(h(x; D)) + Var(Y)
* 4 Var(h(x; D)) + Var(Y)

+ Var(h(x;D)) + Var(2)
—_———— ——

variance of method irreducible error

bias? of method

Recall that for any two independent random variables D and Y, ¢1(D) and g2(Y) are also in-
dependent, for any functions g1, g2. This implies that h(x;D) and Y are independent, allowing
us to express E[h(x;D) - Y] = E[h(x;D)] - E[Y] in the second line of the derivation. The final
decomposition, also known as the bias-variance decomposition, consists of three terms:

e Bias? of method: Measures how well the average hypothesis (over all possible training sets)
can come close to the true underlying value f(x), for a fixed value of x. A low bias means
that on average the regressor h(x) accurately estimates f(x).

e Variance of method: Measures the variance of the hypothesis (over all possible training
sets), for a fixed value of x. A low variance means that the prediction does not change much
as the training set varies. An un-biased method (bias = 0) could have a large variance.

e Irreducible error: This is the error in our model that we cannot control or eliminate, because
it is due to errors inherent in our noisy observation Y.

The decomposition allows us to measure the error in terms of bias, variance, and irreducible error.
Irreducible error has no relation with the hypothesis model, so we can fully ignore it in theory when
minimizing the error. As we have discussed before, models that are very complex have very little
bias because on average they can fit the true underlying model value f(x) very well, but have very
high variance and are very far off from f(x) on an individual basis.

Note that the error above is only for a fixed input x, but in regression our goal is to minimize
the average error over all possible values of X. If we know the distribution for X, we can find the
effectiveness of a hypothesis model as a whole by taking an expectation of the error over all possible
values of x: Ex[e(x;h)].

2.2. BIAS-VARIANCE TRADEOFF 25

Alternative Decomposition

The previous derivation is short, but may seem somewhat arbitrary. Let’s explore an alternative
derivation. At its core, it uses the technique that E[(Z — Y)?] = E[((Z — E[Z]) + (E[Z] — Y))?]
which decomposes to easily give us the variance of Z and other terms.

= E [(h(x; D) — Elh(x; D)] 2} +E [(E[h(x,p)} —Yﬂ
= Var((h(x; D)) + E | (E[a(x; D)] - V)|
— Var((h(x; D)) +E | (E[h(x; D)] - E[Y] + E[Y] - V)]
= Var((h(x; D)) +E [(E[h(x; D)] - E[Y])°] + EI(Y — E[Y])?] +2 (Elh(x; D)] - E[Y]) - EERF=T]
= Var((h(x: D)) + E | (E[h(x; D)] — EY])*] + E[(Y — E[Y])?
= Var((h(x; D)) + (E[h(x; D)) ~ E[Y])* + Var(Y)
= Var((h(x; D)) + (E[h(x: D)] - f(x))” + Var(Z)
= (E[h(x; D)) - f(x))"+ Var(h(x;D)) + Var(Z)
bias? of method variance of method irreducible error
Experiments

Let’s confirm the theory behind the bias-variance decomposition with an empirical experiment that
measures the bias and variance for polynomial regression with 0 degree, 1st degree, and 2nd degree
polynomials. In our experiment, we will repeatedly fit our hypothesis model to a random training
set. We then find the expectation and variance of the fitted models generated from these training
sets.

Let’s first look at a 0 degree (constant) regression model. We repeatedly fit an optimal constant
line to a training set of 10 points. The true model is denoted by gray and the hypothesis is denoted
by red. Notice that at each time the red line is slightly different due to the different training set
used.

26 CHAPTER 2. REGRESSION II

Fitting A Model over Multiple Datasets: p =0

] eET| \ v] . . D!

4.

Let’s combine all of these hypotheses together into one picture to see the bias and variance of our
model.

Bias and Variance in Model Selection: p =0

— fitted model p=0 |,
true model

+ data

mean fitted model — fitted model - mean model
true model mean model - mean model

-

On the top left diagram we see all of our hypotheses and all training sets used. The bottom left
diagram shows the average hypothesis in cyan. As we can see, this model has low bias for x’s in

2.2. BIAS-VARIANCE TRADEOFF 27

the center of the graph, but very high bias for x’s that are away from the center of the graph. The
diagram in the bottom right shows that the variance of the hypotheses is quite high, for all values
of x.

Now let’s look at a 1st degree (linear) regression model.

Fitting A Model over Multiple Datasets: p =1

\
N

<

VXX
NN N

\

\
3

Bias and Variance in Model Selection: p =1

. . 7
—fitted model p=1 |, . o, L 5
true model C e R

mean fitted model ——fitted model - mean model
true model mean model - mean model

The bias is now very low bias for all x’s. The variance is low for x’s in the middle of the graph,

28 CHAPTER 2. REGRESSION II

but higher for x’s that are away from the center of the graph.

Finally, let’s look at a 2nd degree (quadratic) regression model.

Fitting A Model over Multiple Datasets: p = 2

CA N

N\

A5
=
"

P

N
N Y

—fitted model p=2 |
true model

mean fitted model —fitted model - mean model
true model mean model - mean model

The bias is still very low for all x’s. However, the variance is much higher for all values of x.

Let’s summarize our results. We find the bias and the variance empirically and graph them for all
values of x, as shown in the first two graphs. Finally, we take an expectation over the bias and

2.2. BIAS-VARIANCE TRADEOFF 29
variance over all values of x, as shown in the third graph.

Variation of Prediction Error with Model Order
16 LY T T T T T T T T T

— p=0 bias+variance
14 || ==p=1 bias+variance
= =2 bias+variance
| |mmmm =3 bias+variance

Variation of Bias/Variance Over Model Order
16 x ; . ' ;

p=0 bias ‘

141 p=1 bias }

p=2 bias |

L p=3 bias |

— p=0 variance |

——p=1 variance |

=2 variance 1

|

|

|

|

|

|

(| = =3 variance
t|=——noise

e(LS)

e(LS)

Bias and Variance: Underfitting vs. Overfitting

7 T T T T
bias
o | I variance
Il noise
5 -
—~ 4
tn
=
W
3 -
2 -
1 -
0
0 1 2 3

model order

The bias-variance decomposition confirms our understanding that the true model is linear. While
a quadratic model achieves the same theoretical bias as a linear model, it overfits to the data, as
indicated by its high variance. On the other hand a constant model underfits the data, as indicated
by its high bias. In the process of training our model, we can tell that a constant model is a poor
choice, because its high bias is reflected in poor training error. However we cannot tell that a
quadratic model is poor, because its high variance is not reflected in the training error. This is the
reason why we use validation data and cross-validation as a means to measure the performance of
our hypothesis model on unseen data.

Takeaways

Let us conclude by stating some implications of the Bias-Variance Decomposition:

30 CHAPTER 2. REGRESSION II

1. Underfitting is equivalent to high bias; most overfitting correlates to high variance.

2. Training error reflects bias but not variance. Test error reflects both. In practice, if the
training error is much smaller than the test error, then there is overfitting.

3. Variance — 0 as n — oo .

4. If f is in the set of hypothesis functions, bias will decrease with more data. If f is not in the
set of hypothesis functions, then there is an underfitting problem and more data won’t help.

5. Adding good features will decrease the bias, but adding a bad feature rarely increase the bias.
(just set the coefficient of the feature to 0)

6. Adding a feature usually increase the variance, so a feature should only be added if it decreases
bias more than it increases variance.

7. Irreducible error can not be reduced.

8. Noise in the test set only affects Var(Z) , but noise in the training set also affects bias and
variance.

9. For real-world data, f is rarely known, and the noise model might be wrong, so we can’t
calculate bias and variance. But we can test algorithms over synthetic data.

2.3 Multivariate Gaussians

So far in our discussion of MLE and MAP in regression, we considered a set of Gaussian random
variables Z1, Zs, . .., Zy, which can represent anything from the noise in data to the parameters of a
model. One critical assumption we made is that these variables are independent and identically dis-
tributed. However, what about the case when these variables are dependent and/or non-identical?
For example, in time series data we have the relationship

Ziy1 =12 + U

where U; id N(0,1) and —1 <7 < 1 (so that it doesn’t blow up)
Here’s another example: consider the “sliding window” (like echo of audio)

Zi == ET’J'U,L;]'
where U; %5 N(0,1)
In general, if we can represent the random vector Z = (Z1, Za, ..., Zy) as
Z =RU

where Z € R", R € R™", U € R", and U; id N(0,1), we refer to Z as a Jointly Gaussian

Random Vector. Our goal now is to derive its probability density formula.

Definition

There are three equivalent definitions of a jointly Gaussian (JG) random vector:

1. A random vector Z = (Z1,Z,...,2Z;) is JG if there exists a base random vector U =
(Ur,Us,...,U;) whose components are independent standard normal random variables, a tran-
sition matrix R € R¥*! and a mean vector pu € R¥, such that Z = RU + p.

2.3. MULTIVARIATE GAUSSIANS 31

2. A random vector Z = (Zy, Zo, ..., Z)" is JG if Zle a;Z; is normally distributed for every
a=(a,as,...,a;)" € RF,

3. (Non-degenerate case only) A random vector Z = (21, Za, ..., Z)" is JG if

1 1 1 Ty —1
fz(z) = e~ 3 (Z—p) =" Z—p)

V1det(D)] (Vam)*

Where ¥ =E[(Z — p)(Z — u)T] = E[(RU)(RU)T] = RIE[UUT]RT =RIR'=RR'
Y is also called the covariance matrix of Z.

Note that all of these conditions are equivalent. In this note we will start by showing a proof that
(1) = (3). We will leave it as an exercise to prove the rest of the implications needed to show
that the three conditions are in fact equivalent.

Proving (1) = (3)

In the context of the noise problem we defined earlier, we are starting with condition (1), ie.
Z = RU (in this case k = [= n), and we would like to derive the probability density of Z. Note
that here we removed the p from consideration because in machine learning we always assume that
the noise has a mean of 0. We leave it as an exercise for the reader to prove the case for an arbitrary
.

We will first start by relating the probability density function of U to that of Z. Denote fy(u) as
the probability density for U = u, and similarly denote fz(z) as the probability density for Z = z.

One may initially believe that fy(u) = fz(Ru), but this is NOT true. Remember that since there
is a change of variables from U to Z, we must make sure to incorporate the change of variables
constant, which in this case is the absolute value of the determinant of R. Incorporating this
constant, we will have the correct formula:

fu(u) = [det(R)|fz(Ru)

Let’s see why this is true, with a simple 2D geometric explanation. Define U space to be the 2D
space with axes U; and Us. Now take any arbitrary region R’ in U space (note that this R’ is
different from the matrix R that relates U to Z). As shown in the diagram below, we have some
off-centered circular region R’ and we would like to approximate the probability that U takes a
value in this region. We can do so by taking a Riemann sum of the density function fy(.) over
smaller and smaller squares that make up the region R’:

/ AN
I A Y
0 0
N V.

32 CHAPTER 2. REGRESSION II

Mathematically, we have that

P(UCR) = //R Ju(u,ug) duy dug =~ ZZfU(ULUQ)AUl Aug
R/

Now, let’s apply the linear transformation Z = RU, mapping the region R’ in U space, to the
region T'(R/) in Z space.

7
EEEmn R T // A
i \ /7 /
\9 R ; o T(R') /
V. / /
Tt (/ /
N 4l
N

The graph on the right is now Z space, the 2D space with axes Z; and Zs. Assuming that the
matrix R is invertible, there is a one-to-one correspondence between points in U space to points in
Z space. As we can note in the diagram above, each unit square in U space maps to a parallelogram
in Z space (in higher dimensions, we would use the terms hypercube and parallelepiped). Recall
the relationship between each unit hypercube and the parallelepiped it maps to:

Area(parallelepiped) = | det(R)]| - Area(hypercube)

In this 2D example, if we denote the area of each unit square as AujAuo, and the area of each unit
parallelepiped as AA, we say that

AA = |det(R)| - AujAugy

Now let’s take a Riemann sum to find the probability that Z takes a value in T'(R/):
P(Z - T(R/)) = // fz(zl, ZQ) d21 dZQ
T(R)

~ Z Z fz(z) AA
)

T(R/

= Z Z fz(Ru) | det(R)|Aug Aug
R

Note the change of variables in the last step: we sum over the squares in U space, instead of
parallelograms in R space.

So far, we have shown that (for any dimension n)

P(UQR’):/.../leU(u)duldug...dun

2.3. MULTIVARIATE GAUSSIANS 33

and
P(ZCT(R)) = /.../R/ fz(Ru) |det(R)|duidus . . . duy,

Notice that these two probabilities are equivalent! The probability that U takes value in R’ must
equal the probability that the transformed random vector Z takes a value in the transformed region
T(R/).

Therefore, we can say that
P(UQRI):// fU(u)duldug...dun
Rl
= // fz(Ru) |det(R)|duidus . . . duy,
R/
— P(ZCT(R))

We conclude that
fu(u) = fz(Ru) [det(R)

An almost identical argument will allow us to state that

f2(2) = fu(R™'2) | det(R")] fuR™'2)

_ 1
~ [det(®)|

Since the densities for all the U;’s are i.i.d, and U = R™'Z, we can write the joint density function
of Z as

_ 1 -1
fz(z) = me(R z)

1 - _

= m H fu,(R™'2),)
i=1
_ 1 I imig R)
| det(R)| (v2m)n

-].]_ e*%ZTR_TR_lz
~ |det(R)[(v2m)»

1 1 e_%zT(RRT)—lz

| det(R)[(v2m)n
Note that (RR')~! is simply the covariance matrix for Z:
Cov[Z] = E[ZZ'] = ERUU'R'] = RE[UU'|R' = RIR' = RR'

Thus the density function of Z can be written as

1 1 _é nglz

) = [aa @ (vam©

Furthermore, we know that
| det(S5)| = | det (RRT>\

— |det(R) - det (RT) |

34 CHAPTER 2. REGRESSION II

= |det(R) - det(R)| = | det(R)|?

and therefore
1 1 _ % > 2 1Z

fZ(Z) = /7det(22) (\/%)ne

Estimating Gaussians from Data

For a particular multivariate Gaussian distribution f(.), if we do not have the true means and
covariances u, 3, then our best bet is to use MLE to estimate them empirically with i.i.d. samples
X1, X2,...,Xp!

i

1
5w
n

ti:k
o 1 . ~
5= g(xi —) (xi —)"

Note that the above formulas are not necessarily trivial and must be formally proven using MLE.
Just to present a glimpse of the process, let’s prove that these formulas hold for the case where we
are dealing with 1-d data points. For notation purposes, assume that D = {x1,x9,...,2,} is the
set of all training data points that belong to class k. Note that the data points are i.i.d. Our goal
is to solve the following MLE problem:

-2 2
fi,0° = argmax P(x1,xo,...,xn | p,0°)
02

= arg max 1n<P(ac1, Ty ey Tn | 11, 02)>

02

02 =1
n N2
= arg min Z (12 2,u) +In(o)
w02 i=1 g

Note that the objective above is not jointly convex, so we cannot simply take derivatives and set
them to 0! Instead, we decompose the minimization over o2 and u into a nested optimization
problem:
n 2 n 2
i — i —
min (@i = p)” +In(¢) = minmin (@i=)

hot £ 207 R Lo
1= 1=

+ In(o)

The optimization problem has been decomposed into an inner problem that optimizes for u given
a fixed 02, and an outer problem that optimizes for o2 given the optimal value fi. Let’s first solve
the inner optimization problem. Given a fixed o2, the objective is convex in u, so we can simply
take a partial derivative w.r.t p and set it equal to 0:

0 [~ (7 — p)? — —(z; — . 1¢
(0t) = T —0 — = S

i=1 =1 1=1

2.3. MULTIVARIATE GAUSSIANS 35

Having solved the inner optimization problem, we now have that

n L 2 n L0 2
min min (=) + In(0) = min (i)°
oz =1 202 o2 =1 202

+ In(o)

Note that this objective is not convex in o, so we must instead find the critical point of the objective
that minimizes the objective. Assuming that ¢ > 0, the critical points are:

e 0 = 0: assuming that not all of the points x; are equal to fi, there are two terms that are at
odds with each other: a 1/0? term that blows off to oo, and a In(c) term that blows off to
—o0 as 0 — 0. Note that the 1/0% term blows off at a faster rate, so we conclude that

n 512

(w; — f1)

lim 5 +1n(o) = o0

o—0 4 20
=1

e 0 = oo: this case does not lead to the solution, because it gives a maximum, not a minimum.
n)2
i —
lim Z (@i =) +1In(o) = o0

o—00 4 202
=1

e Points at which the derivative w.r.t o is 0

"~ l’i—Az n SL'Z'—A2 R A
;0_(2(202“)+1n<a>)=2—<0ﬁ+;:0 — o—2=%2<xi_m2
1

i= i=1 i=1

We conclude that the optimal point is

Isocontours

Let’s try to understand in detail how to visualize a multivariate Gaussian distribution. For sim-
plicity, let’s consider a zero-mean Gaussian distribution N (0,X), which just leaves us with the
covariance matrix 3. Since X is a symmetric, positive semidefinite matrix, we can decompose it
by the spectral theorem into ¥ = VAV, where the columns of V form an orthonormal basis in
R? and A is a diagonal matrix with real, non-negative values. We wish to find its level set

f(x) =k

or simply the set of all points x such that the probability density f(x) evaluates to a fixed constant
k. This is equivalent to the level set In(f(x)) = In(k) which further reduces to

xI'y~Ix = ¢

for some constant ¢. Without loss of generality, assume that this constant is 1. The level set
xS 1x =1 is an ellipsoid with axes vi,Va, ..., vq, with lengths v/ A1, VA2, . .., Vg, respectively.
Each axis of the ellipsoid is the vector /A;v;, and we can verify that

(\/)\iVi)TE_l(\/)\ZVZ) ==)\Z'VZTE_IVi =)\iVZT(E_IVi) ==)\ZV?(A;lvl) == VTVl' =1

2

36 CHAPTER 2. REGRESSION II

The entries of A dictate how elongated or shrunk the distribution is along each direction. In the
case of isotropic distributions, the entries of A are all identical, meaning the the axes of the
ellipsoid form a circle. In the case of anisotropic distributions, the entries of A are not necessarily
identical, meaning that the resulting ellipsoid may be elongated /shrunken and also rotated.

N\

h : L n o L
-2 -1 0 1 2

)

Figure 2.1: Isotropic (left) vs Anisotropic (right) contours are ellipsoids with axes /A;v;. Images courtesy
Professor Shewchuk’s notes

Properties

Let’s state some well-known properties of Multivariate Gaussians. Given a JG random vector
Z ~ N(pg,Xz), the linear transformation AZ (where A is an appropriately dimensioned constant

matrix) is also JG:
AZ ~ N(Apgz, AXzAT)

We can derive the mean and covariance of AZ using the linearity of expectations:
paz = E[AZ] = AE[Z] = Apg
and
Saz = E[(AZ — E[AZ])(AZ - E[AZ)])]]

= E[A(Z - E[Z])(Z - E[Z])TAT]

= AE[(Z - E[Z))(Z - E[Z))'|A"

= AEZAT
Note that the statements above did not rely on the fact that Z is JG, so this reasoning applies

to all random vectors. We know that AZ is JG itself, because it can be expressed as a linear
transformation of i.i.d. Gaussians: AZ = ARU.

Now suppose that we have the partition Z = [X] whose distribution is given by Z ~ N (g, Xz)

Y

and
Hx} 5, — [EXX 2XY:|

Hz = [HY Yyx Xyy

It turns out that the marginal distribution of the individual random vector X (and Y) is JG:
X ~ N(px, ¥xx)

https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf

2.4. MLE AND MAP FOR REGRESSION (PART II) 37

However, the converse is not necessarily true: if X and Y are each individually JG, it is not
necessarily the case that [Y] is JG! To see why, let’s suppose that X and Y are individually JG.

Thus, we can express each as a linear transformation of i.i.d. Gaussian random variables:
X =RxUx,Y =RyUy
we would expect that the expression for the joint distribution would be JG:
-1 w7
Y 0 Ryl |Uy
However, since we cannot guarantee that the entries of Ux are independently distributed from the

entries of Uy, we cannot conclude that the joint distribution is JG. If the entries are independently
distributed, then we would be able to conclude that the joint distribution is JG.

Let’s now transition back to our discussion of Z. The conditional distribution of X given Y
(and vice versa) is also JG:

XY ~ N(pux + ExyEvy (Y — py), Zxx — Exy Syy Dvx)

If X and Y are uncorrelated (that is, if ¥xv = 3yx = 0), we can say that they are independent.
Namely, the conditional distribution of X given Y does not depend on Y:

X[Y ~ N(px + 0835 (Y — py), Bxx — 0534,0) = N (px, Txx)

This also follows from the multivariate Gaussian pdf:

()= = Ve <_; T 5] BD
T |Sxx| 7 exp <—; szg(x) (\/2%71 |Syy | F exp <—; T23Y1Yy>
=Ix(x) - fx(y)

0 Xyy

3

Note the significance of this statement. Given any two general random vectors, we cannot neces-
sarily say “if they are uncorrelated, then they are independent”. However in the case of random
vectors from the same JG joint distribution, we can make this claim.

2.4 MLE and MAP for Regression (Part II)

The power of probabilistic thinking is that it allows us a way to model situations that arise and
adapt our approaches in a reasonably principled way. This is particularly true when it comes to
incorporating information about the situation that comes from the physical context of the data
gathering process. In this note, we will explore what happens as we vary our assumptions about
the noise in our data and the priors for our parameters, as well as the “importance” of certain
training points.

So far we have used MLE and MAP to justify the optimization formulation of OLS and ridge
regression, respectively. The MLE formulation assumes that the observation Y; is a noisy version
of the true underlying output:

Y= f(xi) + Zi

38 CHAPTER 2. REGRESSION II

where the noise for each datapoint is crucially i.i.d. The MAP formulation assumes that the model
parameter WW; is according to an i.i.d. Gaussian prior

iid
Wj ~ (,uj ; U}QL)

So far, we have restricted ourselves to the case when the noise/parameters are i.i.d:

Z~ N(Ov 021)7 W~ N(“W7U}2LI)

However, what about the case when N;’s/W;’s are non-identical or dependent on one another? We
would like to explore the case when the observation noise and underlying parameters are jointly
Gaussian with arbitrary individual covariance matrices, but are independent of each other.

ZNN(O’ZZ)a WNN(MW,EW)

It turns out that via a change of coordinates, we can reduce these non-i.i.d. problems back to the
i.i.d. case and solve them using the original techniques we used to solve OLS and Ridge Regression!
Changing coordinates is a powerful tool in thinking about machine learning.

Weighted Least Squares

The basic idea of weighted least squares is the following: we place more emphasis on the loss
contributed from certain data points over others - that is, we care more about fitting some data
points over others. It turns out that this weighted perspective is very useful as a building block
when we go beyond traditional least-squares problems.

Optimization View
From an optimization perspective, the problem can be expressed as
n
- . T\ 2
Wwis = arg min (Zwl(y, —X; W))
wERd i—1

This objective is the same as OLS, except that each term in the sum is weighted by a positive
coefficient w;. As always, we can vectorize this problem:

Wyis = argmin (y — Xw)' Q(y — Xw)
weR?

Where the i’th row X is x;', and © € R" " is a diagonal matrix with €2;; = w;.

We rewrite the WLS objective to an OLS objective:

Wwis = argmin (y — Xw) Q(y — Xw)

weR?

= argmin (y — Xw)'Q2QY2(y — Xw)
weR?

= argmin (2?%y — Q2Xw)"(Q%y — Q1/2Xw)
weRd

= argmin [|Q"%y — Q'/2Xw|?
weR?

2.4. MLE AND MAP FOR REGRESSION (PART II) 39

This formulation is identical to OLS except that we have scaled the data matrix and the observation
vector by ©1/2, and we conclude that

1
Wis = ((@2X)T(V2X)) - (@2X)T0Y2y = (XTX) "' X0y

Probabilistic View

As in MLE, we assume that our observations y are noisy, but now suppose that some of the y;’s
are more noisy than others. How can we take this into account in our learning algorithm so we can
get a better estimate of the weights? Our probabilistic model looks like

Y =x;'w + Z;

where the Z;’s are still independent Gaussians random variables, but not necessarily identical:
Z; ~ N(0,02). Jointly, we have that Z ~ N (pz, Xz), where

0% 0O --- 0
0 o2 -~ 0
Xz=1|. . .
0O -« ... o2

n

We can morph the problem into an MLE one by scaling the data to make sure all the Z;’s are
identically distributed, by dividing by o;:
Y, x' Z;
7'W R
oi Oi oi
Note that the scaled noise entries are now i.i.d:
RN,

0;

Jointly, we can express this change of coordinates as
1 1 1 _I _1
3,2y ~N(B 2 Xw, X, 23825, 2) = N (2,2 Xw, I)

This change of variable is sometimes called the reparameterization trick. Now that the noise is
i.i.d. using the change of coordinates, we rewrite our original problem as a scaled MLE problem:

n (Yi x'iTW)2

~ _ . O'ii B g
WywLs = arg min 5
WERT \ =1

+ nlog v2rw

n

1

— i , Tw)?

= arg min E — (yi —xi W)
wER? 1 ag;

The MLE estimate of this scaled problem is equivalent to the WLS estimate of the original problem:
Was = (X278, °X)1X'E, 2% 2y = (X'E,'X) I X2y

As long as no ¢ is 0, Xz is invertible. Note that w; from the optimization perspective is directly
related to 022 from the probabilistic perspective: w; = % Or at the level of matrices, Q = Xz 1.

As the variance 01-2 of the noise corresponding to data point ¢ decreases, the weight w; increases: we
are more concerned about fitting data point 7 because it is likely to match the true underlying de-
noised point. Inversely, as the variance a? increases, the weight w; decreases: we are less concerned
about fitting data point 7 because it is noisy and should not be trusted.

40 CHAPTER 2. REGRESSION II

Generalized Least Squares

Now let’s consider the case when the noise random variables are dependent on one another. We
have

Y =Xw+Z

where Z is now a jointly Gaussian random vector. That is,
Z ~ N(O, Zz), Y ~ ./\/’(}(W7 Ez)

This problem is known as generalized least squares. Our goal is to maximize the probability of
our data over the set of possible w’s:

e 3 (y—Xw) 85 (y—Xw)

. 1 1
Wers = arg max
o v%eRd Vdet(Xz) (V2m)"

= argmin (y — Xw) 2, (y — Xw)
weRd

The optimization problem is therefore given by

Wars = argmin (y — XW)TEEI(y — Xw)
weRd

Since Xz is symmetric, we can decompose it into its eigen structure using the spectral theorem:

o2 0 0
0 o3 0

Yz =Q } : Q'
0 o2

where Q is orthonormal. As before with weighted least squares, our goal is to find an appropriate
linear transformation so that we can reduce the problem into the i.i.d. case.

Consider
= 0 0
_1 0 ai 0
=, =Q|. ° Q'
0 1

We can scale the data to morph the problem into an MLE problem with i.i.d. noise variables, by
1

premultiplying the data matrix X and the observation vector y by 2;5. Jointly, we can express
this change of coordinates as

[

2.0y ~N(EZXw, 2,288, %) = N (2,2 Xw, I).

Consequently, in a very similar fashion to the independent noise problem, the MLE of the scaled
dependent noise problem is

Wars = (X2 X) 71Xy

2.4. MLE AND MAP FOR REGRESSION (PART II) 41

“Ridge Regression” with Dependent Parameters

In the ordinary least squares (OLS) statistical model, we assume that the output Y is a linear
function of the input, plus some Gaussian noise. We take this one step further in MAP estimation,
where we assume that the weights are a random variable. The new statistical model is

Y=XW+7Z

where Y and Z are n-dimensional random vectors, W is a d-dimensional random vector, and X is
a fixed n x d matrix. Note that random vectors are not notationally distinguished from matrices
here, so keep in mind what each symbol represents.

We have seen that ridge regression can be derived by assuming a prior distribution on W in which
W; are i.i.d. (univariate) Gaussian, or equivalently,

W ~ N(0,1)
But more generally, we can allow W to be any multivariate Gaussian:

Recall that we can rewrite a multivariate Gaussian variable as an affine transformation of a standard
Gaussian variable:

W =SV + gy, V ~N(0,T)
Plugging this parameterization into our previous statistical model gives
Y = X(Z{V + pw) + Z
But this can be re-written
Y - Xpw = XELV + Z

which we see has the form of the statistical problem that underlies traditional Ridge Regression
with A = 1, and therefore

T/Q

V= (WX XSE + D' SWX (v - Xpw)

However V is not what we care about — we need to convert back to the actual weights W in order to
make predictions. Since W is completely determined by V (assuming fixed mean and covariance),

= pw + S (S X XS + D)7 IS X (y — Xpw)
-T —1/p _
= pw + (XX + B *53) 71X (y — Xpw)
———
o

= pw + (XX +25) X (y — Xpw)
Note that there are two terms: the prior mean pyy, plus another term that depends on both the
data and the prior. The positive-definite precision matrix of W’s prior (25\}) controls how the data

fit error affects our estimate. This is called Tikhonov regularization in the literature and generalizes
ridge regularization.

42 CHAPTER 2. REGRESSION II

To gain intuition, let us consider the simplified case where

o2 0 0

0 o3 0
Yw = . .

0 0 o2

When the prior variance 0]2- for dimension j is large, the prior is telling us that W, may take on a
wide range of values. Thus we do not want to penalize that dimension as much, preferring to let
the data fit sort it out. And indeed the corresponding entry in 2%} will be small, as desired.

Conversely if 0j2~ is small, there is little variance in the value of W;, so W; ~ p;. As such we penalize

the magnitude of the data-fit contribution to Wj more heavily.
If all the 0]2 are the same, then we have traditional ridge regularization.

Alternative derivation: directly conditioning jointly Gaussian random variables

In an explicitly probabilistic perspective, MAP with colored noise (and known X) can be expressed
as:

U, V¥ N(0,T) (2.6)
Y| |Rz XRw| |U
MR e
where Rz and Rw are relationships with W and Z, respectively. Note that the Rw appears

twice because our model assumes Y = XW + noise, so if W = RwV, then we must have Y =
XRwV + noise.

We want to find the posterior W | Y =y. The formulation above makes it relatively easy to find
the posterior of Y conditioned on W' (see below), but not vice-versa. So let’s pretend instead that

U, V' ¥ N (0,T)
wW]| [A BJ| (U
Y| (0 D||V
Now W | Y = y is straightforward. Since V/ = D~'Y, the conditional mean and variance of
W | Y =y can be computed as follows:
EW |Y =y] =EAU' + BV' | Y =]
=EAU' | Y =y]+EBD 'Y |Y =y]
= AE[U|+EBD 'Y | Y =]

——
0

=BD 'y
Var(W | Y = y) = E[(W — E[W])(W —E[W])' | Y =]
E[(AU'+ BD'Y - BD'Y)(AU'+ BD'Y —-BD'Y)' | Y = y]
E[(AU)(AU) | Y =]
E[AU'(U")'AT]

2.4. MLE AND MAP FOR REGRESSION (PART II) 43

= AE[U(U)TAT
N—_———
=Var(U’)=I

= AAT

In both cases above where we drop the conditioning on Y, we are using the fact U’ is independent
of V' (and thus independent of Y = DV’). Therefore

WI|Y=y~NBD 'y, AA"

Recall that a Gaussian distribution is completely specified by its mean and covariance matrix. We
see that the covariance matrix of the joint distribution is

W -l A B
MR
AAT+ BB BD'
DB’ DD’

_ [Ew Zwy
Xy w Xy

E B' D'

AT 0]

Matching the corresponding terms, we can express the conditional mean and variance of W | Y =y
in terms of these (cross-)covariance matrices:

-1 T—T -1 T T\ —1 -1
BD 'Y =BD'D 'D 'Y = (BD")(DD)"'Y = SwyZ{'Y
I
AAT=AA"+BB'-BB'
—AAT+BB'-BD'D "D 'DB'
I I
= AA"+BB'— (BD")(DD')"'DB’
=Sw - EwvyEy' Sy w

We can then apply the same reasoning to the original setup:

[Y] [YT Wﬂ] _ |RzRz"+ XRwRw'X" XRwRw'
W

E

RwRw X' RwRw'
_| Yy Eyw
YXwy 2w

Therefore after defining ¥z = RzRgz', we can read off

Yw = RwRw'

Yy =3z + XZwX'
Ty.w = XZw
Swy =ZwX'

Plugging this into our estimator yields
w=E[W|Y =y
=SwySy'y

44 CHAPTER 2. REGRESSION II

= YwX'(Zz + XZwX)ty

One may be concerned because this expression does not take the form we expect — the inverted
matrix is hitting y directly, unlike in other solutions we’ve seen. Although this form will turn out
to be quite informative when we introduce the idea of the kernel trick in machine, learning, it is
still disconcertingly different from what we are used to.

However, by using a lot of algebra together with the Woodbury matrix identity!, it turns out that
we can rewrite this expression as

w=X'2,'X+2y) X',y

which looks more familiar. In fact, you can recognize this as the general solution when we have
both a generic Gaussian prior on the parameters and colored noise in the observations.

Summary of Linear Gaussian Statistical Models

We have seen a number of related linear models, with varying assumptions about the randomness
in the observations and the weights. We summarize these below:

W z N(0,1) N(0,%z)
No prior Wors = (X'X) "Xy Was = (XT2,'X)71XTS, Ty
N(0, A7) Wriee = (XX + M)~ Xy (X=X + D)Xy
N(pw, Bw) | pw + (XX +230) "X (y - Xpy) | pw + (X' X+ 350) ' XTE, (y — Xpw)

2.5 Kernels and Ridge Regression

In ridge regression, we given a vector y € R” and a matrix X € R™*¢, where n is the number of
training points and ¢ is the dimension of the raw data points. In most settings we don’t want to
work with just the raw feature space, so we augment features to the data points and replace X
with & € R"*? where ¢, = ¢(x;) € R%. Then we solve a well-defined optimization problem that
involves ® and y, over the parameters w € R?. Note the problem that arises here. If we have
polynomial features of degree at most p in the raw ¢ dimensional space, then there are d = (K;p)
terms that we need to optimize, which can be very, very large (much larger than the number of
training points n). Wouldn’t it be useful, if instead of solving an optimization problem over d
variables, we could solve an equivalent problem over (potentially much smaller) n variables, and
achieve a computational runtime independent of the number of augmented features? As it turns
out, the concept of kernels (in addition to a technique called the kernel trick) will allow us to
achieve this goal. Recall the solution to ridge regression:

w'=(®'® 4+ D)@'y

This operation involves calculating ®'®, which is a d x d matrix and takes O(d?n) time to compute.
The matrix inversion operation takes an additional O(d?) time to compute. What we would really
like is to have an n x n matrix that takes O(n?) to invert. Here’s a simple observation: if we flip
the order of @ and ®, we end up with an n x n matrix ®®'. In fact, the matrix ®®' has a very
intuitive meaning: it is the matrix of inner products between all of the augmented datapoints, which
in loose terms measures the “similarity” among of the datapoints and captures their relationship.
Now let’s see if we could somehow express the solution to ridge regression using the matrix ®®'.

L(A4+UCV) 1=A"1-_A-lUC+VA-IU)"1VA!

2.5. KERNELS AND RIDGE REGRESSION 45

Derivation

For simplicity of notation, let’s revert back to using X instead of ® (pretend that we are only
working with raw features, our analysis of kernel ridge regression still holds if we use just the raw
features). Rearranging the terms of the original ridge regression solution, we have

w= (XX +)Xy
(X'X +X)w =Xy
X'Xw + Aw = X'y
Aw = X'y - X'Xw
1
w = X(XTy — X"Xw)

X'y — X'Xw
W=——
A
y — Xw
=_xX'Z =7
v X\

which says that whatever w is, it is some linear combination of the training points x; (because
anything of the form X'v is a linear combination of the columns of X', which are the training
points). To find w it suffices to find v, where w = X'v.

Recall that the relationship we have to satisfy is X'Xw — Aw = X'y. Let’s assume that we had
v, and just substitute X'v in for all the w’s.

X'X(X'v) + A\X'v) =Xy
X'XX'v + X'(\v) = X'y
X'(XXv + Av) = X'(y)

We can’t yet isolate v and have a closed-form solution for it, but we can make the observation that
if we found an v such that we had

XX'v4+Av=y

that would imply that this v also satisfies the above equation. Note that we did not “cancel the
X"’s on both sides of the equation.” We saw that having v satisfy one equation implied that it
satisfied the other as well. So, indeed, we can isolate v in this new equation:

XX+ AN)v=y — v' = (XX"+)" ly

and have that the v which satisfies this equation will be such that X'v equals w. We conclude
that the optimal w is

w* = Xv = XT(XXT +)"ty
Recall that previously, we derived ridge regression and ended up with
w' = (XX + A1) ' X'y

In fact, these two are equivalent expressions! The question that now arises is which expression
should you pick? Which is more efficient to calculate? We will answer this question after we
introduce kernels.

46 CHAPTER 2. REGRESSION II

Linear Algebra Derivation

The previous derivation involved using some intuitive manipulations to achieve the desired answer.
Let’s formalize our derivation using more principled arguments from linear algebra and optimiza-
tion Before we do so, we must first introduce the Fundamental Theorem of Linear Algebra
(FTLA): Suppose that there is a matrix (linear map) X that maps R’ to R™. Denote N (X) as
the nullspace of X, and R(X) as the range of X. Then the following properties hold:

L L
L. N(X)®R(X") =R and N(X") @ R(X) = R" by symmetry
The symbol @ indicates that we taking a direct sum of V(X) and R(X"), which means that

Vu € R there exist unique elements u; € N(X) and uz € R(X") such that u = uy + uz.
Furthermore, the symbol L indicates that A'(X) and R(X'") are orthogonal subspaces.

2. N(X'X) = N(X) and NV (XX") = M(X") by symmetry
3. R(X™X) = R(X") and R(XX") = R(X) by symmetry.

Here’s where FTLA comes, in the context of kernel ridge regression. We know that we can express
any w € R’ as a unique combination w = w; + wy, where w; € R(X") and wy € N(X).
Equivalently we can express this as w = X'v +r, where v e R” and r € N (X). Now, instead of
optimizing over w € RY, we can optimize over v € R” and r € R, which equates to optimizing over
n + £ variables. However, as we shall see, the optimization over r will be trivial so we just have to
optimize an n dimensional problem.

We know that w = X'v 4+ r, where v € R" and r € N (X). Let’s now solve ridge regression by
optimizing over the variables v and r instead of w:

vir' = argmin_ [Xw -y + A|w]3

veR” reN (X)

B . T 2 T 2

= argmin [[X(X'v+r1)—yl; + A[X v +r3
veR™ re N (X)

= argmin [XX'v+Xr—y|3 +\Xv +r3
veR”,reN(X)

= arg min (VTXXTXXTV —o2v' XXy + yTy> + A (VTXXTV + 2v7XT + I‘TI')
veR™ re N (X)

= arg min <VTXXTXXTV — 2VTXXTy) + A (vTXXTv + rTr)
veR? re N (X)

We crossed out Xr and 2v' Xr because r € N(X) and therefore Xr = 0. Now we are optimizing
over L(v,r), which is jointly convex in v and r, because its Hessian is PSD. Let’s show that this
is indeed the case:

ViL(v,r)=21>0

VeVyL(v,r) =V VL(v,r) =0
ViL(v,r) = 2XX'XX 4+ 2AXX" > 0
Since the cross terms of the Hessian are 0, it suffices that V2L(v,r) and V2L(v,r) are PSD to

establish joint convexity. With joint convexity established, we can set the gradient to 0 w.r.t r and
v and obtain the global minimum:

2.5. KERNELS AND RIDGE REGRESSION 47

Note that r* = 0 just so happens in to be in N (X), so it is a feasible point.

VyL(v*,r*) = 2XX'XXv* — 2XX'y + 2AXX'v* = 0
= XX'(XX"+ AI)v* = XX (y)
= v’ = (XX"+)"y

Note that XX+ Al is positive definite and therefore invertible, so we can compute (XX'+ AI)"ly.
Even though (XX"+AI)"ly is a critical point for which the gradient is 0, it must achieve the global
minimum because the objective is jointly convex. We conclude that

w* = X'(XX" + \I) "ty

and arrive at the same solution as in the previous derivation.

Non-i.i.d. Case

So far we have assumed the special i.i.d. case of ridge regression, where
YW ~ N(XW,0%T), W ~ N(0,031)
In the non-i.i.d case we consider arbitrary covariance matrices:
YW ~ N(XW,3z), W~ N(0,Xw)

As we’ve seen already, the solution in this case can be expressed in two forms, either the familiar
case
Ty1—1 —1\—1xTy—1
w= (XX, X+Xy) XX,y

or the case that we desire in kernel ridge regression
w* = SwX (XEwX' +2z) "y

The principal difference in the non-i.i.d case is that we are computing XZw X' as opposed to XX,

Kernels

Having derived the kernel ridge regression formulation for the raw data matrix X, we can apply
the exact same logic to the augmented data matrix ® and replace the optimal expression with

w' =& (®®" + \I)"ly

Let’s explore the ®®' term in kernel ridge regression in more detail:
o
i% ‘ ‘ ‘ ¢T¢1 ¢‘1r¢2
- @2 — .
. ¢ Py ... P,) = ¢g¢1
)N | 5 S,

&' =

ﬁ‘_‘-

Each entry <I><I>1Tj is a dot product between ¢(x;) and ¢(x;) and can be interpreted as a similarity
measure:

BB, = (¢, ;) = (d(x:), d(x;)) = k(xi,%;)

48 CHAPTER 2. REGRESSION II

where k(.,.) is the kernel function. The kernel function takes raw-feature inputs and outputs their
inner product in the augmented feature space. We denote the matrix of k(x;,x;) terms as the
Gram matrix and denote it as K:

k‘(Xl,X1> k(Xl,Xg)
K=®®" = | k(x2,%)
: k(xp, Xn)

Formally, k(x;,x;) is defined to be a valid kernel function if either of the following definitions are
met:

e There exists a feature map ¢(.) such that Vx;,x;, k(x;,x;) = (4(x5), ¢(x;))

e For all sets D = {x1,X2,...,Xp}, the Gram matrix K(D) is PSD
We will now state some basic properties of kernels.

e Given two valid kernels k, and kp, their linear combination
k(xi,xj) = akq(xi,x;5) + Bky(xi,%;)
where o, 8 > 0 is also a valid kernel. We can show this from the second property:

Vv € R", VT(aKa + Ky)v = av K,v + BvKyv > 0

e Given a positive semidefinite matrix 33,
k(xi, x;) = ¢(x:) Se(x;)
is a valid kernel. We can show this from the first property: ¢(x;) = Z%(ﬁ(xi)

e Given a valid kernel k,,
k(xi,xj) = f(xi) f(xj)ka(xi, %)

is a valid kernel. We can show this from the first property: ¢(x;) = f(x;)é(x;)

Computing the each Gram matrix entry k(x;,x;) can be done in a straightforward fashion if we
apply the feature map to x; and x; and then take their dot product in the augmented feature space
— this takes O(d) time, where d is the dimensionality of the problem in the augmented feature
space. However, if we use the kernel trick, we can perform this operation in O(¢ + logp) time,
where /¢ is the dimensionality of the problem in the raw feature space and p is the degree of the
polynomials in the augmented feature space.

Kernel Trick

Suppose that we are computing k(x,z), using a p-degree polynomial feature map that maps ¢
dimensional inputs to d = O(¢P) dimensional outputs. Let’s take p = 2 and ¢ = 2 as an example.
Define the polynomial feature map as

gZ)(x):[:c% 3 V2rize V21 V2w 1|7

2.5. KERNELS AND RIDGE REGRESSION 49

the kernel function can be expressed as

k(x,2) = ¢(x)'(2)
= x% :L‘% \@xlxg V21 \/§$2 1} T [z% z% \/52122 V22 \/izg 1
= m%zf + ZL'%Z% + 221217229 + 22121 + 22029 + 1
= (x%z% + 2w 212929 + x%zg) 4+ 22121 + 22920 + 1
= (z121 4+ To20)? + 2(x121 + To29) + 1
=(x'z)+2x'z+1
= (x'z+1)?

We can compute k(x,z) either by

1. Raising the inputs to the augmented feature space and take their inner product

2. Computing (x'z + 1)2, which involves an inner product of the raw-feature inputs
puting

Clearly, the latter option is much cheaper to calculate, taking O(¢ 4 logp) time, instead of O(¢P)
time. In fact, this concept generalizes for any arbitrary ¢ and p, and for p-degree polynomial
features, we have that

k(x,z) = (x'z+1)?
The kernel trick makes computations significantly cheaper to perform, making kernelization much
more appealing! The takeaway here is that no matter what the degree p is, the computational
complexity is the same — it is only dependent on the dimensionality of the raw feature space!

Note that we can equivalently express the degree-2 polynomial features problem using the more
natural mapping

o(x) = [of @} ma @1 w17

in which case the kernel function would be expressed as

k(x,z) = ¢(x) Tp(z) = (x'z+1)?, E=Diag(l 1 2 2 2 1)

Thus we can view kernel ridge regression with the kernel trick in two ways:

1. ii.d. prior W ~ N (0, Diag (1 1111 1)), using the feature mapping ¢(x)

2. non-i.i.d prior W ~ N (O,Diag (11222 1)), using the feature mapping ¢(x) (note
that the kernel trick is only applicable for this specific setting of 3 — it does not necessarily
apply to arbitrary X.)

Computational Analysis

Back to the original question: in ridge regression, should we compute
w'=®(®D" + \I) "y
or
w' = (®'® + \I) @'y
Let’s compare their computational complexities. Suppose you are given an arbitrary test point

z € RY, and you would like to compute its predicted value y. Let’s see how these values are
calculated in each case:

50 CHAPTER 2. REGRESSION II

1. Kernelized
y = (6(z),w*) = $(z) @1 (@D + AI) 'y = [k(x1,2) ... k(xs,2)] (K+AD) 'y

Computing the K term takes O(n?(¢ + logp)), and inverting the matrix takes O(n?). These
two computations dominate, for a total computation time of O(n® + n%(¢ + log p)).

2. Non-kernelized
3y = (¢(z),w") = ¢(z) (@'® + A\I) '@y

Computing the ®'® term takes O(d?n), and inverting the matrix takes O(d®). These two
computations dominate, for a total computation time of O(d® + dn).

Here is the takeaway: if d < n, the non-kernelized method is preferable. Otherwise if n < d, the
kernelized method is preferable.

2.6 Sparse Least Squares

Suppose we want to solve the least squares objective, subject to a constraint that w is sparse.
Mathematically this is expressed as

min || Xw - y|3
w

st. Jwlo <k

where the £y norm of w is simply the number of non-zero elements in w. This quantity is otherwise
known as the Hamming Distance between w and 0, the vector of zeros.

There are several motivations for designing optimization problems with sparse solutions. One
advantage is that sparse weights speed up testing time. In the context of primal problems, if the
weight vector w is sparse, then after we compute w in training, we can discard features/dimensions
with 0 weight, as they will contribute nothing to the evaluation of the hypothesized regression
values of test points. A similar reasoning applies to dual problems with dual weight vector v,
allowing us to discard the training points corresponding to dual weight 0, ultimately allowing for
faster evaluation of our hypothesis function on test points.

Note that the ¢y norm does not actually satisfy the properties of a norm, evident by the fact that
the it is not convex, a property that all norms share. Solving this optimization problem is NP-hard,
so we instead aim to find a computationally feasible alternative method that can approximate the
optimal solution. We will present two such methods: LASSO, a relaxed version of the problem that
replaces the £y norm with a /1 norm, and Matching pursuit, a greedy algorithm that iteratively
updates one entry of w at a time until the sparsity constraint can not longer be satisfied.

LASSO

The least absolute shrinkage and selection operator (LASSO), introduced in 1996 by Robert
Tibshirani, is identical to the sparse least squares objective, except that the £y norm penalizing w
is now changed to an ¢; norm:

min || Xw — y][3
w

st. |wl <k

2.6. SPARSE LEAST SQUARES 51

(The k in the constraint is not necessarily the same k in the sparse least squares objective.) The
¢1 norm of w is the sum of absolute values of its entries:

d
lwll = fwil
i=1

Unlike the fp norm, the ¢; norm actually satisfies the properties of norms. The relaxation from
the ¢y to ¢1 norm is desirable, because it makes the optimization problem convex, and is no longer
NP-hard to solve. But does the £; norm still induce sparsity like the £37 As we will see, the answer
is yes!

Due to strong duality, we can equivalently express the LASSO problem in the unconstrained form
min [Xw —y|[* + Allw];

We make a striking observation here: LASSO is identical to the ridge regression objective, except
that the ¢ norm (squared) penalizing w is now changed to an ¢; norm (with no squaring term).

Recall that the #5 norm squared of w, the sum of squared values of its entries:

d
Iwl = w?
i=1

As it turns out, the simple change from the /> to ¢; norm inherently leads to a sparse solution.
In fact, the sparsity inducing properties of the ¢; norm are not just unique to least squares. To
illustrate the point, let’s take a step away from least squares for a moment and discuss the /1 norm
in the context of SVMs. Recall the soft-margin SVM problem (constraints omitted for brevity):

Lo =
1 R
min o f|jw® + ;1 &

The slack &; is constrained to be either positive or zero. Note that if a point x; has a nonzero
slack & > 0, by definition it must lie inside the margin. Due to the heavy penalty factor C' for
violating the margin there are relatively few such points, and thus the slack vector £ is sparse
— most of its entries are 0. We are interested in explaining why this phenomenon occurs in this
specific optimization problem, and identifying the key properties that determine sparse solutions
for arbitrary optimization problems.

To reason about the SVM case, let’s see how changing some arbitrary slack variable &; affects the
loss. A unit decrease in &; results in a “reward” of C', and is captured by the partial derivative
%‘ Note that no matter what the current value of &; is, the reward for decreasing &; is constant.
Of course, decreasing &; may change the boundary and thus the cost attributed to the size of the
margin |[w|2. The overall reward for decreasing &; is either going to be worth the effort (greater
than cost incurred from w) or not worth the effort (less than cost incurred from w). Intuitively, &;

will continue to decrease until it hits a lower-bound “equilibrium” — which is often just 0.

Now consider the following formulation (constraints omitted for brevity again):
1 n
. 2 2
- C :
min o f|wil” + ;_1 i

The reward for decreasing &; is no longer constant — at any point, a unit decrease in &; results in a
“reward” of 2C¢;. As &; approaches 0, the rewards get smaller and smaller, reaching infinitesimal

52 CHAPTER 2. REGRESSION II

values. On the other hand, decreasing &; causes a finite increase in the cost incurred by the ||w/||?
— the same increase in cost as in the previous example. Intuitively, we can reason that there will
be a threshold value £ such that decreasing &; further will no longer outweigh the cost incurred by
the size of the margin, and that the &;’s will halt their descent before they hit zero.

The same reasoning applies to least squares as well. For any particular component w; of w, the
corresponding loss in LASSO is the absolute value |w;|, while the loss in ridge regression is the
squared term w?. In the case of LASSO the “reward” for decreasing w; by a unit amount is a
constant A, while for ridge regression the equivalent “reward” is 2Aw;, which depends on the value
of w;. There is a compelling geometric argument behind this reasoning as well.

B, B,

B, B,

Figure 2.2: Comparing contour plots for LASSO (left) vs. ridge regression (right).

Suppose for simplicity that we are only working with 2-dimensional data points and are thus
optimizing over two weight variables wi and we. In both figures above, the red ellipses represent
isocontours in w-space of the squared loss || Xw — y||?. In ridge regression, each isocontour of
A|lw||3 is represented by a circle, one of which is shown in the right figure. Note that the optimal
w will only occur at points of tangency between the red ellipse and the blue circle. Otherwise
we could always move along the isocontour of one of the functions (keeping its overall cost fixed)
while improving the value of the the other function, thereby improving the overall value of the
loss function. We can’t really infer much about these points of tangency other than the fact that
the blue circle centered at the origin draws the optimal point closer to the origin (ridge regression
penalizes large weights).

Now, let’s examine the LASSO case. The red ellipses represent the same objective ||Xw — y/||?,
but now the ¢ regularization term A||w||; is represented by diamond isocontours. As with ridge
regression, note that the optimal point in w-space must occur at points of tangency between the
ellipse and the diamond. Due to the “pointy” property of the diamonds, tangency is very likely to
happen at the corners of the diamond because they are single points from which the rest of the
diamond draws away from. And what are the corners of the diamond? Why, they are points at
which one component of w is 0!

2.6. SPARSE LEAST SQUARES 53

Solving LASSO

Convinced that LASSO achieves sparsity, now let’s find the optimal solution to LASSO. Unlike
ridge regression, it is not exactly clear what the closed form solution is through linear algebra or
gradient methods, since the objective function not differentiable (due to the “pointiness” of the ¢;
norm). Specifically, LASSO zeros out features, and once these weights are set to 0 the objective
function becomes non-differentiable. Note however, that the objective is still convex, and we could
use an iterative method such as subgradient descent or line search to solve the problem. Here, we
will use a line search method called coordinate descent.

While SGD focuses on iteratively optimizing the value of the objective L(w) for each sample in the
training set, coordinate descent iteratively optimizes the value of the objective for each feature.

Algorithm 1: Coordinate Descent

while w has not converged do
pick a feature index 14
update w; to argmin . L(w)

Coordinate descent is guaranteed to find the global minimum if L is jointly convex. No such
guarantees can be made however if L is only elementwise convex, since it may have local minima.
To understand why, let’s start by understanding elementwise vs joint convexity. Suppose we are
trying to minimize f(x,y), a function of two scalar variables x and y. For simplicity, assume that f
is twice differentiable, so we can take its Hessian. f(z,y) is element-wise convex in z if its Hessian
is psd when y is fixed:
82
0xdx

Same goes for element-wise convexity in y.

f(z,y) >0

f(x,y) is jointly convex in x and y if its Hessian V2 f(z,y) is psd. Note that being element-wise
convex in both x and y does not imply joint convexity in z and y (consider f(x,y) = 22 +y* — 4y
as an example). However, being joint convexity in x and y does imply being element-wise convex
in both = and y.

Now, if f(z,y) was jointly convex, then we could find the gradient wrt. z and y individually,
set them to 0, and be guaranteed that would be the global minimum. Can we do this if f(z,y) is
element-wise convex in both « and y? Even though it is true that min, , f(x,y) = min, min, f(z,y),
we can’t always just set gradients to 0 if f(x,y) is not jointly convex. While the inner optimization
problem over y is convex, the outer optimization problem over x may no longer be convex. In the
case when joint convexity is not reached, there is no clean strategy to find global minimum and we
must analyze all of the critical points to find the minimum.

In the case of LASSO, the objective function is jointly convex, so we can use coordinate descent.
There are a few details to be filled in, namely the choice of which feature to update and how w;
is updated. One simple way is to just pick a random feature ¢ each iteration. After choosing the
feature, we have to update w; <- argmin,, L(w). For LASSO, it turns out there is a closed-form
solution (note that we are only minimizing with respect to one feature instead of all the features).

Let’s solve the line search problem min,, L(w). For convenience, let’s separate the terms that
depend on w; from those that don’t. Denoting x; as the j-th column of X, we have

L(w) = |Xw — y |3 + Aw]

o4 CHAPTER 2. REGRESSION II

= Zw]x] y +)\|wz|+)\2|wj|
JFi

= Hwixi + rH2 +)\]wi| +C

where r =3 ., wjx; —y and C = A} ., [wj|. The objective can in turn be written as

n
L(w) = Awi| + C + Y (wjaji + 1))
j=1
where z; is the i’th feature of the j'th datapoint.

Suppose that the optimal w] is strictly positive: w; > 0. Setting the partial derivative of the
objective wrt. w; (the partial derivative in this case is defined since w; # 0) to 0, we obtain

n
—A =D i 2myr
n 2
ijl 2z,

OL
6wi

n
= A + Z2:cji(wixji + Tj) =0 = wf =
j=1

Denoting a = — 37 2z and b= 37 | 22%;, we have

. —Ata
w,:

! b

But this only holds if the right hand side,)‘Jra , is actually positive. If it is negative or 0, then this
means there is no optimum in (0, co).

When w; < 0, then similar calculations will lead to

*

w_)\+a
b

Again, this only holds if)‘%b'“ is actually negative. If it is positive or 0, then there is no optimum in
(—00,0).

If neither the conditions >;)+“ > 0 or)‘Jra < 0 hold, then there is no optimum in (—o0,0) or (0, 00).
But the LASSO objective is convex in wZ and has an optimum somewhere, thus in this case w; = 0.
In order for this case to hold, we must have that)‘+“ < 0 and)‘+a > 0. Rearranging, we can see
this is equivalent to |a| < A.

Examine each of the following cases:

o%gOand AJg“zO: w; =0

oﬂSOand%<0: wf <0

o%>0and#20: wi >0

7

>\+a >)\-i-

=% > (0 and)‘+a < 0: impossible since this implies 2 and A and b are non-negative

The cases above imply the optimal solution w;:

0 if |a] < A
’lU;k _ —>\b+a if —)\b-‘ra >0
Ata e A a
b lf b < 0

2.6. SPARSE LEAST SQUARES %)

where
n n
— s - 2
a=— E 2xjiri, b= E 2x3;
j=1 j=1

This is not a gradient-descent update — we have a closed-form solution for the optimum w;, given
that all of the other weights are fixed constants. We can see explicitly how the LASSO objective
induces sparsity — a is some function of the data and the other weights, and when |a| < A, we set
w; = 0 in this iteration of coordinate descent. By increasing A, we increase the threshold of |a| for
w; to be set to 0, and our solution becomes more sparse. Also note that the term 7 is the least
squares solution (without regularization), so we can see that the regularization term tries to pull

the least squares update towards O.

One subtle point: during coordinate descent, weights can be “reactivated” after having been set to
0 in a previous iteration, since a is affected by factors other than w;.

Matching Pursuit

Rather than relaxing the ¢y constraint (as seen in LASSO), the matching pursuit algorithm
keeps the constraint, and instead finds an approximate solution to the sparse least squares problem
in a greedy fashion. The algorithm starts with with a completely sparse solution (w’ = 0), and
iteratively updates w until the sparsity constraint ||[wl||o < k can no longer be met. At iteration
t, the algorithm can only update one entry of w*~!, and it chooses the feature that minimizes the
(squared) norm of the resulting residual ||rt||? = ||y — Xw!||%.

Algorithm 2: Matching Pursuit

initialize the weights w" = 0 and the residual r’ =y — Xw’ =y

while ||wl|jo < k do
find the feature ¢ for which the length of the projected residual onto x; is maximized:

[(r' 1 %)

i = arg min (min [r' ! — vx/||) = argmax ————7~
: v : 1%l

J J

update the ¢’th feature entry of the weight vector:

| update the residual vector: r! =y — Xw'

At iteration ¢, we pick the coordinate i such that the distance from the residual r'~! to x; (the i’th
column of X corresponding to feature i, not datapoint i) is minimized:

i = arg min (min [[r' 1 — vx;]|)
j v
This equates to finding the index 7 for which the length of the projection onto x; is maximized:
. ’ <rt_1’ Xj> ’
i =argmax —————
j 1

Let’s see why this is true. The inner optimization problem min,, |[r!~! —vx;|| is simply a projection
problem, and its solution is
<rt717 Xj>

(xj,%;)

56 CHAPTER 2. REGRESSION II

which gives a value of
1 <rt717xj>xi
(x5, %)

The outer optimization problem selects the feature that minimizes this quantity:

t—1 <rt_17 Xj>

i =argmin (|[r'"" — —=X;
j (x,%;)
2
-1 o
= argmin |[r'™1 —) ’Xj>xi
j (x5, %)
t—1 o \2 t—1 o \2
= argmin [[r' 1% + %) _2(r %)
i (xj,%;) (x5, %;)
t—1 o \2
= argmin [[r' 1| — &%)
i (x5, %;)
t—1 o \2
= arg max & %)7
j (x5, ;)
(1, x;)]
= arg max
j 1]

Now that we have found the feature ¢ that maximizes the length of the projection, we must update

corresponding weight i and the residual vector. The updated residual r! is the result of projecting

r'~! onto feature x;:

<rt—1 xi)

,
[l]

Figure 2.3: The updated residual rf, current residual r'~!, and scaled feature x; form a right triangle.
The updated residual is given by

I 12

which corresponds to adding <r|];|’|)§i> to the corresponding weight w}:

t—1
t t—1 (r'=hx;)

w, =w, "+ 5
' [|?

(2
We update w; to the optimum projection value and repeat greedily at each iteration. At each
iteration, the (squared) length of the residual || Xw?! — y||?> monotonically decreases since |r!~!(|? >
|rt||2. While matching pursuit is not guaranteed to find the optimal w*, in practice it works well
for most applications.

2.7. TOTAL LEAST SQUARES o7
Orthogonal Matching Pursuit

The Orthogonal Matching Pursuit (OMP) algorithm is an extension to the standard Matching
Pursuit algorithm with the following difference: at iteration ¢, we maintain a set I' of all features
selected by the algorithm so far, and instead of updating just the one weight corresponding to feature
i found at iteration ¢, we update all weights corresponding to the features in I* using Least Squares.

Algorithm 3: Orthogonal Matching Pursuit

initialize the weights w" = 0 and the residual r’ =y — Xw’ =y
initialize a set of features I° = ()

while ||wl||o < k do
find the feature i for which the length of the projected residual onto x; is maximized:

(e, x5)|

1%l

i = arg min (min ||[r' ! — vx/||) = arg max
J v J

add feature 7 to the set of features:
I'=r1"1u{i}

Estimate the best linear fit of the target y using the features obtained so far. Given that
we have found t good features, we now find the best linear fit for the target y using these
t-features. Define X; = [Xp, e ,Xit] made up of these t-features. Then we determine w?
as the solution for the following least-squares problem:

t : 2
— -X
w' = arg min ly — Xew||3

| update the residual vector: r! =y — Xw'

The motivation for OMP is as follows: if we do not refit on all features updated so far after choosing
a new feature, the new residual will not necessarily be orthogonal to the span of the canonical
basis vectors corresponding to those chosen coordinates, and is therefore not optimal. The OMP
algorithm ensures that w’ corresponds to an optimal Least Squares solution if we restricted our
features to just those in I°.

2.7 Total Least Squares

Previously, we have covered Ordinary Least Squares (OLS) which assumes that the dependent
variable y is noisy but the independent variables x are noise-free. We now discuss Total Least
Squares (TLS), where we assume that our independent variables are also corrupted by noise. For
this reason, TLS is considered an errors-in-variables model.

A probabilistic motivation?

We might begin with a probabilistic formulation and fit the parameters via maximum likelihood
estimation, as before. Consider for simplicity a one-dimensional linear model

Ytrue = Wtrue

o8 CHAPTER 2. REGRESSION II

where the observations we receive are corrupted by Gaussian noise

iid
Z,Y) = (Ttrue T 2z, Ytrue T 2y Rxy Ry ™)
(z,y) = (Ttrue + + 2y) (0,1)

Combining the previous two relations, we obtain

Y = Ytrue T 2y
= Wxtrue + 2y
=w(r — 2) + 2y

=wWr —wzg + 2y
N—_————
~N(0,w2+1)

The likelihood for a single point is then given by

1 1(y —wx)?
P N = — —_—
(35 0) 2m(w? + 1) P (2 w2+1

Thus the log likelihood is

1 1 (y — wz)?
log P(x,y;a) = constant — — lo <w2 1) -
g P(z,y;a) 5 log(w” + 5 Wit
Observe that the parameter w shows up in three places, unlike the form that we are familiar with,
where it only appears in the quadratic term. Our usual strategy of setting the derivative equal to
zero to find a maximizer will not yield a nice system of linear equations in this case, so we’ll try a

different approach.

Low-rank formulation

To solve the TLS problem, we develop another formulation that can be solved using the singular
value decomposition. To motivate this formulation, recall that in OLS we attempt to minimize
| Xw — y||3, which is equivalent to

min ||€]|3 subject to y = Xw + €
w,€

This only accounts for errors in the dependent variable, so for TLS we introduce a second residual
ex € R4 to account for independent variable error:

2

subject to (X +ex)wW =y + €

min [ex ey]

W,EX,Ey

F

For comparison to the OLS case, note that the Frobenius norm is essentially the same as the 2-norm,
just applied to the elements of a matrix rather than a vector.

From a probabilistic perspective, finding the most likely value of a Gaussian corresponds to min-
imizing the squared distance from the mean. Since we assume the noise is 0-centered, we want
to minimize the sum of squares of each entry in the error matrix, which corresponds exactly to
minimizing the Frobenius norm.

In order to separate out the terms being minimized, we rearrange the constraint equation as

[X+ex y+e) [“’1] -0

eRnX(d+1)

2.7. TOTAL LEAST SQUARES 59

This expression tells us that the vector |:WT —1] T lies in the nullspace of the matrix on the left.

However, if the matrix is full rank, its nullspace contains only 0, and thus the equation cannot
be satisfied (since the last component, —1, is always nonzero). Therefore we must choose the
perturbations ex and €y in such a way that the matrix is not full rank.

It turns out that there is a mathematical result, the Eckart-Young theorem, that can help us
pick these perturbations. This theorem essentially says that the best low-rank approximation (in
terms of the Frobenius norm?) is obtained by throwing away the smallest singular values.

Theorem. Suppose A € R™ " has rank r < min(m,n), and let A = UXV' =31 oyu;v;' be its
singular value decomposition. Then

o - 0 -+ 0

k : .0 -+ 0
Ak:ZUZ-uiVZ-T:U 0 0 o --- 0|V

i=1 : : : .o

0 0 0 - 0

where k <, is the best rank-k approrimation to A in the sense that
IA — Aglls < ||A — Al

for any A such that rank(A) < k.

Let us assume that the data matrix [X y] is full rank.? Write its singular value decomposition:

d+1
[X y] = Zaiuivi—r
=1

Then the Eckart-Young theorem tells us that the best rank-d approximation to this matrix is
d
[X +ex y+ ey] = Z aiuiviT
i=1

which is achieved by setting
T
[Ex Gy] = —0d+1Ud+1Vd+1

The nullspace of our resulting matrix is then
d
null <[X +ex y+ ey]> = null Z owv; | = span{vg1}
i=1

where the last equality holds because {v1,...,vqy1} form an orthogonal basis for R4T!. To get the

weight w, we find a scaling o such that |w' —1| T is in the nullspace, i.e.

A\'%
-1 = Vg4l

Note that this requires the (d + 1)st component of v to be nonzero. (See Sectiodor details.)

2 There is a more general version that holds for any unitary invariant norm.
3 This should be the case in practice because the noise will cause y not to lie in the columnspace of X.

60 CHAPTER 2. REGRESSION II

Noise, regularization, and reverse-regularization

In a sense, above we have solved the problem of total least squares by reducing it to computing an
appropriate SVD. Once we have v4y1, or any scalar multiple of it, we simply rescale it so that the
last component is —1, and then the first d components give us w. However, we can look at this
more closely to uncover the relationship between TLS and the ideas of regularization that we have
seen earlier in the course.

Since vg411 is a right-singular vector of [X y}, it is an eigenvector of the matrix

X'X X'y

So to find it we solve

yX yly

X'X X'yl [w 9 w |
_1| T %d+1| ¢
From the top line we see that w satisfies
X'Xw - X'y = 0§+1W
which can be rewritten as
(X'X 03, Dhw =Xy

Thus, assuming X'X — o2 11 is invertible (see the next section), we can solve for the weights as
Wis = (XX — 05, I) ' Xy

This result is like ridge regression, but with a negative regularization constant!

Why does this make sense? One of the original motivations of ridge regression was to ensure that
the matrix being inverted is in fact nonsingular, and subtracting a scalar multiple of the identity
seems like a step in the opposite direction. We can make sense of this by recalling our original

model:
X = Xtrue +Z

where Xy, are the actual values before noise corruption, and Z is a zero-mean noise term with
i.i.d. entries. Then
E[X'X] = E[(X¢rue + Z) (Xirue + Z)]
= IE[)(1:1“ue—|—)<true] + E[XtrueTZ] + E[ZTXtrue] + E[ZTZ]
- XtrueTXtrue + XtrueTE[Z] + E[Z]T Xtrue + E[ZTZ}
N~
0 0
— XtrueTXtrue + E[ZTZ]

Observe that the off-diagonal terms of E[Z'Z] terms are zero because the ith and jth rows of Z are
independent for ¢ # j, and the on-diagonal terms are essentially variances. Thus the —Ufl 11 term is
there to compensate for the extra noise introduced by our assumptions regarding the independent
variables.

For another perspective, note that

E[XT] = E[(Xtrue + Z)T] = E[XtrueT + ZT] = E[XtrueT] + E[ZT] = XtrueT

2.7. TOTAL LEAST SQUARES 61

If we plug this into the OLS solution (where we have assumed no noise in the independent variables),

we see
VAVOLS = (XtrueTXtrue)ilxtrueTy = (E[XTX] - E[ZTZ])ilE[X}Ty

which strongly resembles the TLS solution, but expressed in terms of expectations over the noise
Z.

So, is this all just a mathematical trick or is there a practical sense in which ridge regularization
itself is related to adding noise? The math above suggests that we can take the original training
data set and instead of working with that data set, just sample lots of points (say r times each)
with i.i.d. zero-mean Gaussian noise with variance A added to each of their features. Call this the
X and have the corresponding y just keep the original y values. Then, doing ordinary least squares
on this noisily degraded data set will end up behaving like ridge regression since the laws of large
numbers will make %XTX concentrate around Xgrue Xirue + M. Meanwhile X'y will concentrate
to rXtrueTyoMg with O(4/r) noise on top of this by the Central Limit Theorem (if we used other-
than-Gaussian noise to noisily resample), and straight variance-O(r) Gaussian noise if we indeed
used Gaussian noise. Putting them together means that the result of OLS with noisily augmented
training data will result in approximately the same solution as ridge-regression, with the solutions
approaching each other as the number of noisy copies r goes to infinity.

Why does this make intuitive sense? How can adding noise make learning more reliable? The
intuitive reason is that this added noise destroys inadvertent conspiracies. Overfitting happens
because the learning algorithm sees some degree of conspiracies between the observed training
labels y and the input features. By adding lots of copies of the training data with additional
noise added into them, many of these conspiracies will be masked by the added noise because they
are fundamentally sensitive to small details — this is why they manifest as large weights w. We
know from our studies of the bias/variance tradeoff that having more training samples reduces this
variance. Adding our own noisy samples exploits this variance reduction.

In many practical machine learning situations, appropriately adding noise to your training data
can be an important tool in helping generalization performance.

Existence of the solution

In the discussion above, we have in some places made assumptions to move the derivation forward.
These do not always hold, but we can provide sufficient conditions for the existence of a solution.

Proposition. Let 01,...,0411 denote the singular values of [X y}, and &1,...,04 denote the
singular values of X. If o441 < G4, then the total least squares problem has a solution, given by

Wrs = (X'X — 02, 1) ' Xy

Proof. Let Zfill o;u;v; be the SVD of [X y}, and suppose ogy1 < 4. We first show that
the (d + 1)st component of vg41 is nonzero. To this end, suppose towards a contradiction that

Vil = [aT 0} T for some a # 0. Since vy is a right-singular vector of [X y] ,1.e. an eigenvector
of [X y]T [X y], we have

X y]T[X] [3] = [)yg;();TT;’] [3] = T [3]

Then
X'Xa = o3 RL:}

62 CHAPTER 2. REGRESSION II

i.e. ais an eigenvector of X' X with eigenvalue 02 +1- However, this contradicts the fact that
52 = Amin (X' X)

since we have assumed o441 < &4. Therefore the (d + 1)st component of v4y; is nonzero, which
guarantees the existence of a solution.

We have already derived the given expression for Wy g, but it remains to show that the matrix
XX — 03 +II is invertible. This is fairly immediate from the assumption that o411 < 74, since this
implies
Odr1 < 07 = Mmin(X'X)
giving
Amin(X'X — 02 41) = Apin(X'X) — 07,1 >0

which guarantees that the matrix is invertible. O

This gives us a nice mathematical characterization of the existence of a solution, showing that the
two technical requirements we raised earlier (the last entry of v411 being nonzero, and the matrix
X'X — 03 4, being invertible) happen together. However, is the assumption of the proof likely to
hold in practice? We give an intuitive argument that it is.

Consider that in solving the TLS problem, we have determined the error term ex. In principle, we
could use this to denoise X, as in KXo = X — ex, and then perform OLS as normal. This process
is essentially the same as TLS if we compare the original formulations. Assuming the error is
drawn from a continuous distribution, the probability that the denoised matrix Xtme has collinear
columns is zero.

TLS minimizes perpendicular distance

Recall that OLS tries to minimize the vertical distance between the fitted line and data points.
TLS, on the other hand, tries to minimize the perpendicular distance. For this reason, TLS may
sometimes be referred to as orthogonal regression.

The red lines represent vertical distance, which OLS aims to minimize. The blue lines represent
perpendicular distance, which TLS aims to minimize. Note that all blue lines are perpendicular to
the black line (hypothesis model), while all red lines are perpendicular to the x axis.

Chapter 3

Dimensionality Reduction

In machine learning, the data we have are often very high-dimensional. In fact, when we introduced
the idea of features (like polynomial features), these made the dimensionality of the data even
higher. The kernel trick was something that let us partially deal with this by working with vectors
only as long as there are training samples.

However, there are a number of reasons why we might want to work with a lower-dimensional
representation:

e Visualization (if we can get it down to 2 or 3 dimensions), e.g. for exploratory data analysis
e Reduce computational load

e Reduce variance in estimation — regularize the problem

So, how can we reduce the dimensionality of data? There are obvious ways — just keeping a subset
of features. But which features? In general, that presumably depends on what you are trying to
do. What could you do if you didn’t know what you were trying to predict with those features?
This corresponds to unsupervised dimensionality reduction. There are a couple of intuitive choices.
First, just pick some features at random to keep. This is appealing for its symmetry, but it makes
you wonder if we could do better by actually looking at the data before deciding which features to
keep.

Consequently, another thing that you could do is to just keep the few features that have the most
variability — which you could measure by the variance of that feature. But what if two of the
most variable features were actually very correlated to each other? Should we really be including
both of them? Maybe we should focus on “fresh” variability somehow. To do this, maybe it would
be helpful to allow ourselves to synthesize linear combinations of features and keep some of these
synthesized features.

3.1 Principal Component Analysis

Principal Component Analysis (PCA) is exactly such an unsupervised dimensionality reduc-
tion technique. Given a matrix of data points, it finds one or more orthogonal directions that
capture the largest amount of variance in the data. Intuitively, the directions with less variance
contain less information and may be discarded without introducing too much error. One of the
practical motivations for taking this kind of unsupervised approach to dimensionality reduction is

63

64 CHAPTER 3. DIMENSIONALITY REDUCTION

that labeled training data might be hard or expensive to get, but unlabeled training data (i.e. no
y just x) might be more easily available. PCA is able to extract meaningful directions from such
unlabeled data.

Not coincidentally, PCA turns out to be intimately connected to the ideas of Total Least Squares.

Projection

Let us first review the meaning of scalar projection of one vector onto another. If v € R? is a unit
vector, i.e. |[v| = 1, then the scalar projection of another vector x € R? onto v is given by x'v.
This quantity tells us roughly how much of the projected vector x lies along the direction given
direction v. Why does this expression make sense? Recall the slightly more general formula which

holds for vectors of any length:

x'v = ||x]|||v|| cos 6
where 6 is the angle between the vectors. In this case, since ||v|| = 1, the expression simplifies to
x'v = ||x||cos§. But since cosine gives the ratio of the adjacent side (the projection we want to

find) to the hypotenuse (||x||), this is exactly what we want:

/

|A| cos@

One approach to dimensionality reduction by using projections is to choose projections at random
— sample from an iid Gaussian and then normalize the vector to get our v. This creates a
degree of fairness across the individual features since an iid Gaussian is uniform over directions
in d-dimensional space. As you will see in homework, this approach to dimensionality reduction
actually has many interesting properties. By construction, however, it does not look at any data
itself and thus is unable to prioritize important vs unimportant feature directions.

The first principal component

Let X € R™ 4 be our matrix of data, where each row is a d-dimensional datapoint. These are to
be thought of as i.i.d. samples from some random vector x.

We will assume that the data points have mean zero; if this is not the case, we can make it so by
subtracting the average of all the rows, x = %Z?’:l X;, from each row. The motivation for this is
that we want to find directions of high variance within the data, and variance is defined relative
to the mean of the data. If we did not zero-center the data, the directions found would be heavily
influenced by where the data lie relative to the origin, rather than where they lie relative to the
other data, which is more useful.

Since X is zero-mean, the sample variance of the datapoints’ projections onto a unit vector v is
given by

1< 1 1
= (xi'v)P =~ Xv[* = SvIXXv
n i—1 n n

3.1. PRINCIPAL COMPONENT ANALYSIS 65

where v is constrained to have unit norm.!

With this motivation, we define the first loading vector v; as the solution to the constrained
optimization problem

maxv' X'Xv subject to viv=1

v

Note that we have discarded the positive constant factor 1/n which does not affect the optimal
value of v.

To reduce this constrained optimization problem to an unconstrained one, we write down its La-
grangian:
Lv)=vX'Xv-\vv-1)

First-order necessary conditions for optima imply that
0= VE(Vl) == 2XTXV1 - 2)\V1

Hence X'Xv; = Avy, i.e. vy is an eigenvector of XX with eigenvalue A. Since we constrain

vi'vi = 1, the value of the objective is precisely

vlTXTle = VlT(/\Vl) =)\VlTvl =A

so the optimal value is A =)\maX(XTX), which is achieved when vy is a unit eigenvector of XX
corresponding to its largest eigenvalue.

Finding more principal components

We have seen how to find the first loading vector, which is the unit vector that maximizes the
variance of the projected data points. However, in most applications, we want to find more than
one direction. We want the subsequent directions found to also be directions of high variance,
but they ought to be orthogonal to the existing directions in order to minimize redundancy in the
information captured. Thus we define the kth loading vector v as the solution to the constrained
optimization problem

maxv' X'Xv subject to viv=1

v

viv,=0, i=1,...,k—1

We claim that v}, is a unit eigenvector of XX corresponding to its kth largest eigenvalue.

Proof. By induction on k. We have already shown that the claim is true for the base case k = 1
(where there are no orthogonality constraints). Now assume that it is true for the first k& loading
vectors vi,..., Vg, and consider the problem of finding viy1.

1 To make sense of the sample variance, recall that for any random variable Z,
Var(Z) = E[(Z - E[Z])*]

so if E[Z] = 0 then Var(Z) = E[Z2]. In practice we will not have the true random variable Z, but rather i.i.d. observations
z1,...,2n of Z. The expected value can then be approximated by a sample average, i.e.

1
E[Z?] ~ - > 2
1=1

which is justified by the law of large numbers, which states that (under mild conditions) the sample average converges to the
expected value as n — co. In our case the random variable Z is the principal component v'x, and the i.i.d. observations are
the projections of our datapoints, i.e. z; = v x;.

66 CHAPTER 3. DIMENSIONALITY REDUCTION

By the inductive hypothesis, we know that v1, ..., v, are orthonormal eigenvectors of X'X. Denote
the ith largest eigenvalue of X'X by \;, noting that X Xv; = \;v;.

The Lagrangian of the objective function is

k
LV)=vX'Xv - Avv—1)+ Z niv' v
i=1

First-order necessary conditions for optima imply that

k
0=VL(Vis1) = 2X.TX.vk-+1 — 2 v + Z nivVi
=1

This implies that, if vi is orthogonal to vy, ..., vy (as we constrain it to be), then

0= VjTO

k
T~ T T T,
= 2V]' X Xvgy1 — 2)\V]’ V41 +Z’I’]l Vi Vi
~—— S~

0 =1 B

= 2(X'Xv;) Viy1 + 1)

=2(\v) Vi1 + 1y

= 2X; V; Va1 +i))

0

forall j=1,... k.
Plugging these values back into the optimality equation above, we see that viy; must satisfy
XTXka = AVg41, i.e. Vgqp is an eigenvector of XX with eigenvalue \. As before, the value
of the objective function is then A. To maximize, we want the largest eigenvalue, but we must
respect the constraints that viy; is orthogonal to vq,...,vg. Clearly if viyq is equal to any of
these eigenvectors (up to sign), then one of these constraints will not be satisfied. Thus to maximize
the expression, v;41 should be a unit eigenvector of X'X corresponding to its (k 4 1)st largest

eigenvalue. By the spectral theorem, we can always choose this vector in such a way that it is
orthogonal to vi,..., vy, so we are done.]

We have shown that the loading vectors are orthonormal eigenvectors of X' X. In other words, they
are right-singular vectors of X, so they can all be found simultaneously by computing the SVD of
X.

Projecting onto the PCA coordinate system

Once we have computed the loading vectors, we can use them as a new coordinate system. The kth
principal component of a datapoint x; € R? is defined as the scalar projection of x; onto the kth
loading vector vy, i.e. x; vi. We can compute all the principal components of all the datapoints
at once using a matrix-matrix multiplication:

7 = XV

where V}, € R¥F is a matrix whose columns are the first k loading vectors v, ..., V.

3.1. PRINCIPAL COMPONENT ANALYSIS 67

Below we plot the result of such a projection in the case d = k = 2:

= 8 b . ..o:c'q....'uo.
b4) S s & 8fagg e . N
. . e] QQ:L..' . L]
= -.. . . i '... - L]
2 n_°% . 3 & L]

Figure 3.1: Left:data points; Right: PCA projection of data points

Observe that the data are uncorrelated in the projected space. Also note that this example does
not show the power of PCA since we have not reduced the dimensionality of the data at all — the
plot is merely to show the PCA coordinate transformation.

Once we’ve computed the principal components, we can approximately reconstruct the original
points by .
Xy = Z V' = XV, V'

The rows of X}, are the projections of the original rows of X onto the subspace spanned by the
loading vectors.

Other derivations of PCA

We have given the most common derivation of PCA above, but it turns out that there are other
ways to solve the optimization problem, or to arrive at the same formulation. These give us helpful
additional perspectives on what PCA is doing.

Changing coordinates

In PCA we want to find the unit length v that maximizes v' X'Xv. It turns out that there is a
result, sometimes referred to as the variational characterization of eigenvalues, that tells us
which vectors v achieve this. The key idea in the proof is a length-preserving change of coordinates.

Theorem. Let A € R be symmetric. Then for any v € R? satisfying ||v||2 = 1,
)\min(A) < viAv < Amax(A)

where for both bounds, equality holds if and only if v is a corresponding eigenvector.

Proof. We show only the max case because the argument for the min case is entirely analogous.

Since A is symmetric, we can decompose it as A = QAQ', where Q € R¥*? is orthogonal and
A = diag(\q,..., \g) contains the eigenvalues of A. For any v satisfying ||v||z = 1, define z = Q'v,
noting that the relationship between v and z is one-to-one because Q is invertible and that ||z|j2 = 1
because Q is orthogonal. Hence

max v Av = max z'Az = max NiZ

[[vll2=1 lIzll-=1 lzll5=1 5=

68 CHAPTER 3. DIMENSIONALITY REDUCTION

We note that

d d
Z AIZZQ < Z)\maX(A>zi2 = /\maX(A) Z ZzQ
=1 =1]

so the constraint ||z||3 = Zgzl 22 = 1 implies

d
Z Azzzz < Ama,x(-A)
i=1

Defining I = {i : \j = Amax(A)}, the index set of the largest eigenvalue, we see that the bound is
achieved with equality if and only if >, ; z2=1and z; =0 for j ¢ I. Suppose z* satisfies this

condition. Then writing q, ..., q, for the columns of Q, we have
d
vi=Qr =Y e =Y s
i=1 iel
Recall that qq,...,q, are eigenvectors of A and form an orthonormal basis for R?. Therefore by

construction, the set {q; : i € I'} forms an orthonormal basis for the eigenspace of Apax(A). Hence
v*, which is a linear combination of these, lies in that eigenspace and thus is an eigenvector of A
corresponding to Amax(A).

Conversely, suppose v € R? is unit-length but not an eigenvector corresponding to Apmax(A). The
vectors qq, .. .,qy are still a basis for R?, so we have a unique expansion

vV =2z1q; + -+ 249q

Since v does not lie in the eigenspace of Apnax(A), one of the components z; must be nonzero for
an index j & I, so equality does not hold in the bound above. O

With this result established, we see that the vector we seek (which maximizes vI X Xv) must be an
eigenvector corresponding to Amax(X'X). This is the same solution we derived via the Lagrangian
formulation above.

Minimizing reconstruction error

Recall that ordinary least squares minimizes the vertical distance between the fitted line and the
data points. We show that PCA can be interpreted as minimizing the perpendicular distance
between the data points and the subspace onto which we are projecting them.

The orthogonal projection of a vector x onto the subspace spanned by a unit vector v equals v
scaled by the scalar projection of x onto v:

Pyx = (x'v)v

Suppose we want to minimize the total reconstruction error:

n
> Il — Poxi?
=1

For any x € R%, we know x — Pyx L Pyx, so the Pythagorean Theorem tells us that

e = Px|? + [|Pvx]* = [1x]*

3.1. PRINCIPAL COMPONENT ANALYSIS 69

Thus

n n
>l = Poxill2 = 37 (il = 1 Poxil?)
=1

i=1

n n
=D Ixill> = Y I GaTv)vP?

i=1 i=1

n

=D Il =) _(xi'v)?
=1

=1

Then since the first term > .-, [|x;]|? is constant with respect to v, minimizing reconstruction error
is equivalent to maximizing > 1, (x;'v)2, which is (up to an irrelevant positive constant factor 1/n)

the projected variance.

Another way to write this interpretation is that the reconstructed matrix X, is the best rank-k
approximation to X in the Frobenius norm. To see this, first note that (writing X = Z?Zl o)

d
X, = XV, V, = Z ouiv; Vi Vi
=1

By orthonormality, the product v;' V}, results in a k-dimensional row vector with 1 in the ith place

and 0 everywhere else, i.e. e;', as long as i < k. In this case,

T T TuT T T
vi ViV =e€; V' = (Vie) =v;

If i > k, v;' V), = 0", so the term disappears. Therefore we see that

d k
Xk: E O‘z‘uiViTVkaT: E O‘iuiViT
=1 =1

which is the best rank-k approximation to X by the Eckart-Young theorem.

Probabilistic PCA

We have seen probabilistic motivations or derivations of many of the methods discussed so far in
this class. In a similar vein, probabilistic PCA (PPCA) is a generative model for PCA. Here
we make the following assumptions about how the data were generated: for each datapoint ¢, there
is a k-dimensional latent variable

Z; NN(O,I)

which we cannot observe, and the actual d-dimensional observation is distributed conditionally on

this latent variable as
x;|z; ~ N(Az; + p, ®)
Here A € R%™F and JTS R? are parameters to be estimated. Since z; is Gaussian and x;|z; is
Gaussian,)zﬂ is Gaussian, so its marginal x; is Gaussian. In particular, by integrating out the
latent Variablle
) = [plxicm)dz = [pxla)pz) dz
z z

one can show that
x; ~ N (1, AAT +)

70 CHAPTER 3. DIMENSIONALITY REDUCTION

It is common to assume ¥ = ¢?I. In this case, if we let 0% — 0, we recover the original PCA solution
in the sense that the columspace of A,y approaches the PCA subspace (i.e. the columnspace of
V). 2

3.2 Canonical Correlation Analysis

PCA provided us with a dimensionality-reduction approach that didn’t use the labels y in any way.
In that way, it was fundamentally unsupervised by nature. However, we can imagine that there can
be situations in which the most relevant directions in x for understanding y are not necessarily the
directions of greatest variation in x. For example, what if the x data by nature was contaminated
with a strong correlated noise signal? PCA would find the noise dimensions to be those that have
the greatest variation and keep them, throwing away those dimensions where we could actually
hope to get information relevant for predicting y!

The other potentially troublesome aspect of PCA is that it is not invariant to a change of units
or scaling. If we changed the units of some feature from meters to millimeters, then all the values
for that feature would increase by a factor of a thousand, and suddenly, this direction might be
favored by PCA. This is unavoidable because there is no natural reference point that would allow
us to treat units as arbitrary.

Consequently, it is important to have an approach to dimensionality reduction and the discovery
of linear structure from data that does take advantage of paired (x,y) data, preferably in a way
that is robust to linear transformations of both x and y individually.

A latent space view with Gaussian random variables

What does it mean to extract the linear structure establishing the underlying relationship between
X and Y, two vector-valued quantites of which we have many paired samples. To understand
what this should mean, we need to construct a model. The first thing that we do is assume we
have a joint distribution for X and Y as random variables. In practice, we won’t have the random
variables in distribution, just paired samples of them. But it is easier to start understanding what
we want by assuming that we have the entire distribution. This corresponds to how well we think
we can do given infinite amounts of training data. The next we do is assume a particular form for
the random variables. Since we are interested in linear structure, jointly Gaussian random variables
are a useful model.

Our goal is to extract the underlying relationship or commonality between X and Y. To do this,
we assume that we have three underlying iid standard Gaussian random vectors Z; (representing
the common/joint part), Zx (representing the randomness that is purely in X and not shared by
Y), and Zy (representing the randomness that is purely in Y and not shared by X). Then we can
assume that they are related by an underlying linear relationship:

Zx
[X} _ [A B 0] z, (3.1)
As is typical in these situations, there is going to be some ambiguity in choosing the A, B, C,D

matrices. But the important thing is that somehow the B and C matrices together capture the
joint relationship between X and Y.

2 See Tipping and Bishop’s original paper for derivations and more information.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-ppca-jrss.pdf

3.2. CANONICAL CORRELATION ANALYSIS 71

How will such a joint relationship manifest in the joint distributions for X and Y? To understand
that, we should first consider the scalar case.

Correlation and Scalar Gaussians

For the scalar case, A, B,C, D are just real numbers. So, the joint distribution of X,Y is N(0,X)
A% + B? BC

BC C?+D?
and C. The second is that the information about the joint relationship (which we know is encoded
by B and C) is all in the cross-covariance term, not in the individual variance term. Recall that
we want to pull out the relationship in a way that does not depend on any individual scaling or
linear transformation that we apply to X and Y.

where ¥ = . The first thing that we notice is that we cannot disentangle B

Here’s a neat fact: if X and Y are jointly Gaussian, i.e.

m ~ N(0,5)

then we can define a distribution on individually normalized X and Y and have their joint inter-
relationship entirely captured by p(X,Y"). First write

pIX,Y) = 2
Oz 0y
Then
o2 Oy 0325 POLOy
=" 2 = 2
Ozy OY POL0y oy
SO
-1 -1 -1
oy 0 X o 0 Oy 0 |T
[0 o, ! [Y] N 0’[0 ay—lz 0 ot

oy 1)

This p quantity is the signature of the joint inter-relationship of the X and Y random variables.

BC
(A?4B?)(C*+D?)
backstories for the latent picture behind the observed random variables. Here is one that splits the
influence of the latent space proportionately.

A=o0,v/1—|p| (3
B =0./]p| (3.
(3
(3

To make things explicit, once we have the p = , we can come up with many possible

C = aysign(p)/|p|
D =oy/1—|p|

2 2_ .2 2 2 _ 2 _ BC .
Because A + B* =03, C*+ D* =0y, and p = 50D this works.

72 CHAPTER 3. DIMENSIONALITY REDUCTION

Pearson Correlation

Although we defined this p above for a pair of jointly Gaussian random variables, it is really about
linear structure. The Pearson Correlation Coefficient p(X,Y) is effectively a way to measure
how linearly related (in other words, how well a linear model captures the relationship between)
random variables X and Y.

Cov(X,Y)

XY = R0 Var ()

Here are some important facts about it:

e It is commutative: p(X,Y) = p(Y, X)
o It always lies between -1 and 1: —1 < p(X,Y) <1

e It is completely invariant to affine transformations: for any a,b,c,d € R,

Cov(aX +b,cY +d)
\/Var(aX + b) Var(cY + d)
_ Cov(aX,cY)

/Var(aX) Var(cY)

B a-c-Cov(X,Y)

B Va2 Var(X) -2 Var(Y)
_ Cov(X,Y)

v/ Var(X) Var(Y)

=p(X.Y)

p(aX +b,cY +d) =

The correlation is defined in terms of random variables rather than observed data. Assume now
that x,y € R" are vectors containing n independent observations of X and Y, respectively. Recall
the law of large numbers, which states that for i.i.d. X; with mean u,

n
1 a.s.
— E X; —pu asn— oo
n

i=1

We can use this law to justify a sample-based approximation to the mean:

Cov(X,Y) = E[(X — E[X]))(Y —E[Y])] = % > (@i —2)(yi—9)
=1

where the bar indicates the sample average, i.e. T = %Z;;l x;. Then as a special case we have

3

(2 — 7)°

1

Var(X) = Cov(X, X) = E[(X — E[X])?] ~ %

3 e
Il

(yi — y)2
1

Var(Y) = Cov(Y,Y) = E[(Y — E[Y])?] ~ %

Plugging these estimates into the definition for correlation and canceling the factor of 1/n leads us
to the Sample Pearson Correlation Coefficient p:

X > i1 (@i —) (yi —)

pw,y) = = . —

V(@22 (i 9)

3.2. CANONICAL CORRELATION ANALYSIS 73

'y _ o _
=——— wherez=x—-2,y=y—¢
i‘Ti'-NTg

Here are some 2-D scatterplots and their corresponding correlation coefficients:

0.4 4] -0.4

P " . T N

/ ~ — —— - ~ .
0 0 4] +] 0 0
_ N T %R
o % T
2 iy ¥gi® & %

You should notice that:

e The magnitude of p increases as X and Y become more linearly correlated.
e The sign of p tells whether X and Y have a positive or negative relationship.

e The correlation coefficient is undefined if either X or Y has 0 variance (horizontal line).

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a method of modeling the relationship between two
point sets by making use of the correlation coefficients.

Asin PCA, it is useful to start with trying to find the directions that represent the most correlation.
You can think of this as finding the parts of X,, and Y, that depend on the first coordinate of
Z ;, where we choose the convention that the first coordinate represents the most shared dimension.
We will then see how to move on to get the rest.

Formally, given zero-mean random vectors X;, € RP and Y,, € R?, we want to find projection
vectors u € R? and v € R? that maximizes the correlation between X, u and Y, 'v:

Cov(Xpy ', Yo"
max p(erTu’ YI‘VTV) — max OV(rv U, T V)
u,v u,v \/ Var(X,y 1) Var(Yry v)

Observe that
CoV(erTu, YrVTV) = E[(erTu - E[XrVTu])(YrVTV - E[YWTV])]
=E[u'(Xsv — E[Xw]) (Vv — E[Yi])'V]
= uE[(Xsy — E[Xn))(Yro ~ E[Yr)) v
=u' Cov(Xyy, Yoy)V

E —E
E —-E
which also implies (since Var(Z) = Cov(Z, Z) for any random variable Z) that

Var(erTu) = TCOV(XW,XW)U
Var(YrvTv) = TCov(YrV,Yrv)v

74 CHAPTER 3. DIMENSIONALITY REDUCTION

so the correlation can be written

u' Cov(Xyy, Yo)v
Vul Cov(Xyy, Xpy)u - v Cov(Yoy, Yoy)V

P(erTu’ YrVTV) =

Unfortunately, we do not have access to the true distributions of X, and Y, so we cannot compute
these covariances matrices. However, we can estimate them from data. Assume now that we are
given zero-mean data matrices X € R"*P and Y € R™"*9, where the rows of the matrix X are i.i.d.
samples x; € RP from the random variable X,y, and correspondingly for Y,,. Then

—— N

I 1
Cov(Xry, Yrv) = E[(Xev — EXeo])(Yor — E[Yi))] = EXn Y '] & = > xiy,| = XY
n n
0 0 =1

where again the sample-based approximation is justified by the law of large numbers. Similarly,

1 — 1
= M~ § : T _ AT
COV(XrV7 er) — E[XWXW } ~ g 2 X;X; = nX X
1 & 1
YI‘V Yrv = E YrerVT ~ — . AT — *YTY
COV(’) [] n ;1 Yi¥i n

Plugging these estimates in for the true covariance matrices, we arrive at the problem

ll—r (%XTY) u uTXTYV
max R \/ X T Ty T
u,v u,v .
H(Xu,Yv)

Let’s try to massage the maximization problem into a form that we can reason with more easily.
Our strategy is to choose matrices to transform X and Y such that the maximization problem is
equivalent but easier to understand.

1. First, let’s choose matrices W, W, to whiten X and Y. This will make the (co)variance
matrices (XW,)"(XW,) and (YW,)(YW,) become identity matrices and simplify our
expression. To do this, note that X'X is positive definite (and hence symmetric), so we can

employ the eigendecomposition
X'X =U,S,U,"

Since
S, = diag(\(X'X),..., \(X'X))

where all the eigenvalues are positive, we can define the “square root” of this matrix by taking
the square root of every diagonal entry:

S/* = diag (w/)\l(XTX), o w/Ad(XTX)>

Then, defining W, = U,S; U, ", we have
(XW,) (XW,) = W,'X'XW,,
=U,S; ’U,'U,S,U,'U,S; *u,"
=U,S;*s,8;7*u, "

3.2. CANONICAL CORRELATION ANALYSIS (0]

= U:cUxT

=1
which shows that W, is a whitening matrix for X. The same process can be repeated to
produce a whitening matrix W, = U, S, / 2UyT for Y.

Let’s denote the whitened data X,, = XW, and Y,, = YW,. Then by the change of variables
Uy = W;lu,vw = Wy_lv,

Xu)'Y
max p(Xu, Yv) = max (Xu) Yv
u,v v /(Xu) Xu(Yv) Yv

(XW, W, u) YW, W v

= max

o J (XW, W ') XW, W lu(YW, W, v) 'YW, W, v
= max (quw)TYwVw

oV \/(quw)Tquw(wiw)Twiw

uwTXwTYwVw

= max

BV g Xy Xotty Va Y Y v

Uy X Youve

= max

(X, YuVe)

Note we have used the fact that X,,'X,, and Y'Y, are identity matrices by construction.
2. Second, let’s choose matrices D,, D, to decorrelate X,, and Y,,. This will let us simplify
the covariance matrix (Xwa)T(YwDy) into a diagonal matrix.

Recall that our ultimate goal is to understand the underlying latent structure behind X
and Y,,. The whitening was a normalizing change of coordinates. The decorrelation is there
so that we can pick out independent underlying components of Z ;. (Since jointly Gaussian
random variables are independent if they are uncorrelated.) Alternatively, you can consider
decorrelation as reducing the problem to a sequence of scalar problems.

To do this, we’ll make use of the SVD:
XY, =USV'
The choice of U for D, and V for D, accomplishes our goal, since
(X, U)(Y,V)=U'X,Y,V=U(USV)V =8

Let’s denote the decorrelated data Xg = X,,D, and Y4 = Y, D,. Then by the change of variables
= Di1 = D T — Di1 = D T
Uq z Uw z Uw, Vd y Vw y Vw,

-
R (Xpuy) Yyuvy

max H(XyUy, YyVy) = max

Uy, Vuw Uy, V uwTuw . V”LUTV'LU

(XyDD;'uy) Y, DD, vy,
= Imax
U,V (Dmuw)TDxuw ’ (Dva)TDwa
N (Xqug)'Yavg

uava yfuglug - va'vg

76 CHAPTER 3. DIMENSIONALITY REDUCTION

w' X Y v

uava yfuglug - va'vg

p(Xaug,Yava)

udTSVd
uava \/fuglug - va'vy

Without loss of generality, suppose ug and v are unit vectors® so that the denominator becomes
1, and we can ignore it:

udTSvd . udTSvd o T
max = max ————— = 1max uyg Svy
wiva \SugTug - vglvg Iual=t [[ualll[vall juaf=1

[lvall=1 vall=1

The diagonal nature of S implies S;; = 0 for ¢ # j, so our simplified objective expands as

uy'Svy = Z Z(ud)isij(vd)j = Z Sii(ua)i(va)i

where Sj;, the singular values of X,," Y, are arranged in descending order. Thus we have a weighted
sum of these singular values, where the weights are given by the entries of ug and vy, which are
constrained to have unit norm. To maximize the sum, we “put all our eggs in one basket” and
extract S11 by setting the first components of uy and v to 1, and the rest to O:

1 1

0 0
uy=|.| eRP vg=|.| e R?

0 0

Any other arrangement would put weight on S;; at the expense of taking that weight away from
S11, which is the largest, thus reducing the value of the sum.

Finally we have an analytical solution, but it is in a different coordinate system than our original
problem! In particular, uy and vg are the best weights in a coordinate system where the data has
been whitened and decorrelated. To bring it back to our original coordinate system and find the
vectors we actually care about (u and v), we must invert the changes of variables we made:

u=W,u, = W, D,uy v=W,v,=W,D,vy

More generally, to get the best k directions, we choose

U, = I € RpXk V,= Iy € Rqu
0p—k.k 0g—k,k
where I denotes the k-dimensional identity matrix. Then
U=W,D,U, vV=w,D,V,

Note that U, and V4 have orthogonal columns. The columns of U and V, which are the projection
directions we seek, will in general not be orthogonal, but they will be linearly independent (since
they come from the application of invertible matrices to the columns of Uy, V).

3 Why can we assume this? Observe that the value of the objective does not change if we replace ug by aug and v4 by
Bva, where a and 8 are any positive constants. Thus if there are maximizers ug, vq4 which are not unit vectors, then ug/||ug||
and vg/||v4|| (which are unit vectors) are also maximizers.

3.2. CANONICAL CORRELATION ANALYSIS 7

Following (3.2), (3.3), (3.4), and (3.5), it is also possible to use what we have calculated to give
an explicit learned latent-space realization for the X,y, Y,y in terms of standard Gaussian random
variables Zy, Zj, Zy. In particular, matrices A, B, C,D of the appropriate sizes. This is left as
an exercise to the reader once you realize that after whitening and decorrelating (both invertible
transformations), we are left with a collection of scalar problems that would represent independent
random variables if all the variables were indeed jointly Gaussian.

CCA thus illustrates how it is possible to learn a latent representation for common (linear) structure
given paired data. This is a powerful idea not limited to the specific case of CCA. In effect, CCA
shows how we can discover (synthesize) features that distill what aspects of input data is relevant
for understanding output data.

This is subtly different from what happens in ordinary least squares because in ordinary least
squares, each individual element of y is predicted independently. In OLS, the different output
variables are not used collectively to distill the most relevant dimensions of the input. By contrast,
in CCA, the different output variables do vote collectively to determine relevant dimensions in the
input.

Comparison with PCA

An advantage of CCA over PCA is that it is invariant to scalings and affine transformations of X
and Y. Consider a simplified scenario in which two matrix-valued random variables X,Y satisfy
Y = X + € where the noise € has huge variance. What happens when we run PCA on Y? Since
PCA maximizes variance, it will actually project Y (largely) into the column space of e! However,
we’re interested in Y’s relationship to X, not its dependence on noise. How can we fix this? As
it turns out, CCA solves this issue. Instead of maximizing variance of Y, we maximize correlation
between X and Y. In some sense, we want the maximize “predictive power” of information we
have.

CCA regression

Once we’ve computed the CCA coefficients, one application is to use them for regression tasks,
predicting Y from X (or vice-versa). Recall that the correlation coefficient attains a greater value
when the two sets of data are more linearly correlated. Thus, it makes sense to find the k x k weight
matrix A that linearly relates XU and YV. We can accomplish this with ordinary least squares.

Denote the projected data matrices by X, = XU and Y. = YV. Observe that X, and Y, are
zero-mean because they are linear transformations of X and Y, which are zero-mean. Thus we can
fit a linear model relating the two:

Y.~ XA

The least-squares solution is given by
A= (XXX, Y,
= (UX'XU)"'u'xX'yv
However, since what we really want is an estimate of Y given new (zero-mean) observations X

(or vice-versa), it’s useful to have the entire series of transformations that relates the two. The
predicted canonical variables are given by

Y. =X.A=XUUXXU)'UXYV

78 CHAPTER 3. DIMENSIONALITY REDUCTION

Then we use the canonical variables to compute the actual values:
Y =Y, (VV)IVvT
= XU(UX'XU)"{(UX'YV)(VIV)" vl

We can collapse all these terms into a single matrix Ay that gives the prediction Y from X:

A= U (UXXU)HUXYV)(VV)IVT
~~—

projection whitening decorrelation projection back

Chapter 4

Beyond Least Squares: Optimization
and Neural Networks

4.1 Nonlinear Least Squares

Up to this point, we’ve restricted ourselves to linear regression models. That is, our prediction
§ = w'x is a linear function of the input x. This holds even in the case of least-squares polynomial
regression — while the predicted value is not a linear function of the raw input x, it is still a linear

function of the augmented polynomial feature input ¢(x).

Effectively, we have been able to form nonlinear models by manually augmenting features to the
input. Now what if instead of using a linear function of the augmented input, we could use
an arbitrary nonlinear function f(x;w) directly of the raw input x? This approach is often more
expressive and robust, because it removes the burden of augmenting expressive features to the input.
As a motivating example, consider the problem of estimating the 2D position w = (wy,ws) of a
robot. We are given noisy distance estimates Y; € R from n sensors whose positions x; € R? are fixed
and known. Since we are predicting distance, it is reasonable to use the model f(x;w) = [|[x — w||2.
This model is clearly more appropriate than restricting ourselves to a linear model with augmented
features — in that case, what exactly would the augmented features be?

Note however that for most problems, we are not given the form or structure of the model. Consider
the following example: we are trying to predict a user’s income based on their occupation, age,
education, etc... It is not exactly clear what model we should use. Rather than specifying a specific
family of nonlinear functions, we are instead interested in a universal function appropriator f(x;w)
which can approximate any function f(x) with appropriate parameters w. This will be the basis
for neural networks, which we will study in detail later.

For the purposes of our discussion, let us assume that we are given a model f, an arbitrary
(nonlinear) differentiable function parameterized by w:

Y = f(xiW) + Zi, Zi SN(0,6%), i=1,....n

which can equivalently be expressed as Y; | x; ~ N (f(x;;w),0?). We are interested in finding the
parameters Wy, that maximize the likelihood of the data:

Wye = argmax {(w; X, y)
w

79

80 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

n
= argmax »_logp(yi | xi, w)
w

i=1
1 (yi — f(xi;w))?
2mo? P <_ 202)

= arg max Zlog
n 1) 1 5
= arg max Z —5 10g<27ra) — T<yz - f(Xz‘; W))
w . o

w i=1

= arg min g f(xiw))?

Observe that the objective function is a sum of squared residuals as we’ve seen before, but now the
function f is nonlinear. For this reason this method is called nonlinear least squares.

Motivated by the MLE formulation above, our goal is to solve the following optimization problem:

mln L(w mln E f(xi;w))?

One way to solve this optimization problem is to find all of its critical points and choose the
point that minimizes the objective. From first-order optimality conditions, the gradient of the
objective function at any minimum must be zero:

n

VwL(w) =Y (yi — f(xi; W)V f(xi; w) = 0

=1

In compact matrix notation:

where
f(x1;w) Vw f(x1;w)
f(xn; W) vwf(xn; W)T

J is also referred to as the Jacobian of F. Observe that in the special case when f is linear in

w (i.e. f(x;;w) = w'x;), the gradient Vy L(w) will only depend w in F(w) because the term
Vwf(x;;w) will only depend on x;:

n n

VwL(w) = (i — w'x) Vw(w'xi) = > (4 — w'x)x; = X' (y — Xw)
i=1 i—1

and we can derive a closed-form solution for w, arriving at the OLS solution:
X'(y — Xw)=0
X'y - X'Xw=0
X'y = X'Xw
w= (X'X) X'y

In the general case where f is nonlinear in w, it is not necessarily possible to derive a closed-
form solution for w, for a few reasons. First of all, without additional assumptions on f, the

4.2. OPTIMIZATION 81

NLS objective may not be convex. Therefore there may exist values of w that are not global
minima, but nonetheless Vy,L(w) = 0 — they could be local minima, saddle points, or worse, local
maxima! Second of all, even if the objective is convex, we may not be able to solve the equation
J(w) (y — F(w)) = 0 for w. Given the challenges that nonlinear least squares introduces over
linear least squares, we need a principled approach to solve problems that have no closed-form
solution, preferably agnostic of the specific objective itself.

4.2 Optimization

In the specific case of nonlinear least squares the objective is
1 n

in g 30— J5i W)Y
1=

but more generally, as we move into the realm of neural networks and beyond, we will be solving
arbitrary problems of the form

min f(w

min f(w)
over an arbitrary continuous objective function f : R — R and arbitrary domain X. If we are able
to solve this more general class of problems, then we can solve nonlinear least squares as a specific
instance of the problem. Solving such problems is the focus of optimization, an extensive field
that has applications in control theory, finance, and machine learning.

In optimization we are interested in finding the global minimum of a function. In the pursuit of
finding the global minimum, we may encounter local minima along the way, which are suboptimal
but may actually be close enough to the global minimum. More broadly, such points belong to the
class of critical points, the “interesting” points of deflection that we may want to consider when
finding minima:

(i) local minimum: a differentiable point w € X" such that there exists a neighborhood around
w where f(w) attains the minimum value

(ii) local maximum: a differentiable point w € & such that there exists a neighborhood around
w where f(w) attains the maximum value

(iii) saddle point: a differentiable point w € X" such that for all neighborhoods around w, there
exists u, v such that f(u) < f(w) < f(v)

local min local max saddle point

()
()

&
I,’O"
77 '/0':

ST
:‘ TN \
X0

Figure 4.1: Source: Off the Convex Path

https://www.offconvex.org/2016/03/22/saddlepoints/

82 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

Technically, local minima must exist within a neighborhood of the domain and be differentiable, and
our analysis of minima isn’t complete without also considering the following as potential minima:

(i) boundary points: points w € X that can be approached from both X and outside X, or
more intuitively, points that lie of the “boundary” of X

(ii) non-differentiable points: points at which the derivative is undefined, such as points with
“kinks”

For the remainder of our discussion, we will assume that we are solving unconstrained optimization
problems with differentiable functions, so that we will only have to consider critical points in our
analysis.

The categorization in the previous section is helpful, but how exactly can we determine which points
in the domain are critical points? As it turns out, the set of all critical points is simply the set of
points at which the gradient is zero. Given that f is continuously differentiable, the gradient is
defined as the vector of partial derivatives of f, denoted by

or
i
vi= |7

of

Owg

Since the set of points for which the gradient is zero in turn define the set of critical points, the
gradient being zero is a necessary condition for local minima.

Proposition 1. If w* is a local minimum of f and [is continuously differentiable in a neighborhood
of w*, then V f(w*) = 0.

Proof. See math4ml. O

This justifies the technique we have been using on numerous occasions so far to solve least squares
problems: setting the gradient of the objective function to zero and solving the corresponding
equation. Note however, that while setting the gradient to zero is a necessary condition for local
minima, it is not a sufficient condition. In many circumstances, the function that we are optimizing
may not have a local minima, and generally setting the gradient to zero could yield local maxima or
saddle points. Even if all critical points were minima, we would still have to solve the corresponding
equation Vf(w) = 0, which is not always trivial. In the cases when solving this equation is
intractable, we say that no closed-form solution exists, and therefore an iterative algorithm is
needed to solve the optimization problem. Even if a problem does have a closed form solution that
we can directly find, it may still be much more computationally efficient to solve the problem with
iterative algorithms.

4.3 Gradient Descent

Rather than using gradients to find the closed-form solution, we can use gradients to “creep toward”
a local minimum in an iterative fashion. Gradient Descent is an algorithm that iteratively takes
small steps in the direction of steepest descent of the objective f. Intuitively, we can view gradient
descent as a ball rolling down a hill. If we place the ball somewhere at the top of the hill, it will

http://gwthomas.github.io/docs/math4ml.pdf

4.3. GRADIENT DESCENT 83

naturally roll down the direction of steepest descent until it reaches the bottom of the hill, at which
point it may oscillate around until it eventually comes to a stop at the bottom.

Gradient descent is a simple, intuitive method that works remarkably well in practice. One question
that remains is: how exactly do we determine the direction of steepest descent of a multivariate
function, and what does this method have to do with gradients? Given that we are currently at
a point w®) in the domain of the function, the direction of steepest descent is the negative of the
gradient at that point, —V f (w(t)). To see why, recall that the directional derivative in a unit
direction u at w® is defined as the inner product of the gradient and the direction:

Dy f(w®) = (V(w),u) = |VF(w)] - [u] - cos(6)

where 6 is the angle between V f (w(t)) and u. Finding the direction of steepest descent entails
finding the direction that minimizes the directional derivative. We can minimize the directional
derivative by setting § = —, which will mean that the direction u and V f(w(") are opposite to
each other, and thus the direction of steepest descent u* is —V f(w(") (similarly the direction of
steepest ascent is V f(w(®)). The gradient descent algorithm will take an arbitrary step in this
direction, scaling the gradient by a scalar ay.

Algorithm 4: Gradient Descent

Initialize w(® to a random point
while f(w®) not converged do
| witth o w® — 0,V f(w®)

Determining this scaling «; is dependent on the attributes of the function f. Sometimes we can
set the scaling to a constant value and converge to the optimum value, whereas in other instances
we need to determine an adaptive stepsize. A scaling that is too high may cause the algorithm to
diverge from the optimal solution, whereas a scaling that is too low may cause the algorithm to
converge too slowly. For certain classes of functions, there are theoretical guarantees that establish
convergence, which we will state later.

S &

o _] 9_

o — o *

o o

T T

o o

D : D :
T T T T T I T | I T
=20 -10 0 10 20 =20 -10 0 10 20

Figure 4.2: In gradient descent, stepsize matters. A small stepsize (left) will never converge to the optimal
point, and a large stepsize (right) will lead to divergence. Source: CMU 10-725

https://www.cs.cmu.edu/~ggordon/10725-F12/slides/05-gd-revisited.pdf

84 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

Stochastic Gradient Descent

In many machine learning applications, the loss f that we want to minimize can be decomposed
into a sum of functions, that is f(w) = 13", fi(w). This holds in particular for problems
involving an average over the training data, which is for example the case when we want to find
the maximum likelihood estimator given i.i.d. data in a generative probabilistic model. In the
standard gradient descent update, computing the gradient effectively entails computing and adding

n separate gradients:
1 n
=1

This standard form of gradient descent is commonly referred to as batch gradient descent,
because it computes a full “batch” of gradients in each update. Assuming that the objective function
f is deterministic, and given a fixed initial iterate w(®), batch gradient descent is a deterministic
algorithm.

One major issue with batch gradient descent is that it can be computationally expensive, because it
requires computing and adding n separate gradients. In addition, due to the deterministic nature of
the algorithm, it can easily get stuck at local minima and saddle points. We can mitigate these issues
by deploying stochastic gradients. Given a fixed w, the stochastic gradient G(w) is a random
vector-valued function which is equal to the gradient V f(w) in expectation, i.e. Eq|[G(w)] =
V f(w), where the expectation is over the stochasticity of the gradient. We can therefore say that
the stochastic gradient is an unbiased estimate of the true gradient. The stochastic gradient is used
in place of the true gradient in the update rule:

wt) wl) — 0, va(w)

Mini-batch gradient descent is a stochastic variant of batch gradient descent, that instead of
summing an entire “batch” of n gradients, samples and adds a random “mini-batch” of gradients
over k < n indices drawn from {1,...,n}:

o

A major advantage of mini-batch gradient descent is that each iteration is now more computa-
tionally efficient, leading to greater progress and allowing us to monitor the performance of the
algorithm faster. In addition, mini-batch gradient descent can escape local minima with more ease
compared to batch gradient descent, due the noisy nature of its gradients. However note that
this can also lead to instability if the stochastic gradients have high variance. For this reason,
mini-batch gradient descent generally requires a higher number of overall iterations to match the
performance of batch gradient descent, which can lead to expensive computational overhead. Given
the appropriate choice of k, mini-batch gradient descent can be significantly more computationally
efficient overall than batch gradient descent.

:v \

The special case of mini-batch gradient descent with & = 1 is called stochastic gradient descent
(SGD). In this case, we can define the stochastic gradient by just drawing an index ¢ uniformly at
random from {1,...,n} and setting

G(w) = Vfi(w)

We can verify that the stochastic gradient is indeed an unbiased estimate of the true gradient:

E;[G(w)] = E;[V f;(w Z P(i = j)V fj(w)

4.3. GRADIENT DESCENT 85

= > VW) = V(W)
j=1

Algorithm 5: Stochastic Gradient Descent

Initialize w(® to a random point
while f(w®) not converged do

Sample a random index i; from {1,...,n}
L wltt) — wl®) — o,V f;, (w®)

Compared to batch gradient descent, the gradient updates in SGD are significantly faster, but SGD
often requires a significantly higher number of updates. In practice, mini-batch gradient descent
is more effective than SGD and batch gradient descent, capturing the stability of batch gradient
descent while at the same time injecting enough stochasticity to escape local minima and saddle
points.

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Figure 4.3: Increasing the batch size will lead to more stability at the cost of higher computational costs.
Source: Towards Data Science

A fair metric that we can use to compare batch, mini-batch, and stochastic gradient descent is
through the concept of epochs. An epoch is a measure of time — it is defined as the number of
iterations in order to traverse the training data once. In the case of batch gradient descent, since
all n examples comprising the training data are used to compute the gradient at each iteration, an
epoch is simply equivalent to one iteration. In the case of SGD, since we only sample one example
at each iteration, an epoch is equivalent to n iterations. In the case of mini-batch gradient descent,
as epoch comprises of 7 iterations. In practice, given the same number of epochs, mini-batch
gradient descent tends to perform the best.

Momentum

Just as mini-batch gradient descent can lead us to escape local minima and saddle points, the
stochastic nature of the algorithm can often lead to oscillations that cause instability and slow con-
vergence. These issues are not just unique to stochastic gradients and can arise in the deterministic
case, for example when the objective function is disproportionately scaled — ie. the function is
elongated along one axis while being contracted along along another, giving the illusion of “ravines”
in the function landscape. The disproportionate scalings cause the algorithm to make large leaps

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

86 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

in contracted directions, while making very slow progress along elongated directions. The resulting
behavior is a series of oscillations that may reach the optimal point very slowly.

Starting Point

Optimum

Solution

Figure 4.4: Standard gradient descent cannot converge to the optimum when the objective function is
disproportionately scaled. Source: distill.pub

Polyak’s heavy ball method addresses these issues by introducing a momentum term that adds
inertia to the iterates and prevents them from deviating from the overall direction of the updates.
Rather than updating the iterate w(® using the gradient Vf (w(t)), Polyak’s heavy ball method
uses V f (w(t)) along with a history of all the gradients from the iterates seen so far. Specifically, it
updates the iterates via a velocity term v(!) that represents an exponential moving average of all
of the gradients seen so far.

Algorithm 6: Polyak’s Heavy Ball Method
Initialize w(® to a random point
Initialize v(©) to —agV f(w(®)
while f(w®) not converged do

L v — gvtD — 0,V f(w®)
wttD) — w® 4 v(®)

The velocity term is updated in the following recursive fashion:
v gvltD — 0,V (W)
which when unrolled, is equivalent to
v = B B1 .. BragV f(w()
— Bt Bie1- .. Baon V f(wh)

-V f (W(t))
which in the case when the 5’s and a’s are constant is equivalent to

v —ptavi(w®) - gttavi(w) — .. —aVf(w)

The motivation for using a moving average of the gradients is as follows: we want to downplay
the directions for which the gradient is oscillating over time and boost the directions for which
the gradient is constant over time. When we are in a “ravine” this has the effect of “killing” the
gradient in constricted directions whose derivatives oscillate over time, accelerating convergence.

https://distill.pub/2017/momentum/

4.3. GRADIENT DESCENT 87

Starting Point

Optimum

Solution

Figure 4.5: Polyak’s heavy ball method uses momentum to dampen oscillations, accelerating convergence to
the optimum point. Source: distill.pub

There is an alternative interpretation of Polyak’s heavy ball method that is condensed to just one
line:

We can establish equivalence through the following manipulations:

= w4+ (=, V(W) 4 gv(=Y)

Polyak’s heavy ball method uses information about past iterates to determine the descent direction.
Nesterov’s accelerated gradient descent improves on this reasoning, incorporating information
about potential future iterates as well. The only difference in Nesterov’s accelerated gradient descent
is that it computes a “lookahead gradient” V f (W(t) —l—Btv(t_l)) instead of the gradient at the current
iterate V f (w(t)). Effectively, we are performing a one step “look ahead” of the gradient and moving
in that direction, potentially correcting for oscillations ahead of us.

Algorithm 7: Nesterov’s Accelerated Gradient Descent

Initialize w(® to a random point
Initialize v(?) to —aoV f(w(®)
while f(w(t)) not converged do
L v — Bvt=D — o,V f(w®) + gv(t-1)
wttD) w® 4 v(®)

https://distill.pub/2017/momentum/

88 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum
step
actual step

actual step

gradient
step

Figure 4.6: Polyak’s heavy ball method applies gradient before update, while Nesterov’s accelerated gradient
descent applies gradient after update. Source: Stanford CS 231n

Through the same manipulations that we showed for Polyak’s heavy ball method, we derive the
one-line update for Nesterov’s accelerated gradient descent:

4.4 Line Search

Line search is another iterative optimization algorithm that, instead of taking small gradient
steps, repeatedly slices the function across a 1 dimensional line and finds the minimum. Normally,
finding the (global) minimum of d functions is an extremely difficult problem, but in this case we
are only doing so for 1 dimensional “sliced” functions, which is a much more trivial task. Each
iteration of line search entails three steps: (1) choosing a promising descent direction (or sometimes
a random direction), (2) looking ahead in that direction and (roughly) finding the minimum, and
(3) going to that minimum.

Algorithm 8: Line Search

Initialize w(© to a random point

while f(w®) not converged do
Find a descent direction u®
Find oy € R, to minimize h(a) = f(w®) + au®)
wtt) w(® — q,u®

There are several options for the direction, such as the negative gradient (which is used in gradient
descent). Broadly, we can pick any descent direction — a direction which entails to a negative
directional derivate:

Duf(w) = (Vf(w"),u) <0

Another common choice is to choose an arbitrary coordinate (for example, the x/y/z coordinate in
3D), a line search variant called coordinate descent. Note that the minimization in the second
step does not necessarily need to be exact. A simple approach is to sample several points across
the line and choose the minimum, in a grid search fashion.

Line search methods offer a few advantages over gradient descent methods. For one, they do not
necessarily require gradients, which can be particularly helpful in non-differentiable domains. Also,
they are potentially more robust to local minima, because they find the global minima of the 1D
functions ahead of them.

http://cs231n.github.io/neural-networks-3

4.5. CONVEX OPTIMIZATION 89

4.5 Convex Optimization

A critical issue with the methods we have presented so far is that they can get stuck in local minima.
With gradient descent for example, moving in the direction of steepest descent is a greedy choice
that can cause convergence to a poor local minimum, depending on the initial starting point of the

algorithm.

Figure 4.7: Depending on the initialization of gradient descent, the algorithm will converge to different local

minima. Source: Towards Data Science

Convex functions conveniently eliminate this problem due to their “bowl shape,” which ensures

that all local minima are global minima.

///,,///

- .
e
-

Figure 4.8: Source: Wikipedia

Due to this property, optimizing convex functions entails nice theoretical convergence rates that are
otherwise not guaranteed for non-convex functions. For these reasons, there is a dedicated subfield
of optimization called convex optimization that focuses on optimization problems with convex

functions and convex constraints.
Given that f : R™ — R is twice continuously differentiable, the following are equivalent conditions

of convexity:

(i) ftwi+ (1 —t)wa) <tf(wi)+ (1 —t)f(wa), Vwi,wa,t e |0,1]

https://towardsdatascience.com/machine-learning-101-an-intuitive-introduction-to-gradient-descent-366b77b52645
https://upload.wikimedia.org/wikipedia/commons/a/a4/Sphere_function_in_3D.pdf

90 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

Figure 4.9: Any line segment connecting two points of a convex function must lie above the function. Source:
Princeton University ORF 523

(ii) f(w2) > f(w1)+ Vf(w1) (wa —w1), VYwi,wy

{ (4)

Po)wf i (9-x)

Figure 4.10: Any line tangent to a convex function must lie below the function. Source: Princeton University
ORF 523

(iii) (Vf(w2) — Vf(w1)) (wa —w1) >0, Vwi,wo
(iv) V2f(w) = 0, Vw

Let’s study these properties closely. The first condition states that for any two points w1, wo, the
function lies below the line segment connecting w1 and wy. The next condition states that any
tangent line to f must lie below the entire function. The third condition intuitively states that if
wo is greater than wi, then the derivative of wy is also greater than the derivative of wy.

Finally, the last condition states that the “second derivative” of f is always non-negative. More
rigorously, we can generalize the concept of second derivatives in higher dimensions with the Hes-
sian. Given that f is twice continuously differentiable, we define the Hessian as the matrix of
second partial derivatives of f, denoted by

22f *f
ow? Tt Qwi 0wy
vzf = : . :
o’ f o f
OwgOw; " ow?

The Hessian being PSD is a necessary condition for local minima:

http://www.princeton.edu/~amirali/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
http://www.princeton.edu/~amirali/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
http://www.princeton.edu/~amirali/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf

4.5. CONVEX OPTIMIZATION 91

Proposition 2. If w* is a local minimum of f and [is twice continuously differentiable in a
neighborhood of w*, then V2 f(w*) is positive semi-definite and V f(w*) = 0.

Proof. See math4ml. 0

Unfortunately, the gradient being zero and the Hessian being PSD together are necessary but not
sufficient conditions local minima (consider the function f(w) = w3 or f(w) = —w*). However, the
gradient being zero and the Hessian being PSD in a neighborhood are sufficient conditions.

Proposition 3. Suppose f is twice continuously differentiable with V2§ positive semi-definite in
a neighborhood of w*, and that V f(w*) = 0. Then w* is a local minimum of f. *

Proof. See math4ml. O

Since for convex functions the Hessian is PSD at all points in the domain, any critical point is a
local minimum. In fact, any local minimum is also a global minimum, so any point for which the
gradient is zero must be the global minimum.

Proposition 4. Let X be a convex set. If f is convex, then any local minimum of f in X is also
a global minimum.

Proof. See math4ml. 0

Consequently we can find any point for which the gradient is zero and guarantee that it is the
global minimum (this is exactly the case in OLS and Ridge Regression since the objective function
is PSD and therefore convex). Note however, that this does not imply that the global minimum is
unique — there could be several different points which achieve the global minimum.

Strong Convexity

While convex functions guarantee that all local minima are global minima, they do not guarantee
that the global minimum is satisfied uniquely. Strongly convexity is an extension that guarantees
this property. For a strictly positive m € R, a function is m-strongly convex if the following
equivalent conditions hold:

twi 4 (1 — t)wa) < tf(wr) + (1 —) f(wa) — D0 lwy —wi |2, Vwy, wa,t €[0,1]

(

(w) = f(w) — %HWH2 is convex
(wa) > f(w1) + VF(wi) (wa — wi) + B[lwa — wi]%, Vwi,wo
wo) — Vf(w1)) (wo — wi) > m|wy — wi][%, Vwi, wy

w) = ml, Vw

The conditions for strong convexity are identical to those for convex functions, but with an addi-
tional term involving m. Strongly convex functions provide several advantages over general convex
functions. From the third condition, we see that strongly convex functions can be lower bounded
by a quadratic function, which establishes the uniqueness of a global minimum.

LA subtle point: if V2f(w*) is positive definite and V f(w*) = 0, then w* is a strict local minimum. We do not have to
check that the Hessian is PSD in a neighborhood of w*, as this condition is implied from the fact that f is twice continuously
differentiable.

http://gwthomas.github.io/docs/math4ml.pdf
http://gwthomas.github.io/docs/math4ml.pdf
http://gwthomas.github.io/docs/math4ml.pdf

92 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

Proposition 5. Let X' be a convex set. If f is strongly convex, then there exists at exactly one
local minimum of f in X. Consequently, it is the unique global minimum of f in X.

Proof. See math4ml. O

If the Hessian of V2f has eigenvalues that are all strictly positive at all points, then f is m-
strongly convex with m equal to the the smallest eigenvalue of V2f (over all points w). Recall
from our discussion of OLS vs. Ridge Regression that while OLS may have several solutions, Ridge
Regression has a unique solution. This is because the Ridge Regression formulation is positive
definite and thus strongly convex, while OLS is positive semi-definite and not necessarily strongly
convex.

Smoothness
While strongly convex functions are lower bounded by a quadratic function, smooth functions are
upper bounded by a quadratic function. 2

An M-smooth (or more formally Lipschitz continuous gradient) function is one for which
there exists a strictly positive M € R such that

|Vf(wa) = Vf(wi)| < Mllwa — w1, Vwi,ws (4.1)

This definition does not assume that f is convex. 4.1 implies all of the following equivalent condi-
tions:

(i
(ii
(iii
(iv
When f is convex, then the above conditions also imply 4.1, establishing equivalence among all
of the conditions. Roughly speaking, smoothness is the counterpart to strong convexity, with the

inequality signs flipped. If the Hessian of V2f has eigenvalues that are bounded from above, f is
M-smooth with M equal to the the maximum eigenvalue of V2f (over all points x).

flwr+ (1 —t)wa) > tf(wi)+ (1 —1t)f(wa) — MHWQ —wil?, Vw1, wa,t € [0,1]
flwa) < f(w1) + VF(w1) (wa — wi) + 2 [lwa — w2, Vwi,wo
(Vf(wa) = Vf(wi)) (w2 — wi) < M|wa — wi?, Ywi, wy

)
)
)
) V2f(w) = MI, VYw

Gradient Descent Convergence under Convexity

While gradient descent does not have convergence guarantees in general, we can make theoretical
guarantees when the function is convex. Furthermore, strong convexity and smoothness will provide
lower and upper bounds for f respectively, allowing us to achieve a significantly faster convergence
rate. Assuming that the distance from the initial point w(®) and the optimal point w* is R, we
have the following:

] properties of f \ stepsize oy \ convergence rate to f(w*) ‘
convex, L-Lipschitz % 0(7)
m-strongly convex, L-Lipschitz m(152+1) O(3)
convex, M-smooth = O(1)
m-strongly convex, M-smooth ﬁ (t%)

2Not to be confused with smooth functions in the context of real analysis

http://gwthomas.github.io/docs/math4ml.pdf

4.6. NEWTON’S METHOD 93

For detailed proofs of rates above, refer to the EE 227C lecture notes. Individually, strong convexity
and smoothness will allow us to accelerate the rate of convergence from O(%) to O(%) Put
together, they allow us to achieve an exponential convergence rate — a significant acceleration!
The quantity x = % is known as the condition number — the ratio of the largest over smallest
singular value of the Hessian of f. Recall from our discussion of OLS vs. Ridge Regression that
Ridge Regression adds a small penalty term A||w||? to the objective, effectively making the problem
strongly convex. Since the OLS is already smooth as well, then gradient descent can achieve an
exponential rate of convergence to the optimal value. The higher the value of A, the lower the value
of the condition number x, which leads to an even faster convergence rate. This of course, comes
at the costs of regularization.

4.6 Newton’s Method

Up until this point, we have only considered first-order methods to optimize functions. Now, we
will present Newton’s method, an iterative method that utilizes second-order information to
achieve a faster rate of convergence than existing first-order methods. Given an arbitrary twice
continuously differentiable objective function f, Newton’s Method iteratively minimizes the second-
order Taylor expansion of the objective function. Given the current iterate w(®, it minimizes the
following objective:

min F(w) = F(w®) + 9 f(wO)T(w = wlt) + 2w = w2 (w0 (w — wl)
We can minimize f(w) by setting its gradient to zero:
Viw) = VW) + V(w9 (w-w") =0
Which leads to the update rule (otherwise known as Newton step)
Wt =) _ 2 f(w®) 1y ()

The updates for Newton’s method and gradient descent are nearly identical:
wttD = w® — o, v f(w®) (Gradient descent)
wt) = wlt) — 92 f(w®) =1y f(wl?) Newton’s method
f f
We can think of gradient descent as a Newton update in which we approximate V2 f (w(t))*1 by

a scaled version of the identity. That is, gradient descent is equivalent to Newton’s method when
V2 f(w®)~1 = oy where I is the identity matrix.

The algorithm is as follows:

Algorithm 9: Newton’s Method

Initialize w(® to a random point
while f(w®) not converged do
L W(t'l'l) < W(t) — V2f(w(t)>_1Vf(W(t))

Alternative Interpretation

Newton’s method can equivalently be viewed as a a root-finding algorithm — specifically it finds
the “roots” of the gradient by iteratively approximating the gradient and finding the root of the

https://ee227c.github.io/notes/ee227c-notes.pdf

94 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

approximation. Newton’s method is agnostic to the type of function that it optimizes — whether
it is the gradient function, or just the objective function. At its simplest form, Newton’s method
can be used to find the roots of a single variable function ¢: R — R. Our goal is to find a root of
the non-linear equation ¢(w) = 0. Suppose we have a current estimate of the root gp(w(t)). From
Taylor’s theorem, we can express the first-order form of p(w) with respect to gp(w(t)) as

o) = p(w®) + ¢ (w) - (w = w®) + of | — w®))
given § = w — w®) we equivalently have that
p(w? +8) = p(w?) + ¢/ (w) - 5+ o(|8])
Disregarding the o(|0|) term, we solve (over ¢) the following objective:

p(w®) + ¢/ ()5 = 0

Then, § = —‘p/(wi(:)), leading to the iteration w(*+D) = w® — 2w) We can similarly make an
¢ (w®) @ (w®)
argument for a multivariate function F' : R? — R%. Our goal is to solve F(w) = 0. Again, from

Taylor’s theorem we have that
F(w+A) = F(w)+ Jp(w)A +o([|Af])
where Jp is the Jacobian. This gives us A = —J,!(w)F(w), and the iteration
wittD) — w(® _ JEI(W(t))F(W(t))

In the context of optimization, Newton’s method is a special application of this root-finding method,
applied to the gradient function. That is, given that we are minimizing f: R — R, Newton’s
method finds the roots of the gradient function Vf: RY — R?. It uses the update rule

as the Hessian V2f(w(®) of the objective function corresponds to the Jacobian J = L(w) of the
gradient. Let’s understand the motivation of Newton’s method in close detail. Our goal is to find
local minima for f, points for which it is necessarily true that V f(w) = 0. Consequently, we wish
to find points for which V f(w) = 0. The gradient V f(w) can be difficult or even intractable to
work with, so instead we work with a first-order Taylor approximation of the gradient with respect
to our current iterate w*). We solve for the roots of the first-order gradient, update our iterate,
and repeat the process. Note that while solving V f(w) = 0 may yield local maxima or even saddle
points, we are finding the roots of the linearized gradient, which is convex — therefore any point
for which the first-order approximation of the gradient is zero yields a global minimum for the
approximation.

Issues with Newton’s Method

There are a few issues with Newton’s method that we glossed over in our analysis. In general, there
are no guarantees that Newton’s method can converge, and even more concerning, the algorithm
may get stuck as the Hessian V2 f(w(®)) may not be invertible. Placing invertibility issues aside,
the most concerning issue is that Newton’s method may not even be attempting to minimize the
objective function. To see why, recall that the goal of each Newton step is to minimize the second-
order approximation, which we do so by setting the gradient of the approximation to zero. This

4.6. NEWTON’S METHOD 95

is not a sound step, as it may yield saddle points or maxima. This can happen when the Hessian
V2f (W(t)> has non-positive eigenvalues. In order to ensure that the second order approximation
f(w) yields a unique global minimum, we must ensure that it is strongly convex. We can do so
by regularizing the objective f(w) with an additional A||w||? term, with an appropriately chosen A
that shifts all of the eigenvalues of the objective to be positive.

Even when the objective is strongly convex, Newton’s method can be quite unpredictable. For

example, consider the function
flw) =V +1

essentially a smoothed version of the absolute value |z|. Clearly, the function is minimized at
w* = 0. Calculating the necessary derivatives for Newton’s method, we find
w

P = T
[w) = (14 w?) 72,

Note that f(w) is strongly convex since its second derivative strictly positive and 1-smooth (| f'(w)| <
1). The Newton step for minimizing f(w) is

aml
L) — 0 _ W) @3

77(w®)

The behavior of this algorithm depends on the magnitude of w®. In particular, we have the
following three regimes

lw®| < 1 Algorithm converges cubically
lw®| =1 Algorithm oscillates between —1 and 1
lw®| > 1 Algorithm diverges

This example shows that even for strongly convex functions with Lipschitz gradients that Newton’s
method is only guaranteed to converge locally. To avoid divergence, a popular technique is to use
a damped step—size:

Convergence Analysis

We can ensure that Newton’s method converges, if all of the following conditions are met:

1. V2f(w) is Lipschitz: |[V2f(w) — V2f(w)|| < ||lw —w/|
2. Iw* s.t. Vf(w*) =0 and V2f(w*) = ol and |w® —w*|| < S

These conditions combined establish local convergence of Newton’s method to a local minimum.
That is, given that the initial point w(® is sufficiently close to the local minimum, the Hessian is
positive definite at the local minimum, and the Hessian is Lipschitz (meaning that its rate of change
can be bounded), we can ensure a quadratic convergence rate of O(e‘et), which is significantly
faster than the fastest rate for gradient descent that we have seen, O(e™*). Note however, that each
Newton step will involve inverting the Hessian, which itself is an expensive O(d®) operation that
becomes impractical for high dimensional functions.

96 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

4.7 Gauss-Newton Algorithm

Let’s revisit the nonlinear least squares problem. We can try to apply all of the techniques and
approaches we have covered so far to solve this problem, but there is a specialized algorithm for
solving the nonlinear least squares problem, called Gauss-Newton. The Gauss-Newton algorithm
has parallels to Newton’s method, as they both repeatedly make linearly approximations of an
objective and solve that approximation. At each iteration, this method linearly approximates the
function F' about the current iterate and solves a least-squares problem involving the linearization
in order to compute the next iterate.

Let’s say that we have a “guess” for w at iteration %k, which we denote w(*). We consider the
first-order approximation of F(w) about w(*):
0

F(w) ~ F(w) = F(w®) + o F(w®)(w - w)

= F(w®) + J(w*))Aw
where Aw = w — w(k),

Now that F is linear in Aw (the Jacobian and F are just constants: functions evaluated at w(*)),
our objective is convex and we can perform linear least squares to form the closed form solution for
Aw. Applying the first-order optimality condition to the objective F' yields the following equation:

0= 5(w)'(y = F(w) = S (3 = (Fw®) + S aw))

Note that the Jacobian of the linearized function F, evaluated at any w, is precisely J(w(*)).
Denoting J = J(w®)) and Ay :=y — F(w*)) for brevity, we have

J(Ay —JAw) =0
JAy =J'JAw
Aw = (J'3)71J Ay
Comparing this solution to OLS, we see that it is effectively solving

Aw = argmin || Jdw — Ay||?
ow

where J represents X in OLS, Ay represents y in OLS, and dw represents w in OLS. At each
iteration we are effectively minimizing the objective with respect to the linearization of F' at the
current iterate w*). Since §F ~ Jdw, we can expect that the minimization with respect to F is
also optimal with respect to F in the local region around w*). Recalling that Aw = w — w¥)_ we
can improve upon our current guess w*) with the update

wFt) — wk) 4 Aw

=w® 4+ (J73)" I Ay

Algorithm 10: Gauss-Newton

Initialize w(® with some guess

while w*) has not converged do
Compute Jacobian with respect to the current iterate: J = .J(w(*))
Compute Ay =y — F(w(k))
Update: w1 = w(k) + (J73)-1JTAy

4.8. NEURAL NETWORKS 97

Note that the solution will depend on the initial value w(?) in general. There are several choices
for measuring convergence. Some common choices include testing changes in the objective value:

[(k+1) _ (k)

<
® < threshold

or in the iterates themselves:

max Aw; < threshold

4.8 Neural Networks

Neural networks are a class of compositional function approximators. They come in a variety of
shapes and sizes. In this class, we will only discuss feedforward neural networks, those networks
whose computations can be modeled by a directed acyclic graph.® The most basic (but still com-
monly used) class of feedforward neural networks is the multilayer perceptron. Such a network
might be drawn as follows:

Computation flows left-to-right. The circles represent nodes, a.k.a. units or neurons, which are
loosely based on the behavior of actual neurons in the brain. Observe that the nodes are organized
into layers. The first (left-most) layer is called the input layer, the last (right-most) layer is
called the output layer, and any other layers (there is only one here, but there could be multiple)
are referred to as hidden layers. The dimensionality of the input and output layers is determined
by the function we want the network to compute. For a function from R¢ to R*, we should have d
input nodes and k output nodes. The number and sizes of the hidden layers are hyperparameters
to be chosen by the network designer.

Note that in the diagram above, each non-input layer has the following property: every node in
that layer is connected to every node in the previous layer. Layers that have this property are
described as fully connected.? Each edge in the graph has an associated weight, which is the

3 There are also recurrent neural networks whose computation graphs have cycles.
4 Later we will learn about convolutional layers, which have a different connectivity structure.

98 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

strength of the connection from the input node in one layer to the node in the next layer. Each
node computes a weighted sum of its inputs, with these connection strengths being the weights,
and then applies a nonlinear function which is variously referred to as the activation function or
the nonlinearity. Concretely, if w; denotes the weights and ¢; denotes the activation function of
node 1, it computes the function

X = 0; (WiTX)

Let us denote the number of (non-input) layers by L, the number of units in layer ¢ € {0,...,L}
by ng (here ng is the size of the input layer), and the nonlinearity for layer ¢ € {1,...,L} by
oy R™ — R™. The weights for every node in layer ¢ can be stacked (as rows) into a matrix of
weights W, € R"*"¢-1_ Then layer ¢ performs the computation

x — oo(Wyx)

Since the output of each layer is passed as input to the next layer, the function represented by the
entire network can be written

x> or(Wrop—1(---02(Wao1(Wix)) - +))

This is what we mean when we describe neural networks as compositional.

Note that in most layers, the nonlinearity will be the same for each node within that layer, so it

makes sense to refer to a scalar function oy : R — R as “the” nonlinearity for layer ¢, and apply it

element-wise:

oe(z1)

o(x) = :
O'g(ﬂ?n()

The principle exception here is the softmax function o : R¥ — R* defined by

X
2?:1 evs

which is often used to produce a discrete probability distribution over k classes. Note that every
entry of the softmax output depends on every entry of the input. Also, softmax preserves ordering,
in the sense that sorting the indices i« = 1,...,k by the resulting value o(x); yields the same
ordering as sorting by the input value ;. In other words, more positive z; leads to larger o(x);.
This nonlinearity is used most commonly (but not always) at the output layer of the network.

O'(X)Z' =

Expressive power

It is the repeated combination of nonlinearities that gives deep neural networks their remarkable
expressive power. Consider what happens when we remove the activation functions (or equivalently,
set them to the identity function): the function computed by the network is

X — WLWL,1 e -W2W1X

=W

which is linear in its input! Moreover, the size of the smallest layer restricts the rank of W, as

rank(W) < min rank(Wy) < min ny
e{1,...,L} ¢e{0,...,L}

4.8. NEURAL NETWORKS 99

Despite having many layers of computation, this class of networks is not very expressive; it can
only represent linear functions.

We would like to produce a class of networks that are universal function approximators. This
essentially means that given any continuous function, we can choose a network in this class such
that the output of the circuit can be made arbitrarily close to the output of the given function for
all given inputs. We make a more precise statement later.

A key observation is that piecewise-constant functions are universal function approximators:

The nonlinearity we use, then, is the step function:

We can build very complicated functions from this simple step function by combining translated
and scaled versions of it. Observe that

e If a,b € R, the function x — o(a + bzx) is a translated (and, depending on the sign of b,
possibly flipped) version of the step function:

100 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

b>0

b<0

e If ¢ # 0, the function = — co(x) is a vertically scaled version of the step function.

It turns out that only one hidden layer is needed for universal approximation, and for simplicity
we assume a one-dimensional input. Thus from here on we consider networks with the following
structure:

The input z is one-dimensional, and the weight on x to node j is b;. We also introduce a constant
1, whose weight into node j is a;. (This is referred to as the bias, but it has nothing to do with
bias in the sense of the bias-variance tradeoff. It’s just there to provide the node with the ability
to shift its input.) The function implemented by the network is

k
h(z) = Z cjo(aj + bjz)
j=1

where k is the number of hidden units.

Choosing weights

With a proper choice of a;, bj, and ¢;, this function can approximate any continuous function we
want. But the question remains: given some target function, how do we choose these parameters
in the appropriate way?

4.8. NEURAL NETWORKS 101

Let’s try a familiar technique: least squares. Assume we have training data {(z;,y;)}} ;. We aim
to solve the optimization problem

To run gradient descent, we need derivatives of the loss with respect to our optimization variables.
We compute via the chain rule

Oy — h(z:))?
86]'

= 200 =) G = 2= hw))ale; + by

We see that if this particular step is “off”, as in o(a; + bjx;) = 0, then

Ay — h(z))®

= 2(yi — h(l’l)) O'(aj + bj.Ti) =0
86]' T

so no update will be made for that example. More egregiously, consider the derivatives with respect

5.
to a;°:

of < Oh(z;)
S = =2y~ b)) T =0
8aj ; aaj
0
and b;:
of " ‘ ' oh(x;)
0

Since gradient descent changes weights in proportion to their gradient, it will never modify a or b!
Even though the step function is useful for the purpose of showing the approximation capabilities
of neural networks, it is seldom used in practice because it cannot be trained by conventional
gradient-based methods.

The next simplest universal approximator is the class of piecewise-linear functions. Just as
piecewise-constant functions can be achieved by combinations of the step function as a nonlinearity,
piecewise-linear functions can be achieved by combinations of the rectified linear unit (ReLU)
function

o(z) = max{0,z}

iR Baan vt

5 Technically, the derivative of o is not defined at zero, where there is a discontinuity. However it is defined (and zero)
everywhere else. In practice, we will almost never hit the point of discontinuity because it is a set of measure zero.

102 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

Depending on the weights a and b, our ReLLUs can move to the left or right, increase or decrease
their slope, and flip direction.

slope = cb

Let us calculate the gradients again, assuming we replace the step functions by ReLUs:

n

- > —2(yi — h(x:)) max{0, a; + bjx:}

de;
J i=1

0 ifaj+bjxi<0
1 ifaj+bj:vi>0

0 0 -
L > -2y - h(xi))cj% max{0, a; + bjxi} = ; —2(yi — h(z:))c;

0 if(lj+bj$2'<0
x; if a; -f—bjl‘l >0

0 0 -
of _ > -2y - h(zi))¢j gy~ max{0, a; + bjzi} = > =2y — hlxs))e
i=1 J i=1
Crucially, we see that the gradient with respect to a and b is not uniformly zero, unlike with the
step function.

Later we will discuss backpropagation, a dynamic programming algorithm for efficiently com-
puting gradients with respect to a neural network’s parameters.

Neural networks are universal function approximators

The celebrated neural network universal approximation theorem, due to Kurt Hornik", tells us that
neural networks are universal function approximators in the following sense.

Theorem. Suppose o : R — R is nonconstant, bounded, nondecreasing, and continuous’, and let
S C R? be closed and bounded. Then for any continuous function f : S — R and any e > 0, there
exists a neural network with one hidden layer containing finitely many nodes, which we can write

k
h(x) = E cjo(aj +b;'x)
j=1

such that
[h(x) = f(x)| <€

6 See Approzimation Capabilities of Multilayer Feedforward Networks.
7 Both ReLU and sigmoid satisfy these requirements.

4.9. TRAINING NEURAL NETWORKS 103

forallxe S.

There’s some subtlety in the theorem that’s worth noting. It says that for any given continuous
function, there exists a neural network of finite size that uniformly approximates the given func-
tion. However, it says nothing about how well any particular architecture you're considering will
approximate the function. It also doesn’t tell us how to compute the weights.

It’s also worth pointing out that in the theorem, the network consists of just one hidden layer. In
practice, people find that using more layers works better.

4.9 Training Neural Networks

We have seen that first-order optimization techniques such as gradient descent and stochastic
gradient descent are effective tools for minimizing differentiable cost functions. In order to im-
plement these techniques, we need to be able to compute the gradient of the cost function with
respect to the weights. The chain rule allows us to compute these derivatives in principle, but as we
will see, the order of the computations matters in neural networks. The backpropagation algo-
rithm takes advantage of the directed acyclic graph (DAG) nature of feedforward neural networks
to calculate these derivatives efficiently.

Computational graphs

We assume that the our network can be expressed as a finite directed acyclic graph G = (V| E),
sometimes called the computational graph of the network. Each vertex v; € V represents the
result of some differentiable® computation. Each edge represents a computational dependency:
there is an edge (v;,vj) € E if and only if the value computed at v; is used to compute v;. We
denote the set of outgoing neighbors of a node v; by

out(v;) = {v; € V: (v4,v5) € E}

Furthermore, some of these vertices have special significance. There is a vertex £ € V| representing
the loss function, which contains no outgoing edges (i.e. out(¢) = &). There is also some subset of
vertices W C V representing the trainable parameters of the network. Our objective is to efficiently
calculate 8% for each w; € W.

The primary mathematical tool employed in backpropagation is the chain rule. This allows us to
write

or ol Ov;
81)1‘ - Z 8'0]' 8'01'

v; €out(v;)
The intuition here is that the value computed at v; affects potentially all of the vertices to which
it is an input, and each of those vertices affects the loss in some way. The total contribution of v;
to the loss must be summed over these downstream effects.

We could expand recursively to get an expression for each weight:

o ol A

8wi N 8711] awi

v;€out(w;)

8 A number of common neural network operations, such as the ReLU activation function, are not everywhere differentiable.
In practice it is sufficient to be differentiable except at finitely many points.

104 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

8881%81)‘
P INEDY avkaTjaui

v; €out(w;) v Eout(v;)

ot vk ov@ gy
Z ov®) gpk=1) " 9p() dw;

paths v ... v®) from w; to £

However, computing the derivative by evaluating this expression is quite inefficient, as many terms
appear in more than one path from w; to ¢, so we are doing more work than necessary.

Backpropagation

The backpropagation algorithm combines the chain rule with the principles of dynamic pro-
gramming: dividing a large problem into simpler subproblems, solving these and storing their
solutions, and combining the stored solutions to solve larger subproblems or the original problem.
In this context, the large problem is computing V£(W), and the subproblems are computing the

individual terms %. The key observation from the first chain rule expression above is that we

can reuse work by computlng ££ in a “back to front” order. That is, before computing 8 L we
should compute % for each 1)] € out(v;). Because our computational graph is a DAG, such a
J

topological ordering can always and efficiently” be computed via a topological sort.' Then

the subproblem of computing 8? can be easily accomplished by combining the stored values 66—4

with the terms g which can typically be computed analytically based on our knowledge of what
mathematical computatlons each vertex performs. Let us consider a few examples of computations
that the vertices of neural network computation graphs perform, to get a concrete sense of what
these terms look like.

Derivatives of common neural network elements
Fully connected layers

In a standard fully-connected layer, each vertex calculates z; as a linear combination of the activa-
tions a; of the previous layer, with weights w;:

ZJ = E wjiai
%

We have omitted layer indexing to keep the notation simple, but keep in mind that this a; is the
result of some computation performed at the previous layer!!, and these zj are likely used as inputs
to vertices at later layers. This part of the computational graph looks like

9 In time linear in the size of the graph: O(|V| + |E|).
10 See CS 170!
11 unless it is the input layer

4.9. TRAINING NEURAL NETWORKS 105

WU'

In the image above, out(w;;) = {2;}, and it is straightforward to see that

0z 2 —
8wjl-
SO
ol o

= —a;
811]]‘1' aZj

Observe that we must use the activations a; that were previously computed in the forward pass.

We must also compute the derivatives z; with respect to a; so that we can pass these backward to

earlier layers. In the image above, out(a;) = {z1,..., 2}, and it is straightforward to see that
sz
— W
8ai It
SO
o o
— vy
8ai 15) j 7

Element-wise nonlinearities

After taking linear combinations, it is typical to insert a nonlinearity. (Recall from the previous
note that nonlinearities are at the heart of neural networks’ expressive power.) In most cases,
this nonlinearity is applied elementwise. Again omitting layer indexing, we might write such a
computation as

a; = U(ZZ)

where z; is the value from the previous layer, and o is the activation function. This part of the
computational graph looks like

106 CHAPTER 4. BEYOND LEAST SQUARES: OPTIMIZATION AND NEURAL NETWORKS

In the image above, out(z;) = {a;}, and it is straightforward to see that

SO

Chapter 5

Classification

5.1 Generative vs. Discriminative Classification

The task of classification differs from regression in that we are now interested in assigning a
d-dimensional data point one of a discrete number of classes, instead of assigning it a continuous
value. Thus, the task is simpler in that there are fewer choices of labels per data point but more
complicated in that we now need to somehow factor in information about each class to obtain the
classifier that we want.

Given a training set D = {(x;,;)}l~, of n points, where each data point x; € R? is paired with
a known discrete class label y; € {1,2,..., K'}, our goal is to train a classifier which, when fed any
arbitrary d-dimensional data point, classifies that data point as one of the K discrete classes.

There are two main types of classification models: generative models and discriminative models.
Generative models have strong roots in probabilistic modeling. The idea is that we form a joint
probability distribution p(X,Y’) over the input X (which we treat as a random vector) and label
Y (which we treat as a random variable), and we classify an arbitrary datapoint x with the class
label that maximizes the joint probability:

g = argmax p(x,Y = k)
k

Generative models typically form the joint distribution by explicitly forming the following:
e A prior probability distribution over all classes:
P(k) = P(class = k)
e A conditional probability distribution for each class k € {1,2,..., K'}:

pr(X) = p(X|class k)

Using the prior and the conditional distributions in conjunction, we have (from Bayes’ rule) that
maximizing the joint probability over the class labels is equivalent to maximizing the posterior
probability of the class label:

g = argmax p(x,Y = k) = argmax P(k) pi(x) = argmax P(Y = k|x)
k k k

107

108 CHAPTER 5. CLASSIFICATION

Maximizing the posterior will induce regions in the feature space in which one class has the highest
posterior probability, and decision boundaries in between classes where the posterior probability
of two classes are equal.

Figure 5.1: A collection (in dark black) of linear (left) vs quadratic (right) level set boundaries in a 2D
feature space

Generative classifiers are flexible, quick to train, and can generate new samples (in order to augment
the training dataset). However, they are also inefficient, because they require estimation of a
large number of parameters (ie. the covariance matrices of the conditional distributions, which
have d(d;) parameters). Typically, the decision boundary only requires O(d) parameters, but
generative models typically estimate O(d?) parameters in order to to determine the class-conditional
probability distributions. As d increases, generative models tend to loose their effectiveness, as the
number of parameters starts to dominate in comparison to the number of datapoints, and as a

result the variance of the model increases.

This leads us to the concept of discriminative models, where we bypass learning a generative
model altogether and directly learn a decision boundary. Discriminative models are parameterized
by weights that either (1) form a posterior distribution P(Y|X) without considering the prior or
conditional distributions, or (2) directly form a hard decision boundary without considering any
probabilities in the first place. In the former case, discriminative models choose the class that
maximizes the posterior probability distribution:

g = argmax P(Y = k|x)
k

Generative models also choose the class that maximizes the posterior probability distribution. The
only difference is in the way generative and discriminative models form the posterior.

Bayes’ Decision Rule

While both generative and discriminative models by default maximize the posterior probability
over classes, this strategy may not necessarily be desirable at all times. Rather than maximizing
the posterior probability, we would really like to minimize the risk of our model. Recall that the
risk for a given classifier h is defined as the expected loss over X and Y:

R(h) = E(xy)~pll(h(x),y)]

where ¢(h(x),y) measures the loss between the predicted label h(x) and the true label y. In the
context of regression, the loss function was the squared error £(h(x),y) = (h(x) — y)?. In the

5.2. LEAST SQUARES SUPPORT VECTOR MACHINE 109

context of classification, the loss function can take many forms, but the simplest is the standard
step function

0 if h(x) =

1 ifh(x)#y

Our goal is to find a classifier that minimizes the risk, given the loss function. We can equivalently
express the risk as

((h(x),y) = {

/ ZL Y = kx) | p(x)dx

The Bayes’ classifier h* will minimize the risk. Given an arbitrary x, the Bayes’ classifier will
pick

K
h*(x) = argmin » L(j, k)P(Y = k|x)
I k=1
Effectively, the Bayes’ classifier will pick the class that minimizes the expected loss for the given x.
In the special case where the loss function is the standard step function (as described above),

h*(x) = arg min ZP = k|x) = argmin 1 — P(Y = j|x) = argmax P(Y = j|x)
J kA j J J

This is equivalent to selecting the class that maximizes the posterior distribution!

Depending on which loss function we are using, the optimal classifier may or may not maximize
the posterior probability. For example, consider the case of cancer diagnosis, where a patient’s
diagnosis for cancer can come up as positive or negative. There are four possible cases:

1. Classify the patient cancer +, and in reality the patient is cancer + (Correct Classification)
2. Classify the patient cancer —, and in reality the patient is cancer — (Correct Classification)

3. Classify the patient cancer +, but in reality the patient is cancer — (False positive)

(
4. Classify the patient cancer —, but in reality the patient is cancer + (False negative)

Classifying the patient’s condition correctly is ideal, so we can reasonably set the loss for those
cases to 0. The false positive and false negative cases are bad, and there should be a loss for these
cases. But should these cases have the same loss value or should we weigh them differently? A
false negative diagnosis would be significantly worse than a false positive, because a false negative
diagnosis would go undiagnosed and would probably be fatal. Therefore, the associated loss for
the false negative case should be higher than the associated loss for the false positive case. In this
case, the goal is no longer to maximize the posterior probability, because otherwise we would be
treating the false negative and false positive cases the same.

5.2 Least Squares Support Vector Machine

As a first example of a simple, non-probabilistic discriminative model, we discuss the Least
Squares Support Vector Machine (LS-SVM). Consider the binary classification problem

where the classes are represented by —1 and +1. One way to classify a data point x is to estimate
parameters w, compute w'x, and classify x to be sign(w'x). Geometrically, the decision boundary

this produces is a hyperplane, w'x = 0.

110 CHAPTER 5. CLASSIFICATION

We need to figure out how to optimize the parameter w. One simple procedure we can try is to fit
a least squares objective:

n
argmin > [lys — sign(w'x,)||* + Al
W=

Where x;, w € R4, Note that we have not forgotten about the bias term! Even though we are
dealing with d dimensional data, x; and w are d 4+ 1 dimensional: we add an extra “feature” of 1
to x, and a corresponding bias term of k£ in w. Note that in practice, we do not want to penalize
the bias term in the regularization term, because the we should be able to work with any affine
transformation of the data and still end up with the same decision boundary. Therefore, rather
than taking the norm of w, we often take the norm of w’, which is every term of w excluding the
corresponding bias term. For simplicity of notation however, let’s just take the norm of w.

Without the regularization term, this would be equivalent to minimizing the number of misclassified
training points. Unfortunately, the “sign” term makes this optimization problem non-convex, and
in fact this optimization problem is NP-hard (computationally intractable). Instead we can solve
a relaxed version of this problem:

n
argmin > |y — Wl + AlwlP?
W=
This method is called the binary least squares support vector machine (LS-SVM). Note that
in this relaxed version, we care about the magnitude of w'x; and not just the sign.

One drawback of LS-SVM is that the hyperplane decision boundary it computes does not necessarily
make sense for the sake of classification. For example, consider the following set of data points,
color-coded according to the class:

15 4

1.0 4

0.5 -

0.0 \
—0.5 | P ® L4 °

o ® e ~e

1.0 ® .‘'."’ :.

' o

. .'.. R :3:.:?:0.. °
~1.5 1 ®
B T T S B

Figure 5.2: Reasonable fit LS-SVM

LS-SVM will classify every data point correctly, since all the +1 points lie on one side of the decision
boundary and all the —1 points lie on the other side. Now if we add another cluster of points as
follows:

5.2. LEAST SQUARES SUPPORT VECTOR MACHINE 111

Figure 5.3: Poor fit LS-SVM

The original LS-SVM fit would still have classified every point correctly, but now the LS-SVM
gets confused and decides that the points at the bottom right are contributing too much to the
loss (perhaps for these points, w'x; = —5 for the original choice of w so even though they are on
the correct side of the original separating hyperplane, they incur a high squared loss and thus the
hyperplane is shifted to accommodate). This problem will be solved when we introduce general
Support Vector Machines (SVM’s).

Feature Extension

Working with linear classifiers in the raw feature space may be extremely limiting, so we may
consider adding features that that allow us to come up with nonlinear classifiers (note that we
are still working with linear classifiers in the augmented feature space). For example, adding
quadratic features allows us to find a linear decision boundary in the augmented quadratic space
that corresponds to a nonlinear “circle” decision boundary projected down into the raw feature
space.

Figure 5.4: Augmenting Features, image courtesy of Prof. Shewchuk

https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf

112 CHAPTER 5. CLASSIFICATION

In order implement this idea, we re-express our objective as

n
. T 2 2
argmin Y [lyi — w'(x;)||* + A w]|
W=l
Note that ¢ is a function that takes as input the data in raw feature space, and outputs the data
in augmented feature space.

Neural Network Extension

Instead of using the linear function w'x or augmenting features to the data, we can also directly
use a non-linear function of our choice in the original feature space, such as a neural network. One
can imagine a whole family of discriminative binary classifiers that minimize

n
arg min Z lyi — gw(x:)1> + A w|?

w i=1

where gw(x;) can be any function that is easy to optimize. Then we can classify using the rule

L 1 gw(xi) >0
Yi = -1 gw(xi) <6

Where 6 is some threshold. In LS-SVM, gw(x;) = x'w; and § = 0. Using a neural network with
non-linearities as gy can produce complex, non-linear decision boundaries.

Multiclass Extension

We can also adapt this approach to the case where we have multiple classes. Suppose there are K
classes, labeled 1,2, ..., K. One possible way to extend the approach from binary classification is to
compute gw(x;) and round it to the nearest number from 1 to K. However, this approach gives an
“ordering” to the classes, even if the classes themselves have no natural ordering. This is clearly a
problem. For example, in fruit classification, suppose 1 is used to represent “peach,” 2 is used to
represent “banana,” and 3 is used to represent “apple.” In our numerical representation, it would
appear that peaches are less than bananas, which are less than apples. As a result, if we have an
image that looks like some cross between an apple and a peach, we may simply end up classifying
it as a banana.

The typical way to get around this issue is as follows: if the i’th observation has class k, instead
of using the representation y; = k, we can use the representation y; = ey, the k’th canonical basis
vector. Now there is no relative ordering in the representations of the classes. This method is called
one-hot vector encoding.

When we have multiple classes, each y; is a K-dimensional one-hot vector, so for LS-SVM, we
instead have a K x (d + 1) weight matrix to optimize over:

n
arg min Z ly; — Wxi||2 + \|w|?
W=
To classify an arbitrary input x, we compute Wx and see which component k is the largest:

g = max wi'x

5.3. LOGISTIC REGRESSION 113

5.3 Logistic Regression

Logistic regression is a discriminative classification technique that has a direct probabilistic
interpretation. We will first present the binary class case, and then we can easily extend the logic
to the multiclass case.

Binary Logistic Regression

Suppose that we have the binary classification problem where classes are represented by 0 and 1.
Note that we instead of using —1/ + 1 labels (as in LS-SVM), in binary logistic regression we use
0/1 labels. Logistic regression makes more sense this way because it directly outputs a probability,
which belongs in the range of values between 0 and 1.

In binary logistic regression, we would like our model to output the probability that a data point
is in class 0 or 1. We can start with the raw linear “score” w'x and convert it to a probability

between 0 and 1 by applying a sigmoid transformation s(w'x), where s(z) = H% To classify an

arbitrary point x, we use the sigmoid function to output a probability distribution P(Y") over the
classes 0 and 1:

P(Y =1|x,w)=s(w'x), P(Y =0|x,w)=1-s(w'x)
we classify x as the class with the maximum probability:

1 if s(w'x) >0.5

j=maxP(Y =k |x,w) =)
k 0 otherwise

0:5

Figure 5.5: Logistic function. For our purposes, the horizontal axis is the output of the linear function w'x;

and the vertical axis is the output of the logistic function, which can be interpreted as a probability between
0 and 1.

Equivalently, we classify x as

g =

1 ifwx>0
0 otherwise

114 CHAPTER 5. CLASSIFICATION

Loss Function

Suppose we are given a training dataset D = {(x;, y;)}?_;. In order to train our model, we need a
loss function to optimize. One possibility is least squares:

n
argmin 3 [y — s(w'x)[2 4+ Af[w]?

w i=1

However, this may not be the best choice. Ordinary least squares regression has theoretical justi-
fications such as being the maximum likelihood objective under Gaussian noise. Least squares for
this classification problem does not have a similar justification.

Instead, the loss function we use for logistic regression is called the log-loss, or cross entropy:

If we define p; = s(wai), then using the properties of logs we can express this as

L(w) ==Y yilnp; + (1 —) In(1 — p;)
=1

For each x;, p; represents our predicted probability that its corresponding class is 1. Because
yi € {0,1}, the loss corresponding to the i’th data point is

Li(w) —Inp; when y; =1
(W) =
' —In(l —p;) when y; =0

Intuitively, if p; = y;, then we incur 0 loss. However, this is never actually the case. The logistic
function can never actually output a value of exactly 0 or 1, and we will therefore always incur
some loss. If the actual label is y; = 1, then as we lower p; towards 0, the loss for this data point
approaches infinity.

The loss function can be derived from a maximum likelihood perspective or an information-theoretic
perspective. First let’s present the maximum likelihood perspective. We view each observations
y; as an independent sample from a Bernoulli distribution Y; ~ Bern(p;) (technically we mean
Y; | x;, w, but we remove the conditioning terms for notational brevity), where p; is a function of
X;. Thus our observation y;, which we can view as a “sample,” has probability

e 1-p; ify;=0

One convenient way to write the likelihood of a single data point is

A

P(Y; = y;) = p{" (1 —p)' 7%
which holds no matter what y; is.

We need a model for the dependency of p; on x;. We have to enforce that p; is a transformation of
x; that results in a number from 0 to 1 (ie. a valid probability). Hence p; cannot be, say, linear in
x;. One way to do achieve the 0-1 normalization is by using the sigmoid function

1
_ T} — -~
pi= (W) = T

5.3. LOGISTIC REGRESSION 115

Now we can estimate the parameters w via maximum likelihood. We have the problem

Wi g = arg max P(Yl :yl,...,f/n:yn | X1,...,Xp, W)
w

n
= arg max P(Y; =y X;, W
gw H (i yz| i)

i=1
n
— argmax | [p*(1 —pi)' 7%
Vo=l
n
= argmax In [Hpi'i(l — py)(17v0)
W i=1

n
=argmax Y _yilnp; + (1 —y;) In(1 - p;)

w i=1

n
= argmin — Zyz Inp; + (1 —) In(1 — p;)
w i=1

which exactly matches the cross-entropy formulation from earlier. The logistic regression loss func-
tion can also be justified from an information-theoretic perspective. To motivate this approach, we
introduce Kullback-Leibler (KL) divergence (also called relative entropy), which measures

the amount that one distribution diverges from another. Given any two discrete random variables
P and @, the KL divergence from () to P is defined as

P(z)
DxiL(P || Q) = P(x)In
(P11Q) =3 Pla)n s
Note that Dgr, is not a true distance metric, because it is not symmetric, ie. Dk (P || Q) #

Dx1,(Q || P) in general. It also does not satisfy the triangle inequality. However, it is always
positive, ie. Dxr,(P || @) > 0, with equality iff P = Q.

In the context of classification, if the class label y; is interpreted