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PREFACE

A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that you may better understand what you will find beyond this
page.

This text is Part Il of a three—text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material
often taught in “Calc 2:” integration and its applications, along with an introduc-
tion to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “multivariable calc:” para-
metric equations, polar coordinates, vector-valued functions, and functions of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www.vmi.edu/APEX. These three texts are intended to
work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Printing the entire text as one volume makes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for under
$15 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in
an “earlier/later section,” though that section does not actually appear in this
particular text. Also, the index makes reference to topics, and page numbers,
that do not appear in this text. This is done intentionally to show the reader
what topics are available for study. Downloading the .pdf of APEX Calculus will
ensure that you have all the content.

For Students: How to Read this Text

Mathematics textbooks have a reputation for being hard to read. High—level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower—level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and ends with alook ahead
to see how the just—learned material helps address future problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en-
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “all”
the steps needed to solve a problem. Sometimes reading through each step is
helpful; sometimes it is confusing. When the steps are illustrating a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.


http://www.vmi.edu/APEX
http://amazon.com

Most proofs have been omitted. In mathematics, proving something is al-
ways true is extremely important, and entails much more than testing to see if
it works twice. However, students often are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potential problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

Interactive, 3D Graphics

New to Version 3.0 is the addition of interactive, 3D graphics in the .pdf ver-
sion. Nearly all graphs of objects in space can be rotated, shifted, and zoomed
in/out so the reader can better understand the object illustrated.

As of this writing, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To activate the interactive mode, click on
the image. Once activated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to investigate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object left/right or up/down. By right-clicking on the graph one can access
a menu of other options, such as changing the lighting scheme or perspective.
One can also revert the graph back to its default view. If you wish to deactive
the interactivity, one can right-click and choose the “Disable Content” option.

Thanks

There are many people who deserve recognition for the important role they
have played in the development of this text. First, | thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my time
and attention at home. Many thanks to Troy Siemers, whose most important
contributions extend far beyond the sections he wrote or the 227 figures he
coded in Asymptote for 3D interaction. He provided incredible support, advice
and encouragement for which | am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for
reading through so much material and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc Il while | was still writing the Calc Ill material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu-
nity far above & beyond what | expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. | am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. | am blessed to
have so many people give of their time to make this book better.



A%X — Affordable Print and Electronic teXts

AFEX is a consortium of authors who collaborate to produce high—quality,
low—cost textbooks. The current textbook—writing paradigm is facing a poten-
tial revolution as desktop publishing and electronic formats increase in popular-
ity. However, writing a good textbook is no easy task, as the time requirements
alone are substantial. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboration, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Cal-
culus would not exist had not the Virginia Military Institute, through a generous
Jackson—Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi . edu/APEX.


https://github.com/APEXCalculus
http://www.vmi.edu/APEX




5: INTEGRATION

We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F(x) such that F'(x) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute areas, volumes, mass,
force, pressure, work, and much more.

5.1 Antiderivatives and Indefinite Integration

Given a function y = f(x), a differential equation is one that incorporates y, x,
and the derivatives of y. For instance, a simple differential equation is:

y' = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such thaty’ = 2x?

Can you find another?

And yet another?

Hopefully one was able to come up with at least one solution: y = x*. “Find-
ing another” may have seemed impossible until one realizes that a function like
y = x2 + 1 also has a derivative of 2x. Once that discovery is made, finding “yet
another” is not difficult; the function y = x?> + 123,456, 789 also has a deriva-
tive of 2x. The differential equation y’ = 2x has many solutions. This leads us
to some definitions.

Definition 19 Antiderivatives and Indefinite Integrals

Let a function f(x) be given. An antiderivative of f(x) is a function F(x)
such that F’'(x) = f(x).

The set of all antiderivatives of f(x) is the indefinite integral of f, denoted

by
/ f(x) dx.

Make a note about our definition: we refer to an antiderivative of f, as op-
posed to the antiderivative of f, since there is always an infinite number of them.
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We often use upper-case letters to denote antiderivatives.

Knowing one antiderivative of f allows us to find infinitely more, simply by
adding a constant. Not only does this give us more antiderivatives, it gives us all
of them.

Theorem 34 Antiderivative Forms

Let F(x) and G(x) be antiderivatives of f(x). Then there exists a constant
Csuch that

Given a function fand one of its antiderivatives F, we know all antiderivatives
of fhave the form F(x) 4 C for some constant C. Using Definition 19, we can say
that

/f(x) dx = F(x) + C.
Let’s analyze this indefinite integral notation.

Integration Differential ~ Constant of

symbol of x integration
N }
/f(x) dx=F(x)+C
Integrand antiggreivative

Figure 5.1: Understanding the indefinite integral notation.

Figure 5.1 shows the typical notation of the indefinite integral. The integra-
tion symbol, f, is in reality an “elongated S,” representing “take the sum.” We
will later see how sums and antiderivatives are related.

The function we want to find an antiderivative of is called the integrand. It
contains the differential of the variable we are integrating with respect to. The j
symbol and the differential dx are not “bookends” with a function sandwiched in
between; rather, the symbol f means “find all antiderivatives of what follows,”
and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Let’s practice using this notation.

Example 109 Evaluating indefinite integrals
Evaluate /sinxdx.

Notes:



5.1 Antiderivatives and Indefinite Integration

SOLUTION We are asked to find all functions F(x) such that F'(x) =
sin x. Some thought will lead us to one solution: F(x) = — cos x, because 2 (— cos x) =
sinx.

The indefinite integral of sin x is thus — cos x, plus a constant of integration.
So:

/sinxdx: —cosx + C.

A commonly asked question is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question. The

integral
/ sinx dx

presents us with a differential, dy = sin x dx. It is asking: “What is y?” We found
lots of solutions, all of the formy = — cosx + C.
Letting dy = sin x dx, rewrite

/sinxdx as /dy.

This is asking: “What functions have a differential of the form dy?” The answer
is “Functions of the form y + C, where Cis a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = — cos x.

Understanding all of this is more important later as we try to find antideriva-
tives of more complicated functions. In this section, we will simply explore the
rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 110 Evaluating indefinite integrals
Evaluate /(3x2 + 4x 4+ 5) dx.

SOLUTION We seek a function F(x) whose derivative is 3x* + 4x + 5.
When taking derivatives, we can consider functions term—by—term, so we can
likely do that here.

What functions have a derivative of 3x2? Some thought will lead us to a
cubic, specifically x> 4+ Cy, where C; is a constant.

What functions have a derivative of 4x? Here the x term is raised to the first
power, so we likely seek a quadratic. Some thought should lead us to 2x*> + C,,
where C; is a constant.

Notes:
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Finally, what functions have a derivative of 5? Functions of the form 5x+ Cs,
where C; is a constant.

Our answer appears to be
/(3x2+4x+5) dx = + C1 + 2X + C, + 5x + Cs.

We do not need three separate constants of integration; combine them as one
constant, giving the final answer of

/(3x2+4x+5) dx = +2x* +5x+ C.

It is easy to verify our answer; take the derivative of x> + 2x3 + 5x + C and
see we indeed get 3x% + 4x + 5.

This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

o ([ 00 0) =100,

Differentiation “undoes” the work done by antidifferentiation.

Theorem 24 gave a list of the derivatives of common functions we had learned
at that point. We restate part of that list here to stress the relationship between
derivatives and antiderivatives. This list will also be useful as a glossary of com-
mon antiderivatives as we learn.

Notes:



5.1 Antiderivatives and Indefinite Integration

Theorem 35 Derivatives and Antiderivatives

Common Differentiation Rules Common Indefinite Integral Rules

1 Z(cf(x) =c-f'(x) 1. [c-f(x)dx=c- [f(x)dx
2. L(f(x) £g(x)) = 2. [ (f(x) £g(x)) dx =
f'(x) £ g (x) [ f(x) dx £ [ g(x) dx
3. £(¢)=0 3. fodx=C
4. Z(x) =1 4. [ldx= [dx=x+C
5. L (x") =n-x""1 5. [Xdx= 59X 4 C £ -1
6. Z(sinx) = cosx 6. [cosxdx=sinx+C
7. 4 (cosx) = —sinx 7. [sinxdx= —cosx+C
8. Z(tanx) = sec’x 8. [sec?xdx=tanx+C
9. Z(cscx) = —cscxcotx 9. [escxcotxdx = —cscx+ C
10. Z(secx) = secxtanx 10. [secxtanxdx = secx + C
11. Z(cotx) = —csc®x 11. [esc?xdx = —cotx+ C
12. Z(e) =€ 12. [e*dx=e"+C
13. Z(a*) =Ina-a* 13. [a¥dx=1L-a"+C
14. Z(Inx) =1 14. [Ldx=In|x|+C

We highlight a few important points from Theorem 35:

* Rule #1 states [ ¢ f(x) dx = c- [ f(x) dx. This is the Constant Multiple
Rule: we can temporarily ignore constants when finding antiderivatives,
just as we did when computing derivatives (i.e., d% (3x2) is just as easy to
compute as & (x?)). An example:

/Scosxdx:5~/cosxdx:5-(sinx—|—C)=55inx—|—C.

In the last step we can consider the constant as also being multiplied by

Notes:

193



Chapter 5 Integration

5, but “5 times a constant” is still a constant, so we just write “C”.

¢ Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
110. So:

/(3x2+4x+5)dx:/3x2dx+/4xdx—|—/5dx
:3/x2dx+4/xdx+/5dx
1

—3.30 s be s c
3 2

=x+2%+5x+C

In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

¢ Rule #5 is the Power Rule of indefinite integration. There are two impor-
tant things to keep in mind:

1. Notice the restriction that n = —1. This is important: f% dx #

“2x% + C”; rather, see Rule #14.

2. We are presenting antidifferentiation as the “inverse operation” of
differentiation. Here is a useful quote to remember:

“Inverse operations do the opposite things in the opposite
order”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the an-
tiderivative, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

¢ Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Initial Value Problems

In Section 2.3 we saw that the derivative of a position function gave a velocity
function, and the derivative of a velocity function describes acceleration. We can
now go “the other way:” the antiderivative of an acceleration function gives a
velocity function, etc. While there is just one derivative of a given function, there
are infinite antiderivatives. Therefore we cannot ask “What is the velocity of an
object whose acceleration is —32ft/s2?”, since there is more than one answer.

Notes:
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5.1 Antiderivatives and Indefinite Integration

We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 111 Solving initial value problems
The acceleration due to gravity of a falling object is —32 ft/s?. At timet = 3,
a falling object had a velocity of —10 ft/s. Find the equation of the object’s

velocity.

SOLUTION We want to know a velocity function, v(t). We know two
things:

* The acceleration, i.e., v/(t) = —32, and

* the velocity at a specific time, i.e., v(3) = —10.

Using the first piece of information, we know that v(t) is an antiderivative of
v’(t) = —32. So we begin by finding the indefinite integral of —32:

/(—32) dt = —32t + C=v(t).
Now we use the fact that v(3) = —10 to find C:

v(t) = =32t +C

v(3) = —10
—32(3)+C=-10
C=86

Thus v(t) = —32t+ 86. We can use this equation to understand the motion
of the object: when t = 0, the object had a velocity of v(0) = 86 ft/s. Since the
velocity is positive, the object was moving upward.

When did the object begin moving down? Immediately after v(t) = 0:

43
—32t+86 =0 = t:1—6z2.695.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleration and its velocity at a single point in time.

Example 112 Solving initial value problems
Find f(t), given that f”/(t) = cost, f/(0) = 3 and f(0) = 5.

SOLUTION We start by finding f’(t), which is an antiderivative of f”(t):

/f”(t) dt:/costdt:sint+C:f/(t)-

Notes:
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Chapter 5 Integration

So f'(t) = sint + C for the correct value of C. We are given that f/(0) = 3,
so:
f/(0)=3 = sin0+C=3 = C=3.

Using the initial value, we have found f'(t) = sint + 3.
We now find f(t) by integrating again.

/f /smt+3)d t = —cost+3t+C.
We are given that f(0) = 5, so

—cos0+3(0)+C=5
-1+C=5
C=6

Thus f(t) = — cost + 3t + 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a position function given a velocity function.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, we will see how areas and antiderivatives are closely tied together.

Notes:
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Exercises 5.1

Terms and Concepts
1. Define the term “antiderivative” in your own words.

2. Isit more accurate to refer to “the” antiderivative of f(x) or
“an” antiderivative of f(x)?

3. Use your own words to define the indefinite integral of

fx).

4. Fill in the blanks: “Inverse operations do the
things in the order.”

5. What is an “initial value problem”?

6. The derivative of a position function is a func-
tion.

7. The antiderivative of an acceleration functionis a
function.

Problems

In Exercises 8 — 26, evaluate the given indefinite integral.

8. /3x3 dx

9. /x8 dx

10. /(10)(2 —2)dx
11. /dt

12. /lds

13. /%dt

14. /t—?;dt

1
.| —d
x

16. /sec2€d9
17. /sin0d€

18. /(secxtanx + cscx cotx) dx

15

19.

20.

21

22.

23.

24.

25.

26.

27

/Se(’ do
/3t dt
e
2
/(2t+ 3)% dt
/(t2 +3)(£ — 2t) dt
/sza dx
/e” dx
/adx

. This problem investigates why Theorem 35 states that
1
/fdx:ln|x|+C.
X

(a) What is the domain of y = Inx?

(b) Find £ (Inx).

(c) What is the domain of y = In(—x)?

(d) Find £ (In(—x)).

(e) You should find that 1/x has two types of antideriva-
tives, depending on whether x > Oorx < 0. In

1
one expression, give a formula for / = dx that takes
X

these different domains into account, and explain
your answer.

In Exercises 28 — 38, find f(x) described by the given initial
value problem.

28.

29.

30.

31.

32.

33.

34.

35.

36.

f'(x) = sinxand f(0) = 2

f'(x) = 5€* and f(0) = 10

f'(x) =4 —3x*andf(—1) =9
f'(x) = sec’xand f(r/4) =5

f'(x) =7"andf(2) =1

f"(x) =5andf'(0) = 7,f(0) =3
f"(x) = 7xand f'(1) = —1,f(1) = 10
f"(x) = 5€¢*and f'(0) = 3,f(0) = 5
f7(0) =sinfandf'(m) =2,f(r) =4
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37. f"(x) = 24x’ 4+ 2 — cosx and f'(0) = 5, f(0) = 0 Review

39. Use information gained from the first and second deriva-
tives to sketch f(x) =

1
e +1

38. f"(x)=0andf'(1) =3,f(1) =1 40. Giveny = x*€” cos x, find dy.
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5.2 The Definite Integral

We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 ft/s for 10 seconds. How far away from its starting point is the
object?

We approach this problem with the familiar “Distance = Rate x Time” equa-
tion. In this case, Distance = 5ft/s x 10s = 50 feet.

Itis interesting to note that this solution of 50 feet can be represented graph-
ically. Consider Figure 5.2, where the constant velocity of 5ft/s is graphed on the
axes. Shading the area under the line fromt = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 ft.

Now consider a slightly harder situation (and not particularly realistic): an
object travels in a straight line with a constant velocity of 5ft/s for 10 seconds,
then instantly reverses course at a rate of 2ft/s for 4 seconds. (Since the object
is traveling in the opposite direction when reversing course, we say the velocity
is a constant —2ft/s.) How far away from the starting point is the object — what
is its displacement?

Here we use “Distance = Rate; x Time; + Rate, x Time,,” which is

Distance =5-10+ (—2) -4 =42 ft.

Hence the object is 42 feet from its starting location.

We can again depict this situation graphically. In Figure 5.3 we have the
velocities graphed as straight lines on [0, 10] and [10, 14], respectively. The dis-
placement of the object is

“Area above the t—axis — Area below the t—axis,”
which is easy to calculate as 50 — 8 = 42 feet.

Now consider a more difficult problem.

Example 113 Finding position using velocity

The velocity of an object moving straight up/down under the acceleration of
gravity is given as v(t) = —32t+48, where time tis given in seconds and velocity
is in ft/s. When t = 0, the object had a height of O ft.

1. What was the initial velocity of the object?
2. What was the maximum height of the object?

3. What was the height of the object at time t = 2?

SOLUTION It is straightforward to find the initial velocity; at time t = 0,
v(0) = —32-0+ 48 = 48 ft/s.

Notes:

5.2 The Definite Integral

y (ft/s)

5

- - t(s)
5 10

Figure 5.2: The area under a constant
velocity function corresponds to distance
traveled.

y (ft/s)

5

- - > t(s)
5 10 15

Figure 5.3: The total displacement is the
area above the t—axis minus the area be-
low the t-—axis.
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Chapter 5 Integration

y (ft/s)
50

—50 |+
Figure 5.4: A graph of v(t) = —32t +

48; the shaded areas help determine dis-
placement.

200

To answer questions about the height of the object, we need to find the
object’s position function s(t). This is an initial value problem, which we studied
in the previous section. We are told the initial height is 0, i.e., s(0) = 0. We
know s’(t) = v(t) = —32t +48. To find s, we find the indefinite integral of v(t):

/v(t) dt = /(—32t + 48) dt = —16t* + 48t + C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = —16t + 48t.

To find the maximum height of the object, we need to find the maximum of
s. Recalling our work finding extreme values, we find the critical points of s by
setting its derivative equal to 0 and solving for t:

s'(t)=—32t+48=0 = t=48/32=15s.

(Notice how we ended up just finding when the velocity was 0ft/s!) The first
derivative test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = —16(1.5)* + 48(1.5) = 36ft.

The height at time t = 2 is now straightforward to compute: it is s(2) = 32ft.

While we have answered all three questions, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.4 shows a graph of v(t) on axes fromt = Otot = 3. It is again
straightforward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t—axis that is below the
t—axis counted as “negative” area. That is, it represents the object coming back
toward its starting position. So to find the maximum distance from the starting
point — the maximum height — we find the area under the velocity line that is
above the t—axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

1 1
Area = EBase X Height = 3 x 1.5s x 48ft/s = 36ft,

which matches our previous calculation of the maximum height.

Finally, we find the total signed area under the velocity function fromt = 0
tot = 2 to find the s(2), the height at t = 2, which is a displacement, the
distance from the current position to the starting position. That is,

Displacement = Area above the t—axis — Area below t—axis.

Notes:



The regions are triangles, and we find
1 1
Displacement = 5(1.55)(48ft/s) — E(.Ss)(let/s) = 32ft.

This also matches our previous calculation of the height at t = 2.

Notice how we answered each question in this example in two ways. Our first
method was to manipulate equations using our understanding of antiderivatives
and derivatives. Our second method was geometric: we answered questions
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relationship between area under a ve-
locity function and displacement, but it does imply a relationship exists. Section
5.4 will fully establish fact that the area under a velocity function is displace-
ment.

Given a graph of a function y = f(x), we will find that there is great use in
computing the area between the curve y = f(x) and the x-axis. Because of this,
we need to define some terms.

Definition 20 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area

from x = a to x = b under fis:

(area under f and above the x—axis on [a, b]) — (area above f and under
the x—axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],

denoted .
| w0 x
a

where a and b are the bounds of integration.

By our definition, the definite integral gives the “signed area under f” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f” or, more commonly,
“the area under the curve.”

The previous section introduced the indefinite integral, which related to an-
tiderivatives. We have now defined the definite integral, which relates to areas
under a function. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in Section 5.4. Recall that earlier we said
that the ”f” symbol was an “elongated S” that represented finding a “sum.” In
the context of the definite integral, this notation makes a bit more sense, as we
are adding up areas under the function f.

Notes:

5.2 The Definite Integral
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-1 |

Figure 5.5: Agraph of f(x) in Example 114.

75 4
Figure 5.6: A graph of 5f in Example 114.

(Yes, it looks just like the graph of fin Fig-
ure 5.5, just with a different y-scale.)

202

We practice using this notation.

Example 114 Evaluating definite integrals
Consider the function f given in Figure 5.5.
Find:
3 3
1. / f(x) dx 4. / 5f(x) dx
0 0
5 1
2. / f(x) dx 5. f(x) dx
3 1
5
3. / f(x) dx
0
SOLUTION
1. f03f(x) dxis the area under fon the interval [0, 3]. This region is a triangle,
.3
sothe areais [; f(x) dx = 3(3)(1) = 1.5.

2. fasf(x) dx represents the area of the triangle found under the x—axis on
[3,5]. The areais 3(2)(1) = 1; since it is found under the x—axis, this is
“negative area.” Therefore f: f(x) dx = —1.

3. fosf(x) dxisthe total signed area under fon [0, 5]. Thisis 1.5+ (—1) = 0.5.

4. f03 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.6.
Again, the region is a triangle, with height 5 times that of the height of
the original triangle. Thus the area is f03 5f(x) dx = 15/2 = 7.5.

5. fllf(x) dx is the area under f on the “interval” [1, 1]. This describes a line

segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properties of the definite integral, given

here.

Notes:



5.2 The Definite Integral

Theorem 36 Properties of the Definite Integral

Let f and g be defined on a closed interval / that contains the values a, b
and ¢, and let k be a constant. The following hold:

1. /aaf(x)dx:o

./abf(x)dx—l—/bcf(x)dx:/acf(x)dx

. /abf(x)dx:—/baf(x)dx
b

. /a (f(x) £ g(x)) dx = /abf(x) dx + /ab g(x) dx

N

w

I

u

. /abk~f(x)dx:k~/abf(x)dx

We give a brief justification of Theorem 36 here.

1. Asdemonstrated in Example 114, there is no “area under the curve” when
the region has no width; hence this definite integral is 0.

2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, ] into
two subintervals, [a, b] and [b, c]. The total area over [a, c| is the area over
[a, b] plus the area over [b, c].

It is important to note that this still holds true evenif a < b < cis not
true. We discuss this in the next point.

3. This property can be viewed a merely a convention to make other proper-
ties work well. (Later we will see how this property has a justification all its
own, not necessarily in support of other properties.) Suppose b < a < c.
The discussion from the previous point clearly justifies

/baf(x) dx + /acf(x) dx = /bcf(x) dx. (5.1)

However, we still claim that, as originally stated,

/abf(x) dx + /bcf(x) dx = /acf(x) dx. (5.2)

Notes:
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Figure 5.7: A graph of a function in Exam-
ple 115.

204

4,5.

How do Equations (5.1) and (5.2) relate? Start with Equation (5.1):

/baf(x)dx—i—/acf(x)dx:/bcf(x)dx
/acf(x)dx:—/l,af(x)dx+/bcf(x)dx

Property (3) justifies changing the sign and switching the bounds of inte-
gration on the —/ f(x) dx term; when this is done, Equations (5.1) and

(5.2) are equivalent.

The conclusion is this: by adopting the convention of Property (3), Prop-
erty (2) holds no matter the order of a, b and c. Again, in the next section
we will see another justification for this property.

Each of these may be non—intuitive. Property (5) states that when one
scales a function by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both Properties (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Example 115 Evaluating definite integrals using Theorem 36.
Consider the graph of a function f(x) shown in Figure 5.7. Answer the following:

1.

b c
Which value is greater: / f(x) dx or/ f(x) dx?
a b

C
2. Is/ f(x) dx greater or less than 0?
a

b b

3. Which value is greater: / f(x) dx or/ f(x) dx?

a [

SOLUTION

1. fbf dx has a positive value (since the area is above the x—axis) whereas
fb x) dx has a negative value. Hence f f(x) dx is bigger.

2. fa f(x) dxis the total signed area under f between x = a and x = c. Since
the region below the x—axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore fcbf(x)
represents a positive number, greater than the area described by the first
definite integral. Hence fcbf(x) dx is greater.

Notes:

dx



The area definition of the definite integral allows us to use geometry com-
pute the definite integral of some simple functions.

Example 116 Evaluating definite integrals using geometry
Evaluate the following definite integrals:

5 3
1. / (2x—4)dx 2. / V9 — x% dx.
-3

-2

SOLUTION

1. It is useful to sketch the function in the integrand, as shown in Figure
5.8(a). We see we need to compute the areas of two regions, which we
have labeled R; and R,. Both are triangles, so the area computation is
straightforward:

Region R, lies under the x—axis, hence it is counted as negative area (we
can think of the triangle’s height as being “—8”), so

5
/ (2x—4)dx=—-164+9 = —7.

-2

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.8(b), with radius 3. Thus the area is:

3
1 9
/ 9—x2dx=—nr’ = =
L 2 2

Example 117 Understanding motion given velocity

Consider the graph of a velocity function of an object moving in a straight line,
given in Figure 5.9, where the numbers in the given regions gives the area of that
region. Assume that the definite integral of a velocity function gives displace-
ment. Find the maximum speed of the object and its maximum displacement
from its starting position.

SOLUTION Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15ft/s.

At time t = 0, the displacement is 0; the object is at its starting position. At
time t = g, the object has moved backward 11 feet. Between times t = a and

Notes:

5.2 The Definite Integral

(b)

Figure 5.8: A graph of f(x) = 2x — 4 in (a)
and f(x) = v/9 — x? in (b), from Example
116.

y (ft/s)

15 +

—> t(s)
c

11 11

Figure 5.9: A graph of a velocity in Exam-
ple 117.
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y t = b, the object moves forward 38 feet, bringing it into a position 27 feet for-
10 1 ward of its starting position. Fromt = btot = cthe object is moving backwards
again, hence its maximum displacement is 27 feet from its starting position.

In our examples, we have either found the areas of regions that have nice
57 geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.10, where a region below y = x? is shaded. What
is its area? The function y = x? is relatively simple, yet the shape it defines has
an area that is not simple to find geometrically.

t t t X

1 2 3

In the next section we will explore how to find the areas of such regions.
Figure 5.10: What is the area below y =
x* on [0, 3]? The region is not a usual ge-
ometric shape.

Notes:
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Exercises 5.2

Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3
3. What is/ sin x dx?
3

4. Give a single definite integral that has the same value as

/01(2X+ 3) dx+/12(2x+3) dx.

Problems

In Exercises 5 — 9, a graph of a function f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

y = f(x)
(@) [ flx)dx
(b) f(x) dx

(a) (x—1)dx
(b) (x—1)dx
3
(c) (x—1)dx
3]
f)=4/4-(x=2)
2:l. 2 3 4
(@ [ flx)dx
4
(b) f(x) dx

(d) /3()(7 1) dx
(e) /4(x— 1) dx

(f) /4((x—1)+1) dx
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In Exercises 10 — 13, a graph of a function f(x) is given; the
numbers inside the shaded regions give the area of that re-

gion. Evaluate the definite integrals using this area informa- 3 o) =
tion.
13. 2
e 1
y 1/3 E 7/3 .
50 4 i é
y =f(x) 2 3
/2 . (a) / 5x% dx (©) / (x —1)% dx
59 N1 2 3 0 1
10. 2 4
_s0] (b) / (X +3) dx (d) / ((x—2)* +5) dx
0 2
i . R In Exercises 14 — 15, a graph of the velocity function of an ob-
(a) F(x) dx (©) F(x) dx ject moving in a straight line is given. Answer the questions
0 0 based on that graph.
2 2
) [ f0x) a @ [ 300 -
5]
y 1
14.
" i ; > ()
a/r f(x) = sin(mx/2) ‘1 5 é
11. } )
1 2 3 4 —i
. (a) What is the object’s maximum velocity?
—1
(b) What is the object’s maximum displacement?
2 4
(a) f(x) dx (c) f(x) dx (c) What is the object’s total displacement on [0, 3]?
0 0
4 1
(b) [ f(x)adx (d) [ f(x)dx Vo
2 0
5 ]
y 15.
10+ f(x) =3 -3 1
1 5 1 2 3 4 5 «
4 4 R (a) What is the object’s maximum velocity?
-2 - -4 /1 2
\/ (b) What is the object’s maximum displacement?
_;5 ’ ) (c) What is the object’s total displacement on [0, 5]?
(a) f(x) dx (c) f(x) dx
-2 -1 16. An object is thrown straight up with a velocity, in ft/s, given
2 ! by v(t) = —32t + 64, where tis in seconds, from a height
(b) ) f(x) dx (d) S flx) dx of 48 feet.

(a) What is the object’s maximum velocity?

(

b) What is the object’s maximum displacement?

(c) When does the maximum displacement occur?

(

d) When will the object reach a height of 0? (Hint: find
when the displacement is —48ft.)



17. An object is thrown straight up with a velocity, in ft/s, given
by v(t) = —32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s initial velocity?
(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its
initial height?

(d) When will the object reach a height of 210 feet?

In Exercises 18 — 21, let

. /ozf(x) dx=s,

o [ron=1,

o / g(x) dx = —3, and

0

J /zsg(x)dx:S.

Use these values to evaluate the given definite integrals.
2
18. / (f(x) + g(x)) dx
0
3
19. / (f(x) — g(x)) dx
0

20. /23 (3f(x) + 2g(x)) dx

21. Find values for a and b such that

/03 (af(x) + bg(x)) dx =0

In Exercises 22 — 25, let

o /05 r(t) dt = 11.

Use these values to evaluate the given definite integrals.

22. /3 (s(t) 4+ r(t)) dt
2. / " (s(0) — r(0)) dt

24, /3 (ms(t) — 7r(t)) dt

25. Find values for a and b such that

/5 (ar(t) + bs(t)) dt =0

Review

In Exercises 26 — 29, evaluate the given indefinite integral.

26. / (X — 2 +7x—9) dx
27. /(sinxfcostrseczx) dx

28. /(\S/E+tl2+2f) dt

1
29. /(;—cscxcotx) dx
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5.3 Riemann Sums

In the previous section we defined the definite integral of a function on [a, b] to

be the signed area between the curve and the x—axis. Some areas were simple
y to compute; we ended the section with a region whose area was not simple to
compute. In this section we develop a technique to find such areas.
4t A fundamental calculus technique is to first answer a given problem with an
approximation, then refine that approximation to make it better, then use limits
in the refining process to find the exact answer. That is exactly what we will do
2 here.

Consider the region given in Figure 5.11, which is the area under y = 4x — x?
on [0, 4]. What is the signed area of this region —i.e., what is f04(4x —x%) dx?

' " ' X We start by approximating. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over—approximation; we are including area in the rectangle
that is not under the parabola.

We have an approximation of the area, using one rectangle. How can we
refine our approximation to make it better? The key to this section is this answer:
use more rectangles.

Let’s use 4 rectangles of equal width of 1. This partitions the interval [0, 4]
into 4 subintervals, [0,1], [1,2], [2,3] and [3,4]. On each subinterval we will
draw a rectangle.

There are three common ways to determine the height of these rectangles:
3 \ the Left Hand Rule, the Right Hand Rule, and the Midpoint Rule. The Left Hand

Figure 5.11: A graph of f(x) = 4x — x°.
What is the area of the shaded region?

Rule says to evaluate the function at the left—hand endpoint of the subinterval

and make the rectangle that height. In Figure 5.12, the rectangle drawn on the
17 interval [2, 3] has height determined by the Left Hand Rule; it has a height of
RHR | MPR | LHR | other N f(2). (The rectangle is labeled “LHR.”)
1 2 3 4 The Right Hand Rule says the opposite: on each subinterval, evaluate the
function at the right endpoint and make the rectangle that height. In the figure,
Figure 5.12: Approximating f04(4xfxz) dx the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
using rectangles. The heights of the labeled “RHR.”.
rectangles are determined using different The Midpoint Rule says that on each subinterval, evaluate the function at
rules. the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximating rectangles, but one is not forced to use one of these three methods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under fon [3, 4]. (Later you'll be able to figure how to do this, too.)

The following example will approximate the value of f04(4x — x%) dx using

Notes:
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these rules.

Example 118 Using the Left Hand, Right Hand and Midpoint Rules
Approximate the value of f04(4x — x%) dx using the Left Hand Rule, the Right
Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SOLUTION We break the interval [0, 4] into four subintervals as before.
In Figure 5.13 we see 4 rectangles drawn on f(x) = 4x — x? using the Left Hand
Rule. (The areas of the rectangles are given in each figure.)
Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0. We
add up the areas of each rectangle (height x width) for our Left Hand Rule ap-
proximation:

f0)-14+£(1)-14+£2)-1+f3)-1=
0+3+4+3=10.

Figure 5.14 shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.
In this example, these rectangle seem to be the mirror image of those found
in Figure 5.13. (This is because of the symmetry of our shaded region.) Our
approximation gives the same answer as before, though calculated a different
way:

f(1)-14£(2)-1+f3)-1+f4)-1=
3+4+3+0=10.

Figure 5.15 shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approximation of f04(4x — x%) dx as:

£(0.5) - 1+ £(1.5)- 14 £(2.5) -1+ f(3.5) -1 =
1.75+3.75+3.75+ 1.75 = 11.

Our three methods provide two approximations of f04(4x — x?) dx: 10 and 11.
Summation Notation

It is hard to tell at this moment which is a better approximation: 10 or 11?
We can continue to refine our approximation by using more rectangles. The

notation can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summation notation to ameliorate this problem.

Notes:

5.3 Riemann Sums

Figure 5.13: Approximating f04(4x—x2) dx
using the Left Hand Rule in Example 118.

Figure 5.14: Approximating f04(4x—x2) dx
using the Right Hand Rule in Example 118.

1.7513.75[3.75] 1.75

Figure 5.15: Approximating f04(4x—x2) dx
using the Midpoint Rule in Example 118.
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212

Suppose we wish to add up a list of numbers ay, a,, a3, ..., ag. Instead of
writing
a1+ 0, +03+04+0as +ag + a7 + ag + ag,
we use summation notation and write

upper

bound summand

., /
E a;.
—1
o N
i=index lower
of summation bound

Figure 5.16: Understanding summation notation.

The upper case sigma represents the term “sum.” The index of summation
in this example is i; any symbol can be used. By convention, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s practice using this notation.

Example 119 Using summation notation

Let the numbers {a;} be defined as a; = 2i — 1 for integers i, where i > 1. So
a, = 1,a, = 3, a3 = 5, etc. (The output is the positive odd integers). Evaluate
the following summations:

6 7 4
1Y a 2. (30— 4) 3. (@)
i=1 i=3 i=1
SOLUTION
6
1. Zai201+02+03+04+05+06

i=1
=1+3+5+7+9+11
= 36.

2. Note the starting value is different than 1:

Zai = (303 — 4) + (304 — 4) + (305 - 4) + (306 - 4) + (307 - 4)

=11+17+23+29+ 35
= 115.

Notes:



Z(C’i)z = (a1)* + (a2)? + (a3)? + (aa)?

=12+3°+5°+7
—84

It might seem odd to stress a new, concise way of writing summations only
to write each term out as we add them up. It is. The following theorem gives
some of the properties of summations that allow us to work with them without
writing individual terms. Examples will follow.

Theorem 37 Properties of Summations

n

1. E ¢ = ¢ - n, where cis a constant. 5. i=
i=1 i=1

>

()}
N
I

Z.ZH;G,ib Za,iZb » j w

2
3.2’7:00,:6-2’1:0; 7. s i3:<n(nz+1))
i=m i=m i
4. Zal+Zalfza,

i=j+1

Example 120 Evaluating summations using Theorem 37
Revisit Example 119 and, using Theorem 37, evaluate

Notes:

5.3 Riemann Sums
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0 1 2 3 4
X1 X5 X9 X13 X17

Figure 5.17: Dividing [0, 4] into 16 equally
spaced subintervals.

214

SOLUTION

6 6

> (@i-1)= Zz:’- > @)

i=1 i=1

()

6(6+1

:2&,6
2

=42 -6 =136

We obtained the same answer without writing out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 37 is incredibly important when dealing with large sums as we’ll soon
see.

Riemann Sums

Consider again j64(4x — xz) dx. We will approximate this definite integral
using 16 equally spaced subintervals and the Right Hand Rule in Example 121.
Before doing so, it will pay to do some careful preparation.

Figure 5.17 shows a number line of [0, 4] divided into 16 equally spaced
subintervals. We denote 0 as x;; we have marked the values of xs, x9, X13 and
x17. We could mark them all, but the figure would get crowded. While it is easy
to figure that x;,o = 2.25, in general, we want a method of determining the value
of x; without consulting the figure. Consider:

number of
subintervals
between x; and x;

J

xi=x1+ (i—1)Ax

f \

starting subinterval
value size

So x10 = x1 + 9(4/16) = 2.25.
If we had partitioned [0, 4] into 100 equally spaced subintervals, each subin-
terval would have length Ax = 4/100 = 0.04. We could compute x3; as
X33 = x1 + 31(4/100) = 1.24.

(That was far faster than creating a sketch first.)

Notes:



Given any subdivision of [0, 4], the first subinterval is [x1, x;]; the second is
[x2,x3]; the i ™ subinterval is [x;, x;11].

When using the Left Hand Rule, the height of the i *" rectangle will be f(x;).
When using the Right Hand Rule, the height of the i ™" rectangle will be f(x;1).

X + X;
When using the Midpoint Rule, the height of the i " rectangle will be f <'+2'+1> .

Thus approximating fo4(4x — xz) dx with 16 equally spaced subintervals can
be expressed as follows, where Ax = 4/16 = 1/4:

16
Left Hand Rule: Zf(x;)Ax

i=1

16
Right Hand Rule: Zf(x,+1)Ax

i=1

16
Midpoint Rule: Zf <X'+2X'+1> Ax
i=1

We use these formulas in the next two examples. The following example lets

us practice using the Right Hand Rule and the summation formulas introduced
in Theorem 37.

Example 121 Approximating definite integrals using sums
Approximate f04(4x—x2) dx using the Right Hand Rule and summation formulas
with 16 and 1000 equally spaced intervals.

SOLUTION Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16
Zf(X,‘+1)AX.
i=1

We have Ax = 4/16 = 0.25. Since x; = 0 + (i — 1) Ax, we have

Xig1 =0+ ((i+1) — 1) Ax
= iAx

Notes:

5.3 Riemann Sums
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Figure 5.18: Approximating f04(4x—x2) dx
with the Right Hand Rule and 16 evenly
spaced subintervals.
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Using the summation formulas, consider:

4 16
/ (4x — x*) dx = Zf(xi+1)AX
0

i=1

= Zf(iAx)Ax
= Z (4iAx — (iAx)?) Ax

i=1

16
= Z:(4iAx2 — PAX)
i=1

16 16
= (8A%)) Ti—AC) 7 (5.3)
i=1 i=1
16 - 17 16(17)(33
:(4AX2) 7AX3 ( 6)( )
=4.0.25%-136 — 0.25% - 1496
= 10.625

We were able to sum up the areas of 16 rectangles with very little computa-
tion. In Figure 5.18 the function and the 16 rectangles are graphed. While some
rectangles over—approximate the area, other under—approximate the area (by
about the same amount). Thus our approximate area of 10.625 is likely a fairly
good approximation.

Notice Equation (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of Ax), we can use that equation to sum up 1000 rectan-
gles! We do so here, skipping from the original summand to the equivalent of
Equation (5.3) to save space. Note that Ax = 4/1000 = 0.004.

1000

4
/ (4x — x*) dx = Zf(x,url)Ax
0 i=1
1000 1000

= (44x%) Zi— Ax® Ziz
i—1 i—1

1000 - 1001 1000(1001)(2001)

= (44x%) — Ax c

= 4.0.004% - 500500 — 0.004° - 333, 833,500
= 10.666656

Notes:



Using many, many rectangles, we have a likely good approximation of fo4(4x—
x?)Ax. That is,

4
/ (4x — x*) dx ~ 10.666656.
0

Before the above example, we stated what the summations for the Left Hand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as Ax, and

2. each rectangle’s height is determined by evaluating f at a particular point
in each subinterval. For instance, the Left Hand Rule states that each rect-
angle’s height is determined by evaluating f at the left hand endpoint of
the subinterval the rectangle lives on.

One could partition aninterval [a, b] with subintervals that did not have the same
size. We refer to the length of the first subinterval as Axy, the length of the sec-
ond subinterval as Ax,, and so on, giving the length of the i " subinterval as Ax;.
Also, one could determine each rectangle’s height by evaluating f at any point in
the it subinterval. We refer to the point picked in the first subinterval as ¢y, the
point picked in the second subinterval as c,, and so on, with c; representing the
point picked in the it subinterval. Thus the height of the i subinterval would
be f(c;), and the area of the i " rectangle would be f(c;) Ax;.

Summations of rectangles with area f(c;) Ax; are named after mathematician
Georg Friedrich Bernhard Riemann, as given in the following definition.

Definition 21 Riemann Sum

Let f be defined on the closed interval [a, b] and let Ax be a partition of
[a, b], with

a=Xx1 <X <...<Xp<Xpy1=>b.
Let Ax; denote the length of the i*" subinterval [x;, x;11] and let ¢; denote

any value in the it subinterval.
The sum

Zf(ci)AXi
i=1

is a Riemann sum of f on [a, b].

Figure 5.19 shows the approximating rectangles of a Riemann sum of f04(4x—
xz) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a particular rule.

Notes:

5.3 Riemann Sums

1 A

1 2 3 4

Figure 5.19: An example of a general Rie-
mann sum to approximate [ (4x—x*) dx.
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“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construction makes computations easier.
Before working another example, let’s summarize some of what we have learned
in a convenient way.

Key Idea 8 Riemann Sum Concepts
b n
Consider/ f(x) dx ~ Zf(c,-)Ax,—.
@ i=1

b—a
—

1. When the n subintervals have equal length, Ax; = Ax =

2. The ith term of the partition is x; = a + (i — 1) Ax. (This makes
Xn+1 = b.)

n
3. The Left Hand Rule summation is: Zf(x,-)Ax.
i=1

n
4. The Right Hand Rule summation is: Zf(x,-H)Ax.
i=1

n
X+ X
5. The Midpoint Rule summation is: Zf (%) AX.
i=1

Let’s do another example.

Example 122 Approximating definite integrals with sums
Approximate ij(SX + 2) dx using the Midpoint Rule and 10 equally spaced
intervals.
SOLUTION Following Key Idea 8, we have
3—(-2) . :
Ax = 0 - 1/2 and x;,=(-2)+(1/2)(i—1)=i/2—-5/2.

. . . Xi + X;
As we are using the Midpoint Rule, we will also need x;,; and 'T'H

Xi=1/2—-5/2, Xiy1=(i+1)/2—5/2=1i/2— 2. This gives

. Since

Xit+Xig1 (i/2—-5/2) + (i/2 - 2) — —9/2 =i/2—9/4.
2 2 2

Notes:



We now construct the Riemann sum and compute its value using summation
formulas.

/32(5x+ 2) dx ~ ii:f <X+2X+1> Ax
— Ii:f(i/z —9/4) Ax
= i (5(i/2 —9/4) 4+ 2) Ax
~ar3: (57

— Ax <§ i(i) - i (7))

i=1 i=1
1 /5 10(11) 37
=(=. —10.- =
2\2 2 4
45
== =225
2

Note the graph of f(x) = 5x 4 2 in Figure 5.20. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summation techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that often each rectangle
includes area that should not be counted, but misses other area that should.
When the partition size is small, these two amounts are about equal and these
errors almost “cancel each other out.” In this example, since our function is a
line, these errors are exactly equal and they do cancel each other out, giving us
the exact answer.

Note too that when the function is negative, the rectangles have a “negative”
height. When we compute the area of the rectangle, we use f(c;) Ax; when fis
negative, the area is counted as negative.

Notice in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculations until the very end.
Mathematicians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, where we do not specify a value of n until the very end.

Example 123 Approximating definite integrals with a formula, using sums
Revisit f04(4x—x2) dxyet again. Approximate this definite integral using the Right

Notes:

5.3 Riemann Sums

Figure 5.20: Approximating ffz(Sx +
2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
122.
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Hand Rule with n equally spaced subintervals.

SOLUTION Using Key Idea 8, we know Ax = =0 = 4/n. We also find
xi = 0+ Ax(i — 1) = 4(i — 1)/n. The Right Hand Rule uses x;11, which is
Xi+1 = 4//n

We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-
low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.

/04(4x —x*) dx = iz_n;f(x,-H)Ax
= if <Z:7I> Ax
i—1
gl
_ z": (16nAx> i zn: (16;?x> 2
i=1

i=1

_ (16nAx) z”:i_ (1ifx> z”:iz

i=1 i=1

B n 2 n? 6
32(n+1) 32(n+1)(2n+1)
= — (now simplify)
n 3n?

32 1 1

3 n?
The result is an amazing, easy to use formula. To approximate the definite
integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10

and compute
4
32 1
/ (4x —x*)dx~ = (1 - —= | = 10.56.
o 3 102

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

Itis now easy to approximate the integral with 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of

Notes:

(16Ax> n(n+1) <16Ax) n(n+1)(2n+1) (arec!

x =4/n

)



10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathematics has been
limited to geometry and algebra (finding areas and manipulating expressions).
Now we apply calculus. For any finite n, we know that

4
32 1

/ (4x—x2)dxz<1—2>.
0 3 n

Both common sense and high—level mathematics tell us that as n gets large, the
approximation gets better. In fact, if we take the limit as n — oo, we get the
exact area described by f04(4x — x?) dx. Thatis,

4
32 1
/ (4x —x*) dx = lim = (1— )
0 n—oo 3 n?
32

==2@1-0

= (1-0)
32 _

= — =10.6
3

This is a fantastic result. By considering n equally—spaced subintervals, we ob-
tained a formula for an approximation of the definite integral that involved our
variable n. As n grows large — without bound — the error shrinks to zero and we
obtain the exact area.

This section started with a fundamental calculus technique: make an ap-
proximation, refine the approximation to make it better, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s practice this again.

Example 124 Approximating definite integrals with a formula, using sums
Find a formula that approximates ffl x3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n — oo to find the exact
area.

SOLUTION Following Key Idea 8, we have Ax = 5_("7_1) = 6/n. We
have x; = (—1) + (i — 1) Ax; as the Right Hand Rule uses x;11, we have x;1; =
(—1) +iAx.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-

Notes:

5.3 Riemann Sums
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100 7

50 +

— . g t t X

1 1 2 3 4 s
Figure 5.21: Approximating ffl X dx us-

ing the Right Hand Rule and 10 evenly
spaced subintervals.
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plifications):

5 n
/ X3 dx = Zf(x,-H)Ax
i—1

-1

n
= f(—1+iAx)Ax
i=1
n
= Z(fl +iAx)3 Ax
i=1
n
= Z ((iAx)* = 3(iAx)* + 3iAx — 1) Ax  (now distribute Ax)
i nl
= Z (f3AX4 — 3f2AX3 + 3iAX2 — AX) (now split up summation)

i=1

= Ax“zn:i3 — 3Ax32n:i2 +3szzn:i— EH:AX
i—1 i—1 -1 =1

2
W (n(n;—l)) _3Ax3n(n+1)éZn+1) +3szn(n+1) CnAx

(use Ax = 6/n)
1296 n*(n+1)2 216 n(n+1)(2n+1) _36n(n+1)
- : -3 T AT P 32 T 6
n* 4 n3 6 n? 2
(now do a sizable amount of algebra to simplify)
378 216

=156+ —— + —
n n

Once again, we have found a compact formula for approximating the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximation of 195.96 (these rectangles are shown
in Figure 5.21). Using n = 100 gives an approximation of 159.802.

Now find the exact answer using a limit:

>, _ 378 216
x> dx = lim 156 + — + —- ] = 156.
n n

1 n—o00
Limits of Riemann Sums

We have used limits to evaluate exactly given definite limits. Will this al-
ways work? We will show, given not—very—restrictive conditions, that yes, it will
always work.

Notes:



The previous two examples demonstrated how an expression such as
n
Zf(XH_l)AX
i=1

can be rewritten as an expression explicitly involving n, such as 32/3(1 — 1/n?).

Viewed in this manner, we can think of the summation as a function of n.
An n value is given (where n is a positive integer), and the sum of areas of n
equally spaced rectangles is returned, using the Left Hand, Right Hand, or Mid-
point Rules.

Given a definite integral fabf(x) dx, let:

n

e S (n) = Zf(x,)Ax, the sum of equally spaced rectangles formed using

i=1
the Left Hand Rule,

n
e Sp(n) = Zf(x,url)Ax, the sum of equally spaced rectangles formed us-

i=1
ing the Right Hand Rule, and

n
Xi + X
e Su(n) = Zf <'+2'+1> Ax, the sum of equally spaced rectangles
i=1

formed using the Midpoint Rule.

Recall the definition of a limitas n — oco: lim S;(n) = Kif, givenany e > 0,
n—o0o
there exists N > 0 such that

|St(n) —K| <e when n>N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral f:f(x) dx. It also goes two steps further.
The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(c;), where ¢; is any point in the jth
subinterval, as discussed before Riemann Sums where defined in Definition 21.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notation of Definition 21, let Ax; denote the length of
the i subinterval in a partition of [a,b]. Now let ||Ax|| represent the length
of the largest subinterval in the partition: that is, || Ax|| is the largest of all the
Axj’s. If || Ax|| is small, then [a, b] must be partitioned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as || Ax|| goes
to zero” implies that the number n of subintervals in the partition is growing to

Notes:

5.3 Riemann Sums
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infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

n

lim Zf(c,-)Ax;

|| Ax||—0 4
i=1

as “the limit of the sum of rectangles, where the width of each rectangle can be
different but getting small, and the height of each rectangle is not necessarily
determined by a particular rule.” The theorem states that this Riemann Sum
also gives the value of the definite integral of f over [a, b].

Theorem 38 Definite Integrals and the Limit of Riemann Sums

Let f be continuous on the closed interval [a, b] and let S;(n), Sg(n) and
Sm(n) be defined as before. Then:

1. lim S$;(n) = lim Sg(n) = I|m Sm(n) = lim Zf c)A

n—oo n—oo n—o0

n—00 4

n b
2. lim Zf(c,)Ax:/ f(x) dx, and
1 a

‘ ||AILT|TLOZ]C = /f

We summarize what we have learned over the past few sections here.

Knowing the “area under the curve” can be useful. One common example
is: the area under a velocity curve is displacement.

We have defined the definite integral, fabf(x) dx, to be the signed area
under fon the interval [a, b].

While we can approximate a definite integral many ways, we have focused
on using rectangles whose heights can be determined using: the Left Hand
Rule, the Right Hand Rule and the Midpoint Rule.

Sums of rectangles of this type are called Riemann sums.

The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

Notes:



We first learned of derivatives through limits then learned rules that made
the process simpler. We know of a way to evaluate a definite integral using limits;
in the next section we will see how the Fundamental Theorem of Calculus makes
the process simpler. The key feature of this theorem is its connection between
the indefinite integral and the definite integral.

Notes:

5.3 Riemann Sums
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Exercises 5.3

Terms and Concepts

. Afundamental calculus technique is to use to re-

fine approximations to get an exact answer.

14

. What is the upper bound in the summation Z(48i —

i=7

201)?

. This section approximates definite integrals using what ge-

ometric shape?

. T/F: A sum using the Right Hand Rule is an example of a

Riemann Sum.

Problems

In Exercises 5—-11, write out each term of the summation and
compute the sum.

5.

10.

11.

4
2
>
i=2

3

> (4i-2)

i=—1

2

> sin(ri/2)

i=—=2

5
1

i(t_iJh)

=

5

> " (~1)' cos (i)

i=0

In Exercises 12 — 15, write each sum in summation notation.

12.

13.

14.

15.

3+6+9+12+15

—-1+0+4+34+8+15+24+35+48463
1,23 4
2 3 4 5

l—e—l-ez—es—l—e4

In Exercises 16 — 22, evaluate the summation using Theorem
37.

16. ) i
17. > (31" - 2i)

18. ) (27 —10)

10
19. > (—47 + 107 — 7i +11)

i=1

10
20. Y (P -3 +2i+7)

i=1
21, 1+2+3+...4+99+ 100

22. 1+4+9+...+ 361+ 400

Theorem 37 states
n k n
Sa=3a+ > a0
i=1 i=1 i=k+1

n

n k
E ai = E ai — E a;.
i=1 i=1

i=k+1

Use this fact, along with other parts of Theorem 37, to eval-
uate the summations given in Exercises 23 — 26.

24. Z i

i=16

12

25. 24

i=7

10

26. 24:'3

i=5



In Exercises 27 — 32, a definite integral
/ f(x) dx is given.
(a) Graph f(x) on [a, b].

(b) Add to the sketch rectangles using the provided rule.

b
(c) Approximate / f(x) dx by summing the areas of the

rectangles.

3
27. / x* dx, with 6 rectangles using the Left Hand Rule.
-3

28. ) dx, with 4 rectangles using the Midpoint Rule.

w

X

2" dx, with 5 rectangles using the Left Hand Rule.

29. / sin x dx, with 6 rectangles using the Right Hand Rule.
30. /

0

31. / In x dx, with 3 rectangles using the Midpoint Rule.

9
1
32. / o dx, with 4 rectangles using the Right Hand Rule.
1

In Exercises 33 — 38, a definite integral
b

f(x) dx is given. As demonstrated in Examples 123

and 1024, do the following.
b
(a) Find a formula to approximate f(x) dx using n
subintervals and the provided ruIe.a
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n — oo, to find the
b

exact value of / f(x) dx.

1
33. / X3 dx, using the Right Hand Rule.
0

1
34, / 3x° dx, using the Left Hand Rule.

—1

3
35. / (3x — 1) dx, using the Midpoint Rule.

—1

4
36. / (2x* — 3) dx, using the Left Hand Rule.
1

10
37. / (5 — x) dx, using the Right Hand Rule.
—10

1
38. / (x> — x*) dx, using the Right Hand Rule.
0

Review

In Exercises 39 — 44, find an antiderivative of the given func-
tion.

39. f(x) = 5sec’x

7
40. ==
fl) =~

41. g(t) =4 -5t +8

42. g(t) =5-8"

43. g(t) = cost+sint

44, f(x) = %
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Figure 5.22: The area of the shaded re-
gionis F(x) = [ f(t) dt.
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5.4 The Fundamental Theorem of Calculus

Let f(t) be a continuous function defined on [a, b]. The definite integral fabf(x) dx
is the “area under f” on [a, b]. We can turn this concept into a function by letting
the upper (or lower) bound vary.

Let F(x) = [ f(t) dt. It computes the area under f on [a, x] as illustrated
in Figure 5.22. We can study this function using our knowledge of the definite
integral. For instance, F(a) = 0 since f:f(t) dt=0.

We can also apply calculus ideas to F(x); in particular, we can compute its
derivative. While this may seem like an innocuous thing to do, it has far—reaching
implications, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 39 The Fundamental Theorem of Calculus, Part 1

Let f be continuous on [a, b] and let F(x) = f;f(t) dt. Then Fis a differ-
entiable function on (a, b), and

Initially this seems simple, as demonstrated in the following example.

Example 125 Using the Fundamental Theorem of Calculus, Part 1

X
Let F(x) = / (t* 4 sint) dt. What is F/(x)?

-5

SOLUTION Using the Fundamental Theorem of Calculus, we have F'(x) =
X2+ sinx.

This simple example reveals something incredible: F(x) is an antiderivative
of X + sinx! Therefore, F(x) = 3x* — cosx + C for some value of C. (We can
find C, but generally we do not care. We know that F(—5) = 0, which allows us

to compute C. In this case, C = cos(—5) + 122,

We have done more than found a complicated way of computing an an-
tiderivative. Consider a function f defined on an open interval containing a, b

and c. Suppose we want to compute fabf(t) dt. First, let F(x) = [ f(t) dt. Using

Notes:



the properties of the definite integral found in Theorem 36, we know

/abf(t)dt—/acf(t)dt—i—/cbf(t)dt

—/af(t) dt+/bf(t) dt
= —F(a) + F(b)
= F(b) — F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using antiderivatives! This is the second part of the
Fundamental Theorem of Calculus.

Theorem 40 The Fundamental Theorem of Calculus, Part 2

Let f be continuous on [a, b] and let F be any antiderivative of f. Then

b
/ f(x) dx = F(b) — F(a).

Example 126 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of time in the previous section studying f04(4x — x%) dx.
Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SOLUTION We need an antiderivative of f(x) = 4x — x*. All antideriva-
tives of f have the form F(x) = 2x* — %x3 + C; for simplicity, choose C = 0.
The Fundamental Theorem of Calculus states

/4(4x—x2) dx = F(4) — F(0) = (2(4)* - %43) —(0-0)=32— % =32/3.

This is the same answer we obtained using limits in the previous section, just
with much less work.

Notation: A special notation is often used in the process of evaluating definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-

ing F(b) — F(a), the notation F(x)
would be written as:

/04(4x ) dx = (zx2 - ;x3>

b
is used. Thus the solution to Example 126
a

= (2(4)" - §43) —(0-0) =32/3.

0

Notes:

5.4 The Fundamental Theorem of Calculus
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The Constant C: Any antiderivative F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evaluating F(b) — F(a), so it does not matter what value is picked. This being
the case, we might as well let C = 0.

Example 127 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

2 s 5 9 5
1./ X3 dx 2./ sinx dx 3./ et dt 4./ Vudu 5./ 2 dx
2 0 0 4 1

SOLUTION
2
1 1
= (24) - ((—2)4> =0.
L, \a 4

2
1
1. / dx = =x*
2 4
™

™
2./sinxdx:—cosx =—cosT— (—cos0) =1+1=2.
0

0

(This is interesting; it says that the area under one “hump” of a sine curve
is 2.)

5
3./etdt:et
0
9 s | )
4./\/Udu:/ufdu:fu
4 4 3

5
5. / 2dx = 2x
1

This integral is interesting; the integrand is a constant function, hence we
are finding the area of a rectangle with width (5 — 1) = 4 and height 2.
Notice how the evaluation of the definite integral led to 2(4) = 8.

5
=e° —e’=¢° — 1~ 147.41.
0

9

Nlw

2/ 3 3 2 38
- (92 —42) —Z(27-8) ==,
3 3 3

4

5
1

—2(5)-2=2(5-1) =8.

In general, if ¢ is a constant, then fab cdx=c(b—a).

Understanding Motion with the Fundamental Theorem of Calcu-
lus

We established, starting with Key Idea 1, that the derivative of a position
function is a velocity function, and the derivative of a velocity function is an ac-
celeration function. Now consider definite integrals of velocity and acceleration

b
functions. Specifically, if v(t) is a velocity function, what does / v(t) dt mean?
a

Notes:



The Fundamental Theorem of Calculus states that

/ ’ v(t) dt = V(b) — V(a),

where V(t) is any antiderivative of v(t). Since v(t) is a velocity function, V(t)
must be a position function, and V(b) — V(a) measures a change in position, or
displacement.

Example 128 Finding displacement
A ball is thrown straight up with velocity given by v(t) = —32t + 20ft/s, where

1
tis measured in seconds. Find, and interpret, / v(t) dt.
0

SOLUTION Using the Fundamental Theorem of Calculus, we have

‘/01 v(t) dt = /01(32t+ 20) dt

1
= —16t° + 20t’

0
= 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = —32t + 20,
the height of the ball, 1 second later, will be 4 feet above the initial height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height att = 0 and t = 1 is 4ft.)

Integrating a rate of change function gives total change. Velocity is the rate
of position change; integrating velocity gives the total change of position, i.e.,
displacement.

Integrating a speed function gives a similar, though different, result. Speed
is also the rate of position change, but does not account for direction. So inte-
grating a speed function gives total change of position, without the possibility
of “negative position change.” Hence the integral of a speed function gives dis-
tance traveled.

As acceleration is the rate of velocity change, integrating an acceleration
function gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = Smiles/h? and t is measured in hours,

then s
/ a(t) dt =15
0

means the velocity has increased by 15m/h fromt =0tot = 3.

Notes:

5.4 The Fundamental Theorem of Calculus
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The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theorem of Calculus (FTC) states that given F(x) =
x d
/ f(t) dt, F'(x) = f(x). Using other notation, ™ (F(x)) = f(x). While we have
X

a
just practiced evaluating definite integrals, sometimes finding antiderivatives is

impossible and we need to rely on other techniques to approximate the value
of a definite integral. Functions written as F(x) = f:f(t) dt are useful in such
situations.

It may be of further use to compose such a function with another. As an
example, we may compose F(x) with g(x) to get

g(x)

Flow) = [ ft)dt.

a

What is the derivative of such a function? The Chain Rule can be employed to

state d
—(Fla)) = F'(900)g"(x) = f(g(x))g'(x).

An example will help us understand this.

Example 129 The FTC, Part 1, and the Chain Rule
XZ

Find the derivative of F(x) = / Intdt.
2
X
SOLUTION We can view F(x) as being the function G(x) = / Int dt
2

composed with g(x) = x%; that is, F(x) = G(g(x)). The Fundamental Theorem
of Calculus states that G’(x) = Inx. The Chain Rule gives us

F'(x) =G'(g(x))g’(x)
=In(g(x))g’(x)
= In(x*)2x

= 2xInx?

Normally, the steps defining G(x) and g(x) are skipped.
Practice this once more.

Example 130 The FTC, Part 1, and the Chain Rule
5

Find the derivative of F(x) = / £ dt.

Cos X

Notes:



Cos x
SOLUTION Note that F(x) = — / t* dt. Viewed this way, the deriva-
5

tive of F is straightforward:

F'(x) = sinxcos® x.

Area Between Curves

Consider continuous functions f(x) and g(x) defined on [a, b], where f(x) >
g(x) for all x in [a, b], as demonstrated in Figure 5.23. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f —
the area under g.” Using mathematical notation, the area is

’ f(x) dx — ’ g(x) dx.
J o

Properties of the definite integral allow us to simplify this expression to

b
/ (F0) — g(x)) dx.

Theorem 41 Area Between Curves

Let f(x) and g(x) be continuous functions defined on [a, b] where f(x) >
g(x) for all x in [a,b]. The area of the region bounded by the curves
y = f(x),y = g(x) and the linesx = aand x = b is

b
/ (Fx) — g(x) dx.

Example 131 Finding area between curves
Find the area of the region enclosed by y = x> +x — 5and y = 3x — 2.

SOLUTION It will help to sketch these two functions, as done in Figure
5.24. The region whose area we seek is completely bounded by these two
functions; they seem to intersect at x = —1 and x = 3. To check, set x> +x—5 =

Notes:

5.4

The Fundamental Theorem of Calculus

g(x)

g(x)

Figure 5.23: Finding the area bounded by
two functions on an interval; it is found
by subtracting the area under g from the
area under f.

y=3x—2
Figure 5.24: Sketching the region en-

closedbyy =x* +x—5andy = 3x — 2
in Example 131.

233



Chapter 5 Integration

Figure 5.25: A graph of a function f to in-
troduce the Mean Value Theorem.

(b)
y
-
t X
1 2 3 4
(c)
Figure 5.26: Differently sized rectan-

gles give upper and lower bounds on
fff(x) dx; the last rectangle matches the
area exactly.
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3x — 2 and solve for x:

Following Theorem 41,

/_31(3x—2—(x2+x—5))dx:/_1

X 4+x—5=3x—2
(X*+x—5)—(3x—2)=0
¥ —2x—3=0
(x—3)(x+1)=0
x=-1, 3.

the area is

3

1
= (—3x3 +x* + 3X>

(—x* + 2x + 3) dx

3

-1

3

1 1
=327 +9+9- (+13

2 _
=10- =10.6
3

The Mean Value Theorem and Average Value

Consider the graph of a function f in Figure 5.25 and the area defined by
fff(x) dx. Three rectangles are drawn in Figure 5.26; in (a), the height of the
rectangle is greater than f on [1, 4], hence the area of this rectangle is is greater

than 7' f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area

of this rectangle is less than fff(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of fo4f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too little,” as in (b), give areas greater/lesser than fff(x) dx,
it makes sense that there is a rectangle, whose top intersects f(x) somewhere

on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

)

Notes:



Theorem 42 The Mean Value Theorem of Integration

Let f be continuous on [a, b]. There exists a value c in [a, b] such that

b
| ) dx=fe)(b ).

This is an existential statement; c exists, but we do not provide a method
of finding it. Theorem 42 is directly connected to the Mean Value Theorem of
Differentiation, given as Theorem 27; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 132 Using the Mean Value Theorem
Consider foﬂ sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SOLUTION We first need to evaluate fo7T sinx dx. (This was previously
done in Example 127.)
™

= 2.
0

K
/ sinxdx = — cos x
0

Thus we seek a value cin [0, 7] such that 7sinc = 2.
wsinc=2 = sinc=2/m = c=arcsin(2/m) ~ 0.69.
In Figure 5.27 sin x is sketched along with a rectangle with height sin(0.69).

The area of the rectangle is the same as the area under sinx on [0, 7].

Letfbe a function on [a, b] with c such that f(c)(b—a) = f:f(x) dx. Consider
(f(x) — f(c)) dx:

b b b
/ (flx) = f(c)) dx = / flx) — / (c) dx
=f(c)(b—a) — flc)(b—a)

I

=0.

When f(x) is shifted by —f(c), the amount of area under f above the x—axis on
[a, b] is the same as the amount of area below the x—axis above f; see Figure
5.28 for an illustration of this. In this sense, we can say that f(c) is the average
value of fon [a, b].

Notes:

5.4
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| /\
sin 0.69

Figure 5.27: A graph of y = sinx on
[0, 7] and the rectangle guaranteed by
the Mean Value Theorem.

y = f(x)
fle) +
- X
a c b
y
y = f(x) — f(c)
fle) +
X
a c b

Figure 5.28: On top, a graph of y =
f(x) and the rectangle guaranteed by the
Mean Value Theorem. Below, y = f(x) is
shifted down by f(c); the resulting “area
under the curve” is 0.
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The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewritten as

b
)= 5y [ A0 o

for some value of c in [a,b]. Next, partition the interval [a, b] into n equally
spaced subintervals, a = x; < x; < ... < X,41 = b and choose any ¢; in
[Xi, Xi+-1]. The average of the numbers f(c1), f(¢3), ..., f(ca) is:

(e @)+ ) = 3 A

(b—a).
(b—a)"

Multiply this last expression by 1 in the form of
1< . 1
7 210 = 2 M)
i=1 i=1
n
B 1(b—a)
N iz:;f(c’)n (b—a)
1 . b—a
“h e 20

1

n
= b—a Zf(ci)AX (where Ax = (b — a)/n)
i=1

Now take the limitas n — oco:

n b
lim Lz:f(c,')Ax = bia/f(x)dx = f(o).

n—oo b — @ 4

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n — occ.
This leads us to a definition.

Definition 22 The Average Value of fon [a, b)

Let f be continuous on [a, b]. The average value of f on [a, b] is f(c),
where cis a value in [a, b] guaranteed by the Mean Value Theorem. l.e.,

1 b
Average Value of fon [a, b] = ﬁ/ f(x) dx.
- a

Notes:



An application of this definition is given in the following example.

Example 133 Finding the average value of a function
An object moves back and forth along a straight line with a velocity given by
v(t) = (t — 1)? on [0, 3], where t is measured in seconds and v(t) is measured
in ft/s.

What is the average velocity of the object?

SOLUTION By our definition, the average velocity is:

3

=1 ft/s.
0

1 3 1 /3 1/1
— t—1)2dt== P—2t+1)dt= =23 -+t
3-0 0( ) 3/0 ( +1) 3(3 +

We can understand the above example through a simpler situation. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/time = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 133? We calculate this
by integrating its velocity function: foa(t — 1)2 dt = 3 ft. Its final position was 3
feet from its initial position after 3 seconds: its average velocity was 1 ft/s.

This section has laid the groundwork for a lot of great mathematics to fol-
low. The most important lesson is this: definite integrals can be evaluated using
antiderivatives. Since the previous section established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, computing antiderivatives is much
more difficult than computing derivatives. The next chapter is devoted to tech-
niques of finding antiderivatives so that a wide variety of definite integrals can
be evaluated. Before that, the next section explores techniques of approximat-
ing the value of definite integrals beyond using the Left Hand, Right Hand and
Midpoint Rules.

Notes:

5.4 The Fundamental Theorem of Calculus
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Exercises 5.4

Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integration is most commonly used when
evaluating definite integrals?

3. T/F: If fis a continuous function, then F(x) = / f(t) dtis

also a continuous function.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems

In Exercises 5 — 28, evaluate the definite integral.

2]

3
. / (3% —2x+ 1) dx
1

/04()( —1)%dx

7. /1 (x* —x°) dx

-1

8. / cos x dx
w/2

/4
9. / sec? x dx
0

o

-1
12./ (4 — 2x°) dx

13. / (2 cosx — 2sinx) dx
0

3
14. / e dx
1

4

15. Vitdt
0
25
1
16. — dt
s Vit
8
17. /x dx

2
18. / de
;X
2
19. / lzdx
1 X
2

1
20. / —de
1 X
1
21. / x dx
0
1
22. / X dx
0
1
23. / X dx
0
1
24, / X dx
0
4
25./ dx
—4
-5
26./ 3 dx
—10
2
27. / 0 dx
-2

28. cscx cot x dx

a\;
23
R

29. Explain why:

1
(a) X" dx = 0, when n is a positive, odd integer, and
-1

1 1
(b) X" dx = 2/ x" dx when n is a positive, even
—1 0

integer.

In Exercises 30 — 33, find a value c guaranteed by the Mean
Value Theorem.

2
30. / X% dx
0
2
31. / X dx
—2
1
32. / e dx
0

16
33, / VX dx
0



In Exercises 34 — 39, find the average value of the function on
the given interval.

34. f(x) =sinxon [0,7/2]
35. y =sinxon [0, 7]

36. y =xon|[0,4]

37. y=x*on [0, 4]

38. y=x*on [0, 4]

39. g(t) =1/ton [1,€]

In Exercises 40 — 44, a velocity function of an object moving
along a straight line is given. Find the displacement of the
object over the given time interval.

40. v(t) = —32t + 20ft/son [0, 5]
41. v(t) = —32t 4 200ft/s on [0, 10]
42. v(t) = 2'mphon [—1,1]

43. y(t) = costft/son [0,37/2]

44. v(t) = v/tft/son [0, 16]

In Exercises 45 — 48, an acceleration function of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given time interval.

45. a(t) = —32ft/s’ on [0, 2]

46. a(t) = 10ft/s? on [0, 5]

47. a(t) = tft/s* on [0, 2]

48. a(t) = costft/s? on [0, 7]

In Exercises 49 — 52, sketch the given functions and find the
area of the enclosed region.

49. y = 2x,y = 5x,and x = 3.

50. y=—x+1,y=3x+6,x=2andx = —1.
51. y=x>—2x+5,y = 5x — 5.

5. y=2"+2x—5,y=x*+3x+7.

In Exercises 53 — 56, find F'(x).
x3+x 1
53. F(x) :/ —dt
2 t

0
54. F(x) = / £ dt

3

2

55. F(x) = / (t+2)dt

X

56. F(x) :/ sint dt
[

nx
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0.5 +

Figure 5.29: Graphically representing
three definite integrals that cannot be
evaluated using antiderivatives.
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5.5 Numerical Integration

The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on computing an-
tiderivatives. Despite the power of this theorem, there are still situations where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situation we explore is where we cannot compute the an-
tiderivative of the integrand. The second case is when we actually do not know
the integrand, but only its value when evaluated at certain points.

An elementary function is any function that is a combination of polynomi-
als, n'" roots, rational, exponential, logarithmic and trigonometric functions. We
can compute the derivative of any elementary function, but there are many ele-
mentary functions of which we cannot compute an antiderivative. For example,
the following functions do not have antiderivatives that we can express with el-
ementary functions:

e™, sin(x*) and

sinx

The simplest way to refer to the antiderivatives of e is to simply write
[ e dx.

This section outlines three common methods of approximating the value of
definite integrals. We describe each as a systematic method of approximating
area under a curve. By approximating this area accurately, we find an accurate
approximation of the corresponding definite integral.

We will apply the methods we learn in this section to the following definite

integrals:
1 s
/ e ™ dx, /
0 s

5

N

AT .
sin(x*) dx, and / sin(x) dx,
; 0

5 X

as pictured in Figure 5.29.
The Left and Right Hand Rule Methods

In Section 5.3 we addressed the problem of evaluating definite integrals by
approximating the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximating definite integrals.

We start with a review of notation. Let f be a continuous function on the

b
interval [a, b]. We wish to approximate / f(x) dx. We partition [a, b] into n
a

b—a
equally spaced subintervals, each of length Ax = 7 The endpoints of these

Notes:
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subintervals are labeled as
x1=0a,% =0+ x3=a+2A4x, ..., x;=a+ (i—1)Ax, ..., X,11 = b.

Key Idea 8 states that to use the Left Hand Rule we use the summation

n n
Zf(x,-)Ax and to use the Right Hand Rule we use Zf(x,+1)Ax. We review
i=1 i=1
the use of these rules in the context of examples.

Example 134 Approximating definite integrals with rectangles . ,
1 y=e "
Approximate / e dx using the Left and Right Hand Rules with 5 equally
0
spaced subintervals.
0.5 |
SOLUTION We begin by partitioning the interval [0, 1] into 5 equally
spaced intervals. We have Ax = 2% = 1/5 = 0.2, so
X
x1 =0,x, =02, x3=0.4, x, =06, xs = 0.8, and xg = 1. 02 04 06 08 1
Using the Left Hand Rule, we have:
y
n L .,
D fxi)Ax = (f(x1) + fx2) + flxs) + f(xa) + flxs)) Ax y=e
i=1
= (f(0) + £(0.2) + f(0.4) + £(0.6) + £(0.8)) Ax .
~ (1 +0.961 + 0.852 + 0.698 4 0.527)(0.2)
~ 0.808.
X
Using the Right Hand Rule, we have: 02 04 06 08 1
n Figure 5.30: Approximating fol e dxin
> fxir1) Ax = (f(x2) + f(xs) + f(xa) + f(xs) + f(x6)) Ax Example 134.
i=1

= (f(0.2) + f(0.4) + £(0.6) + f(0.8) + (1)) Ax
~ (0.961 + 0.852 + 0.698 + 0.527 + 0.368)(0.2)
~ 0.681.

Figure 5.30 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this particular case, the Left Hand
Rule is an over approximation and the Right Hand Rule is an under approxima-
tion. To get a better approximation, we could use more rectangles, as we did in

Notes:
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Xi Exact Approx.  sin(x?)
X1 —7/4 —0.785  —0.466
X2 7771'/40 —0.550 —0.165
X3 —7T/10 —0.314 —0.031
xs —m/40  —0.0785 0

Xs 7T/20 0.157 0.004
X6 71'/8 0.393 0.061
x: 75 0628  0.246
Xg 117T/40 0.864 0.601
X9 771'/20 1.10 0.971
xo 177/40 134 0.690
X11 71'/2 1.57 —0.670

Figure 5.31: Table of values used to ap-
proximate [ 2, sin(x*) dxin Example 135.
4

L y = sin(x®)
0.5
-1 ?Vr
—0.5
Figure 5.32: Approximating

J2. sin(x*) dx in Example 135.
1

242

Section 5.3. We could also average the Left and Right Hand Rule results together,
giving
0.808 + 0.681
2
The actual answer, accurate to 4 places after the decimal, is 0.7468, showing
our average is a good approximation.

= 0.7445.

Example 135 Approximating definite integrals with rectangles

s

2
Approximate / sin(x®) dx using the Left and Right Hand Rules with 10 equally

7
spaced subintervals.

SOLUTION We begin by finding Ax:

b (=
a_m/2=(=1/8) 3T 4 56,
n 10 40

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.31, we give the exact values of the endpoints, their decimal approximations,
and decimal approximations of sin(x3) evaluated at these points.

Once this table is created, it is straightforward to approximate the definite
integral using the Left and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The Left Hand Rule sums the first 10 values
of sin(x}) and multiplies the sum by Ax; the Right Hand Rule sums the last 10
values of sin(x?) and multiplies by Ax. Therefore we have:

2
Left Hand Rule: / sin(x®) dx ~ (1.91)(0.236) = 0.451.

5

2
Right Hand Rule: / sin(x®) dx ~ (1.71)(0.236) = 0.404.

Average of the Left algd Right Hand Rules: 0.4275.

The actual answer, accurate to 3 places after the decimal, is 0.460. Our ap-
proximations were once again fairly good. The rectangles used in each approx-
imation are shown in Figure 5.32. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximation.

The Trapezoidal Rule

1
In Example 134 we approximated the value of/ e dxwith 5 rectangles

0
of equal width. Figure 5.30 shows the rectangles used in the Left and Right Hand

Notes:



Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approximations will only come by using
lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.33, we show the region under f(x) = e~ on [0, 1] ap-
proximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a better

N 1 2 . .
approximation of fo e ™ dx. (In fact, these trapezoids seem to give a great ap-
proximation of the area!)

The formula for the area of a trapezoid is given in Figure 5.34. We approxi-
mate fol e~ dx with these trapezoids in the following example.

Example 136 Approximating definite integrals using trapezoids
1

Use 5 trapezoids of equal width to approximate / e dx.
0

SOLUTION To compute the areas of the 5 trapezoids in Figure 5.33, it
will again be useful to create a table of values as shown in Figure 5.35.

The leftmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leftmost trapezoid is:

1+0.961

S (0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:
0.961 + 0.852

> (0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+0.961 0.961 + 0.852 0.852 + 0.698

o (0.2) + T (02) + o (02)+
0.698 + 0.527 0.527 + 0.368
%(0.2) + %(0.2) = 0.7445.

1
We approximate / e~ dx ~ 0.7445.
0

There are many things to observe in this example. Note how each term in
the final summation was multiplied by both 1/2 and by Ax = 0.2. We can factor
these coefficients out, leaving a more concise summation as:

%(o.z) [(1+0.961)+(0.961+0.852)+(0.852—1—04698)+(0.698+0.527)+(0.527+0.368)] .

Notes:
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0.5

02 04 06 0.8 1

Figure 5.33: Approximating fol e’x2 dx us-
ing 5 trapezoids of equal widths.

b Area=%tth

h

Figure 5.34: The area of a trapezoid.

Xi e
0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

X

Figure 5.35: A table of values of e~ !,
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Now notice that all numbers except for the first and the last are added twice.
Therefore we can write the summation even more concisely as

0.2
= [1 +2(0.961 + 0.852 + 0.698 + 0.527) + 0.368} .

b
Thisis the heart of the Trapezoidal Rule, wherein a definite integral / f(x) dx
a

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x;,

. —a
X2, - - - Xp+1, We again have Ax = ——. Thus:
n

n

/ f(x) dx =~ Zfio(') +flxis )Ax

i=1 2
= % ' (F(xi) + f(xit1))
= X [f) + 23 00) + foresn)]

Example 137 Using the Trapezoidal Rule

2
sin(x®) dx using the Trapezoidal Rule

5

Revisit Example 135 and approximate /

I

and 10 equally spaced subintervals.

SOLUTION We refer back to Figure 5.31 for the table of values of sin(x*).
Recall that Ax = 37/40 ~ 0.236. Thus we have:

e

/ sin(x®) dx ~ &236 [ —0.466 + 2( ~0.165 + (—0.031) + ...+ 0.69) + (—0.67)]

7

= 0.4275.

Notice how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this section;
the real work is creating a table of x; and f(x;) values. Once this is completed, ap-
proximating the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computations and make using lots
of subintervals easy.

Also notice the approximations the Trapezoidal Rule gives. It is the average
of the approximations given by the Left and Right Hand Rules! This effectively

Notes:



5.5 Numerical Integration

renders the Left and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximation is needed, one is gener-
ally better off using the Trapezoidal Rule instead of either the Left or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The Left Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a function f with constant functions
on small subintervals and then computes the definite integral of these constant
functions. The Trapezoidal Rule is really approximating a function f with a linear
function on a small subinterval, then computes the definite integral of this linear
function. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximating f with a constant func-
tion and then with a linear function. What is next? A quadratic function. By
approximating the curve of a function with lots of parabolas, we generally get
an even better approximation of the definite integral. We call this process Simp-
son’s Rule, named after Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant function that goes through that
point. Given two points, we can create a linear function that goes through those
points. Given three points, we can create a quadratic function that goes through
those three points (given that no two have the same x—value).

Consider three points (x1, y1), (X2, ¥2) and (x3, y3) whose x—values are equally
spacedand x; < x, < x3. Let fbe the quadratic function that goes through these

three points. It is not hard to show that 1 ) 3
X3
X3 — X1
/ f(x) dx = 6 (yl + 4y, + y3). (5.4) Figure 5.36: A graph of a function f and
X1 a parabola that approximates it well on
Consider Figure 5.36. A function f goes through the 3 points shown and the [1,3].

parabola g that also goes through those points is graphed with a dashed line.
Using our equation from above, we know exactly that

3—-1

/Bg(X) dx = T(3+4(1)+2) =3.

Since g is a good approximation for f on [1, 3], we can state that

3
/ f(x) dx =~ 3.
1

Notes:
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Xi e
0 1
0.25 0.939
0.5 0.779
0.75 0.570

1 0.368

(a)

(b)

Figure 5.37: A table of values to approxi-
2

mate fol e dx, along with a graph of the

function.

Xi sin(x})
—0.785 —0.466
—0.550 —0.165
—0.314 —0.031
—0.0785 0

0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 —0.670

Figure 5.38: Table of values used to ap-
proximate [ 2, sin(x*) dxin Example 139.
4
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Notice how the interval [1, 3] was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

b

In general, to approximate / f(x) dx using Simpson’s Rule, subdivide [a, b]

a
into n subintervals, where n is even and each subinterval has width Ax = (b —
a)/n. We approximate f with n/2 parabolic curves, using Equation (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:

b
/ F(x) dx ~ % [f(xl)+4f(x2)+zf(x3)+4f(x4)+. . .+zf(xn,1)+4f(xn)+f(xn+1)].

Note how the coefficients of the terms in the summation have the pattern 1, 4,
2,4,2,4,...,2,4,1.
Let’s demonstrate Simpson’s Rule with a concrete example.

Example 138 Using Simpson’s Rule

1
Approximate/ e dx using Simpson’s Rule and 4 equally spaced subintervals.
0

SOLUTION We begin by making a table of values as we have in the past,
as shown in Figure 5.37(a). Simpson’s Rule states that

o 0.25 -
e dxa —= [1 +4(0.939) + 2(0.779) + 4(0.570) + 0.368} = 0.74683.
0

Recall in Example 134 we stated that the correct answer, accurate to 4 places
after the decimal, was 0.7468. Our approximation with Simpson’s Rule, with 4
subintervals, is better than our approximation with the Trapezoidal Rule using
51

Figure 5.37(b) shows f(x) = e along with its approximating parabolas,
demonstrating how good our approximation is. The approximating curves are
nearly indistinguishable from the actual function.

Example 139 Using Simpson’s Rule

2
Approximate / sin(x®) dx using Simpson’s Rule and 10 equally spaced inter-

s
ry

vals.

SOLUTION Figure 5.38 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, Ax = (7/2 +
7/4)/10 ~ 0.236.

Notes:



Simpson’s Rule states that

/2 sin(x*) dx ~ O‘Zaﬁ [(—0.466) +4(—0.165) + 2(—0.031) + ...

...+ 2(0.971) + 4(0.69) + (—0.67)]
= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-

proximation is within one 1/100t" of the correct value. The graph in Figure 5.39
shows how closely the parabolas match the shape of the graph.

Summary and Error Analysis

We summarize the key concepts of this section thus far in the following Key
Idea.

5.5 Numerical Integration

1
y = sin(x®)
0.5 +
: : X
1 V 1
705 £4
Figure 5.39: Approximating

f_i sin(x*) dx in Example 139 with
4

Simpson’s Rule and 10 equally spaced

intervals.

Key Idea 9 Numerical Integration

Setx; =a,x, =a+ Ax,...,x;=a+ (i— 1)Ax, x,01 = b.

b
Consider/ f(x) dx.

Left Hand Rule: /bf(x) dx = Ax [f(xl) + f(x2) + ...+ f(xa)].

b
Right Hand Rule: / f(x) dx =~ Ax [f(xz) + f(x3) + .. + f(Xng1) .

Let f be a continuous function on [a, b], let n be a positive integer, and let Ax =

b
Trapezoidal Rule: / f(x) dx ~ % [f(xl) + 2f(x2) + 2f(X3) + . .. + 2f(Xn) + f(Xn31)]-

b
Simpson’s Rule: / f(x) dx ~ %{ [f(xl) + 4f(x2) + 2f(X3) + . .. + 4f(Xpn) + f(Xn11)] (n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several questions in the reader’s mind, such as:

1. How was the “right” answer computed?
2. If the right answer can be found, what is the point of approximating?

3. If there is value to approximating, how are we supposed to know if the
approximation is any good?

Notes:
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These are good questions, and their answers are educational. In the exam-
ples, the right answer was never computed. Rather, an approximation accurate
to a certain number of places after the decimal was given. In Example 134, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximations were computed using numerical integration but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximation still has its place.
How are we to tell if the approximation is any good?

“Trial and error” provides one way. Using technology, make an approxima-
tion with, say, 10, 100, and 200 subintervals. This likely will not take much time
atall, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximation will be. For instance, the formula might state that the approx-
imation is within 0.1 of the correct answer. If the approximation is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approximation as accurate as one likes. Theorem
43 states what these bounds are.

Theorem 43 Error Bounds in the Trapezoidal and Simpson’s Rules

b
1. Let E7 be the error in approximating / f(x) dx using the Trape-
zoidal Rule. ‘

If f has a continuous 2" derivative on [a, b] and M is any upper
bound of |f”(x)| on [a, b], then

(b—a)®
Er< 29
T="1n2

b
2. Let Es be the error in approximating / f(x) dx using Simpson’s
a
Rule.

If f has a continuous 4™ derivative on [a,b] and M is any upper
bound of |[f*)| on [a, b], then

Es < (b—ap
5= "180n%

Notes:



There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
itively.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term relating to the 4t derivative of f.
Consider a cubic polynomial: it’s 4" derivative is 0. Therefore, the error in
approximating the definite integral of a cubic polynomial with Simpson’s
Rule is 0 — Simpson’s Rule computes the exact answer!

We revisit Examples 136 and 138 and compute the error bounds using The-
orem 43 in the following example.

Example 140 Computing error bounds
1

Find the error bounds when approximating e dx using the Trapezoidal

0
Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

SOLUTION
Trapezoidal Rule with n = 5:

2

We start by computing the 2" derivative of f(x) = e~ :

F(x) = e (42 — 2).

Figure 5.40 shows a graph of f”/(x) on [0, 1]. It is clear that the largest value of
f", in absolute value, is 2. Thus we let M = 2 and apply the error formula from
Theorem 43.

(1-0)°
12 -52
Our error estimation formula states that our approximation of 0.7445 found
in Example 136 is within 0.0067 of the correct answer, hence we know that

Er = -2 = 0.006.

1
0.7445 — 0.0067 = .7378 < / e dx < 0.7512 = 0.7445 + 0.0067.
0

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 43.

Simpson’s Rule with n = 4:
2
We start by computing the 4" derivative of f(x) = e~ :

FOx) = e (16x* — 48x2 + 12).

Notes:

5.5 Numerical Integration

2
y=e (8¢ —2)

Figure 5.40: Graphing f”(x) in Example
140 to help establish error bounds.
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y = e (16x — 48x2 + 12)

Figure 5.41: Graphing f (x) in Example

[

140 to help establish error bounds.

Figure 5.42: Speed data collected at 30
second intervals for Example 141.

250

. Speed
Time (mph)
0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 5.41 shows a graph of f(4) (x) on [0, 1]. Itis clear that the largest value of
f®, in absolute value, is 12. Thus we let M = 12 and apply the error formula
from Theorem 43.

(1-0p

180 .47 12 = 0.00026.

Es =

Our error estimation formula states that our approximation of 0.74683 found
in Example 138 is within 0.00026 of the correct answer, hence we know that

1
0.74683 — 0.00026 = .74657 < / e dx < 0.74709 = 0.74683 + 0.00026.
0

Once again we affirm the validity of Theorem 43.

At the beginning of this section we mentioned two main situations where
numerical integration was desirable. We have considered the case where an
antiderivative of the integrand cannot be computed. We now investigate the
situation where the integrand is not known. This is, in fact, the most widely
used application of Numerical Integration methods. “Most of the time” we ob-
serve behavior but do not know “the” function that describes it. We instead
collect data about the behavior and make approximations based off of this data.
We demonstrate this in an example.

Example 141 Approximating distance traveled

One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.42. Approximate the
distance they traveled.

SOLUTION Recall that by integrating a speed function we get distance
traveled. We have information about v(t); we will use Simpson’s Rule to approx-
b
imate / v(t) dt.
a

The most difficult aspect of this problem is converting the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
time is measured in 30 second increments.

We need to compute Ax = (b — a)/n. Clearly, n = 24. What are a and b?
Since we start at time t = 0, we have that a = 0. The final recorded time came
after 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

b—a 1/5-0 1 Ax 1

Ax = = =
n 24 120

3 360

Notes:



Thus the distance traveled is approximately:

/0 V(b dt =~ %O [f(xl) FAf(x)) + 2f(x3) + - - - + 4f(x,) +f(xn+1)}

1
:ﬁ[o+4~25+2-22+---+2-40+4.23+o}
=~ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.)

We started this chapter learning about antiderivatives and indefinite inte-
grals. We then seemed to change focus by looking at areas between the graph
of a function and the x-axis. We defined these areas as the definite integral of
the function, using a notation very similar to the notation of the indefinite inte-
gral. The Fundamental Theorem of Calculus tied these two seemingly separate
concepts together: we can find areas under a curve, i.e., we can evaluate a def-
inite integral, using antiderivatives.

We ended the chapter by noting that antiderivatives are sometimes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximations of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we’ll see more applications of the definite integral. Before that, in
Chapter 6 we’ll learn advanced techniques of integration, analogous to learning
rules like the Product, Quotient and Chain Rules of differentiation.

Notes:

5.5 Numerical Integration
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Exercises 5.5

Terms and Concepts

1. T/F: Simpson’s Rule is a method of approximating an-
tiderivatives.

2. What are the two basic situations where approximating the
value of a definite integral is necessary?

3. Why are the Left and Right Hand Rules rarely used?

Problems

In Exercises 4 — 11, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
andn = 4.

(c) Find the exact value of the integral.

1
/xzdx
-1
10
5./ 5x dx
0
6. / sin x dx
0
4
./ﬁdx
0
3
8./(x3+2x2—5x+7)dx
0
1
./x4dx
0

2T
10./ cos x dx
0

3
11./ V9 — x2dx
-3

&>

~N

[Ye]

In Exercises 12 — 19, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

1
12. / cos (xz) dx
0

1 2
13. / e dx
—1

5
14. / VX% + 1dx
0

15. / xsinx dx
0

/2
16. / \/cos x dx
0

4
17. / In x dx
1
1
1
18./ —— dx
_ySinx+2

¢ 1
o Sinx—+2

In Exercises 20 — 23, find n such that the error in approximat-
ing the given definite integral is less than 0.0001 when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

20. / sin x dx
0

‘1
21. — dx
1 VX

22. / cos (x*) dx
0

5
23. / x* dx
0

In Exercises 24 — 25, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in centimeters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

N
] \

4.7
6.3
6.9

24.

6.6

5.1




25.

3.6

4.5

6.6
5.6
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6: TECHNIQUES OF
ANTIDIFFERENTIATION

The previous chapter introduced the antiderivative and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applications of definite integrals than just area. As eval-
uating definite integrals will become important, we will want to find antideriva-
tives of a variety of functions.

This chapter is devoted to exploring techniques of antidifferentiation. While
not every function has an antiderivative in terms of elementary functions (a
concept introduced in the section on Numerical Integration), we can still find
antiderivatives of a wide variety of functions.

6.1 Substitution

We motivate this section with an example. Let f(x) = (x* 4+ 3x — 5)%°. We can
compute f’(x) using the Chain Rule. It is:

f'(x) =10(x* +3x — 5)° - (2x + 3) = (20x + 30)(x* + 3x — 5)°.

Now consider this: What is [(20x 4 30)(x* + 3x — 5)° dx? We have the answer
in front of us;

/(20x +30)(x* +3x—5)%dx = (x* +3x - 5)° + C.

How would we have evaluated this indefinite integral without starting with f(x)
as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form
J f(x) dx as a not—so—complicated integral [ h(u) du. We'll formally establish
later how this is done. First, consider again our introductory indefinite integral,
J(20x 4 30)(x* 4+ 3x — 5)° dx. Arguably the most “complicated” part of the
integrand is (x*> + 3x — 5)°. We wish to make this simpler; we do so through a
substitution. Let u = x> 4+ 3x — 5. Thus

(x* +3x—5)° =u°.
We have established u as a function of x, so now consider the differential of u:

du = (2x + 3)dx.
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Keep in mind that (2x+3) and dx are multiplied; the dx is not “just sitting there.”
Return to the original integral and do some substitutions through algebra:

/(20x +30)(x* +3x—5)? dx = / 10(2x + 3)(x* + 3x — 5)° dx

:/1O(x2+3x—5)9 (2x+3) dx
— ~—

u du

= / 10u° du

= u10 + C  (replace u with x> + 3x — 5)
= +3x—5¥®4cC

One might well look at this and think “I (sort of) followed how that worked,
but | could never come up with that on my own,” but the process is learnable.
This section contains numerous examples through which the reader will gain
understanding and mathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.

We stated before that integration by substitution “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differentiable functions and consider the deriva-
tive of their composition:

Thus

Integration by substitution works by recognizing the “inside” function g(x) and
replacing it with a variable. By setting u = g(x), we can rewrite the derivative
as

% (F(u)) = F'(u)u’.

Since du = g’(x)dx, we can rewrite the above integral as
/F'(g(x))g'(x) dx = /F’(u)du — F(u) + C = Fg(x) + C.

This concept is important so we restate it in the context of a theorem.

Notes:



Theorem 44 Integration by Substitution

Let Fand g be differentiable functions, where the range of g is an interval
I contained in the domain of F. Then

If u = g(x), then du = g’(x)dx and

/F'(g(x))g'(x) dx — /F'(u) du = F(u) + C = F(g(x)) + C.

The point of substitution is to make the integration step easy. Indeed, the
step [ F'(u) du = F(u)+ Clooks easy, as the antiderivative of the derivative of F
is just F, pIus a constant. The “work” involved is making the proper substitution.
There is not a step—by—step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 142 Integrating by substitution

Evaluate /xsin(x2 +5) dx.

SOLUTION Knowing that substitution is related to the Chain Rule, we
choose to let u be the “inside” function of sin(x? +5). (This is not always a good
choice, but it is often the best place to start.)

let u = x> + 5, hence du = 2xdx. The integrand has an xdx term, but
not a 2xdx term. (Recall that multiplication is commutative, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

1
du=2xdx = Edu = xdx.

We can now substitute.

/xsmx +5

||
—
1%}
5
><N
{+
(0]
><
%

Notes:

6.1 Substitution
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= —E cosuU + C  (now replace u with x* + 5)
1 2
= cos(x” +5) + C.

Thus [ xsin(x? + 5) dx = —1 cos(x* + 5) -+ C. We can check our work by eval-
uating the derivative of the right hand side.

Example 143 Integrating by substitution
Evaluate / cos(5x) dx.

SOLUTION Again let u replace the “inside” function. Letting u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equation by 5 to obtain %du = dx. We can now substitute.

/cos(Sx) dx = /cos(\S:(/)\dL

u 1
sdu

1
:/fcosudu
5

L +C
—sinu
5

1
= —sin(5x) + C.
5
We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 10 Substitution With A Linear Function

Consider [ F’(ax + b) dx, where a # 0 and b are constants. Letting
u = ax + b gives du = a - dx, leading to the result

1
/F’(ax+ b) dx = EF(ax—i— b) +C.

Thus [ sin(7x — 4) dx = —2 cos(7x — 4) + C. Our next example can use Key
Idea 10, but we will only employ it after going through all of the steps.

Notes:



Example 144 Integrating by substituting a linear function
7
Evaluate / —— dx.
—3x+1
SOLUTION View this a composition of functions f(g(x)), where f(x) =
7/x and g(x) = —3x + 1. Employing our understanding of substitution, we let

u = —3x + 1, the inside function. Thus du = —3dx. The integrand lacks a —3;
hence divide the previous equation by —3 to obtain —du/3 = dx. We can now
evaluate the integral through substitution.

/ 7 /7du
——dx= | ——
—3x+1 u-—-3

=7 [du

"3 ) u

:_—7In|u\+C
3

7
—3In|-3x+1+cC

Using Key Idea 10 is faster, recognizing that u is linear and a = —3. One may
want to continue writing out all the steps until they are comfortable with this
particular shortcut.

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 145 Integrating by substitution
Evaluate / sin x cos x dx.

SOLUTION There is not a composition of function here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is often beneficial to think “If | let u be this, then du must be
that ...” and see if this helps simplify the integral at all.

In this example, let’s set u = sinx. Then du = cos x dx, which we have as
part of the integrand! The substitution becomes very straightforward:

/sinxcosxdx:/udu

! 24 cC
=-u
2

= 1sin2x+c
= :

Notes:

6.1 Substitution
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One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral letting u = cos x and discover why the answer is the same,
vet looks different.

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Example 146 Integrating by substitution
Evaluate /x\/x + 3 dx.
SOLUTION Recognizing the composition of functions, set u = x + 3.

Then du = dx, giving what seems initially to be a simple substitution. But at this
stage, we have:

/X\/mm:/xﬁdu.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+ 3, we can also state that u — 3 = x. Thus we can replace
x in the integrand with u — 3. It will also be helpful to rewrite \/u as uz.

/xﬁdx: /(u—3)u% du
= / (u% —3u%) du

= Zu% 2u%+C
5
2
=—-(x+3
S (x+3)

5
2

—2(x+3)? +C

Checking your work is always a good idea. In this particular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 147 Integrating by substitution
1
Evaluate / — dx.
xInx
SOLUTION This is another example where there does not seem to be

an obvious composition of functions. The line of thinking used in Example 146
is useful here: choose something for u and consider what this implies du must

Notes:



be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/x makes du = —1/x? dx; that does not seem helpful. How-
ever, setting u = In x makes du = 1/x dx, which is part of the integrand. Thus:

/—fdx
xInx Inx x
:/fdu
u

=Inlul+C
=In|lnx| + C.

The final answer is interesting; the natural log of the natural log. Take the deriva-
tive to confirm this answer is indeed correct.

Integrals Involving Trigonometric Functions

Section 6.3 delves deeper into integrals of a variety of trigonometric func-
tions; here we use substitution to establish a foundation that we will build upon.

The next three examples will help fillin some missing pieces of our antideriva-
tive knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose-
cant? We discover these next.

Example 148 Integration by substitution: antiderivatives of tan x

Evaluate/tanxdx.

SOLUTION The previous paragraph established that we did not know
the antiderivatives of tangent, hence we must assume that we have learned
something in this section that can help us evaluate this indefinite integral.

Rewrite tan x as sinx/ cosx. While the presence of a composition of func-
tions may not be immediately obvious, recognize that cosx is “inside” the 1/x
function. Therefore, we see if setting u = cos x returns usable results. We have

Notes:

6.1 Substitution
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that du = — sinx dx, hence —du = sin x dx. We can integrate:

sinx
/tanxdx: /—dx
. J cosx

1
:/ sin x dx
COS X ~—~—
S~~~  —du
u
-1
/—du
u
=—Injul+C

—In]|cosx| + C.

Some texts prefer to bring the —1 inside the logarithm as a power of cos x, as in:

—In|cosx| +C=In|(cosx)"'|+C

=In +C

Cos X

=In|secx| + C.

Thus the result they give is [tanx dx = In|secx| + C. These two answers are
equivalent.

Example 149 Integrating by substitution: antiderivatives of sec x

EvaIuate/secx dx.

SOLUTION This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
lllll as
secx + tanx
secx +tanx’

This may seem like it came out of left field, but it works beautifully. Consider:

secx + tanx
secxdx = | secx- ——  dx
secx + tanx
sec? x + secxtanx
= dx
secx + tanx

Notes:



Now let u = secx + tanx; this means du = (secxtanx + sec? x) dx, which is
our numerator. Thus:

_ [

] u
=Injul+C

=In|secx + tanx| + C.

We can use similar techniques to those used in Examples 148 and 149 to find
antiderivatives of cot x and csc x (which the reader can explore in the exercises.)
We summarize our results here.

Theorem 45 Antiderivatives of Trigonometric Functions
1. /sinxdx = —cosx+C 4. /cscxdx = —In]|cscx + cotx| + C
2. /cosxdx:sinx+C 5. /secxdx:ln|secx+tanx|+C

3. /tanxdx:—ln|cosx|+C 6. /cotxdx:ln|sinx|—|—C

We explore one more common trigonometric integral.

Example 150 Integration by substitution: powers of cos x and sin x
Evaluate / cos? x dx.

SOLUTION We have a composition of functions as cos? x = (cos x)z.
However, setting u = cos x means du = — sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos? x (per-
haps consult the back of this text for this formula), which states

2. 1+ cos(2x)

CoOs“ X = ————.
2

The right hand side of this equation is not difficult to integrate. We have:

1 2
/coszxdx:/%s(x)dx

= / (;4— ;cos(2x)> dx.

Notes:

6.1 Substitution
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Now use Key Idea 10:

1 1 sin(2x)
x4 =

2 2 2

1 sin(2x)
=X

2 + 4

+C

+C.

We'll make significant use of this power—reducing technique in future sections.
Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integration is tenuous and one may think that working with
the integrand will improperly change the results. Integration by substitution
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integration
easier to perform.

Example 151 Integration by substitution: simplifying first

341 4x2 +8x+5
Evaluate/x A Xt dx
X2+ 2x+1

SOLUTION One may try to start by setting u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with rational functions (i.e., quotients made up of polynomial
functions), it is an almost universal rule that everything works better when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x? + 2x + 1 is divided
into x3 + 4x*> 4 8x + 5, it goes in x + 2 times with a remainder of 3x 4 3. Thus

X +4x* +8x+5 as 3x+ 3
=x - -
X2 +2x+1 X2+ 2x+1

Integrating x + 2 is simple. The fraction can be integrated by setting u = x* +
2x+ 1, giving du = (2x + 2) dx. This is very similar to the numerator. Note that

Notes:



du/2 = (x + 1) dx and then consider the following:

3 1 4x% +8x+5 3x+3
/X+X+X+ dx:/ X+2+L dx
X2 +2x+1 X2 +2x+1

:/(x—l—z)dx—&—/de

X2 +2x+1

—1%+y+c+/§@
T2 ! u2

1, 3
:5x+y+q+EMM+Q

1, 3n1,2
=X +2x+iln|x +2x+ 1|+ C.

In some ways, we “lucked out” in that after dividing, substitution was able to be
done. In later sections we’ll develop techniques for handling rational functions
where substitution is not directly feasible.

Example 152 Integration by alternate methods
2
x“+2x+3 . . N
Evaluate | ————— dx with, and without, substitution.
VX
SOLUTION We already know how to integrate this particular example.

Rewrite v/x as x? and simplify the fraction:

xX* 4+ 2x+3 3 1 1
— 5, =X>+2x2 +3x" 2.
x1/2

We can now integrate using the Power Rule:

2 2 3 1 1
/)(74_1)(4—3dx:/<xi +2x5+3x_5) dx
x1/2

2+ D ped v c
= —X =X X
5 3
This is a perfectly fine approach. We demonstrate how this can also be solved
using substitution as its implementation is rather clever.
Let u = /x = x2; therefore

1 1 1
du= —x"idx=——=dx = 2du= ——=dx.
2 2/ Vx
x*+2x+3
This gives us % dx = /(x2 +2x+3) - 2 du. What are we to do
. X .

2

with the other x terms? Since u = x%, u? = x, etc. We can then replace x? and

Notes:

6.1 Substitution
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x with appropriate powers of u. We thus have

2+ 2x+3
%dX:/(XZ—FZx—i—&-Zdu
:/2(u4+2u2+3)du

26+ i et C
=-u+-u u

55 '3
2+ i red e
—X =X X ,
5 3

which is obviously the same answer we obtained before. In this situation, sub-
stitution is arguably more work than our other method. The fantastic thing is
that it works. It demonstrates how flexible integration is.

Substitution and Inverse Trigonometric Functions

When studying derivatives of inverse functions, we learned that

1

d 1)
(tan x)fm.

dx
Applying the Chain Rule to this is not difficult; for instance,

5

d 1 _
(tan~*5x) = Troee

dx
We now explore how Substitution can be used to “undo” certain derivatives that
are the result of the Chain Rule applied to Inverse Trigonometric functions. We
begin with an example.

Example 153 Integrating by substitution: inverse trigonometric functions
1
Evaluate | ———— dx
25 4 x2
SOLUTION The integrand looks similar to the derivative of the arctan-

gent function. Note:

11
25+x  25(1+ %)
B 1
25(1+ (5)°)
B 1
B ()]

Notes:



Thus
1 1 1
X 1+(5)

This can be integrated using Substitution. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus

1 1 1
/7dx:— ———— dx
25 +x? 25 14 (%)

I

|
-
o
S

AN

<
+
(@}

Example 153 demonstrates a general technique that can be applied to other
integrands that result in inverse trigonometric functions. The results are sum-
marized here.

Theorem 46 Integrals Involving Inverse Trigonomentric Functions

Leta > 0.

1 1 _i/x
1. ——— dx = —tan (7)+C
a? + x2 a a

dx = sin™! (g) +C

1
2. Ny
/\/az—x2
1 1 (I
3./mdx—asec <a>+C

Let’s practice using Theorem 46.

Example 154 Integrating by substitution: inverse trigonometric functions
Evaluate the given indefinite integrals.

1 " 1 1
——— dx, ————dx and ————— dx.
/9+Xz /x 2 L /\/5—X2
\/ 100

Notes:

6.1 Substitution
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SOLUTION Each can be answered using a straightforward application of
Theorem 46.

1 1. _ix
——dx=—tan "=+ Casa=3.
9 + x2 3 3

dx =10sec ' 10x+ C,asa = .

/ 1
x,/xz—ﬁ

Most applications of Theorem 46 are not as straightforward. The next exam-
ples show some common integrals that can still be approached with this theo-
rem.

Example 155 Integrating by substitution: completing the square
1
Evaluate / ——dx
x2 —4x+13

SOLUTION Initially, this integral seems to have nothing in common with
the integrals in Theorem 46. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. Itis, however, related to the arctangent function.

We see this by completing the square in the denominator. We give a brief
reminder of the process here.

Start with a quadratic with a leading coefficient of 1. It will have the form of
x% +bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
l.e.,

2 bZ
xz—&-bx—&-c:xz—&-bx—i—j—z—i—c

(x+b/2)?

= X—i—é z—i—c—5
o 2 4

In our example, we take half of —4 and square it, getting 4. We add/subtract it
into the denominator as follows:

1 1
X2 —4x+13 X’ —4x+4—4+13
N———
(x—=2)2
_ 1
 (x—2)2+9

Notes:



We can now integrate this using the arctangent rule. Technically, we need to
substitute first with u = x — 2, but we can employ Key Idea 10 instead. Thus we
have

1 1 1. x—2
—————dx= [ —————dx=-tan" ' —— +C.
x> —4x + 13 (x—2)2+9 3 3

Example 156 Integrals requiring multiple methods
4 —x
Evaluate / — dx.

V16 — x2

SOLUTION This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral:

4 —x 4 X
7dx:/7dx—/7dx.
V16 — x2 V16 — x? V16 — x?
The first integral is handled using a straightforward application of Theorem 46;

the second integral is handled by substitution, with u = 16 — x*>. We handle
each separately.

dx = 4sin~?! % + C.

V16 — x?
X
————— dx: Setu = 16 — x%, so du = —2xdx and xdx = —du/2. We
/\/16—x2
have
/ X 4 —du/2
T dx=
V16 — x? Vu
1 1
=— | —d
2./ Nh
=—Vu+C

—v16 — x> + C.

Combining these together, we have
4 —x X
——— _dx=4sin"1Z 4+ /16— x>+ C

/ V16 — x2 4

Substitution and Definite Integration

This section has focused on evaluating indefinite integrals as we are learning
a new technique for finding antiderivatives. However, much of the time integra-
tion is used in the context of a definite integral. Definite integrals that require
substitution can be calculated using the following workflow:

Notes:

6.1 Substitution
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b
1. Start with a definite integral / f(x) dx that requires substitution.
a

2. Ignore the bounds; use substitution to evaluate /f(x) dx and find an an-
tiderivative F(x).

b
= F(b) — F(a).

a

3. Evaluate F(x) at the bounds; that is, evaluate F(x)

This workflow works fine, but substitution offers an alternative that is powerful
and amazing (and a little time saving).

At its heart, (using the notation of Theorem 44) substitution converts inte-
grals of the form [ F/(g(x))g’(x) dx into an integral of the form [ F’(u) du with
the substitution of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the substitution is performed.

Theorem 47 Substitution with Definite Integrals

Let Fand g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F. Then

b g(b)
/ F'(g(x))g’(x) dx = / F'(u) du.
a 9(a)

In effect, Theorem 47 states that once you convert to integrating with re-
spect to u, you do not need to switch back to evaluating with respect to x. A few
examples will help one understand.

Example 157 Definite integrals and substitution: changing the bounds

2
Evaluate / cos(3x — 1) dx using Theorem 47.
0

SOLUTION Observing the composition of functions, let u = 3x — 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.

By setting u = 3x — 1, we are implicitly stating that g(x) = 3x — 1. Theorem
47 states that the new lower bound is g(0) = —1; the new upper bound is

Notes:



g(2) = 5. We now evaluate the definite integral:

2 5
du

/ cos(3x — 1) dx = / cosu—
1 -1 3
1 5

= —sin u’

-1

= %(sinS —sin(—1)) ~ —0.039.
Notice how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1 tell more of the story. In (a) the area defined by the
original integrand is shaded, whereas in (b) the area defined by the new inte-
grand is shaded. In this particular situation, the areas look very similar; the new
region is “shorter” but “wider,” giving the same area.

Example 158 Definite integrals and substitution: changing the bounds

/2
Evaluate / sin x cos x dx using Theorem 47.
0

SOLUTION We saw the corresponding indefinite integral in Example 145.

In that example we set u = sin x but stated that we could have let u = cosx.
For variety, we do the latter here.

Let u = g(x) = cosx, giving du = — sin x dx and hence sinx dx = —du. The
new upper bound is g(w/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have

/2 0
/ sinxcosx dx = / —u du  (switch bounds & change sign)
0 1

1
z/udu
0

1,1
=—-u"| =1/2.
2 ’o /

In Figure 6.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 47 guarantees that they have the same area.

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundation on which most
other integration techniques are based.

Notes:

6.1 Substitution

1 y =cos(3x — 1)
O.Sﬂ
t | t t ¢ 1 X

(b)

Figure 6.1: Graphing the areas defined by
the definite integrals of Example 157.

1 -+
y = sinxcos x
0.5
t X
1 ;\
—0.5 |+
(a)
y
17 y=u
0.5 |
; u
1 2
—0.5 |+

(b)

Figure 6.2: Graphing the areas defined by
the definite integrals of Example 158.
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Exercises 6.1

Terms and Concepts
1. Substitution “undoes” what derivative rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems

In Exercises 3 — 14, evaluate the indefinite integral to develop
an understanding of Substitution.

3. /3x2 (¢ —5)" dx

4. /(Zx— 5) (X —5x+ 7)3dx

5. /x(xz—i—l)sdx

6. /(12x+ 14) (3% + 7x — 1) dx
7. /T1+7dx

8. /\/%dx

9. /\/%dx

10. /X3ﬁxdx

11. /%dx

12.

/Xidx
VX +1
1
141
13. /" 5—dx
X

14. /@dx

In Exercises 15 — 23, use Substitution to evaluate the indefi-
nite integral involving trigonometric functions.

15. /sinz(x) cos(x)dx

16. /cos(3 — 6x)dx

21.

22. cot x dx. Do not just refer to Theorem 45 for the answer;

justify it through Substitution.

23. cscx dx. Do not just refer to Theorem 45 for the answer;

stify it through Substitution.

c

j

In Exercises 24 — 30, use Substitution to evaluate the indefi-
nite integral involving exponential functions.

24, /eax_ldx

25. /e X dx

26. /ex T2t (x — 1)dx
27. /ex+1

28. /e —e’

29. /33de

30. / 4% dx

In Exercises 31 — 34, use Substitution to evaluate the indefi-
nite integral involving logarithmic functions.

31 /Inx

32. /(Inxx)zdx

33. /@dx



1
34. /xiln(xz)dx

In Exercises 35 — 40, use Substitution to evaluate the indefi-
nite integral involving rational functions.

2
35. /wdx

X
3 2
36. /X XXl
X
3_
37. /X Lo
x+1
X +2x—5
38./ dx
x—3
2_
39. /wdx
x+1

2
40. /wdx
X3 + 3x2 + 3x

In Exercises 41 — 50, use Substitution to evaluate the indefi-
nite integral involving inverse trigonometric functions.

41. de
x2+7

42.

/de
V9 — x2

43.

| e

44,

/ _ 2
xV/x2 -9

45.

5
—_——dx
/ Vx4 — 16x2

46.

/ X g

Vi—x

47. / Y
X2 —2x+8

48.

/ 2
————dx
vV—x*+6x+7

49.

/ 3
——dx
vV—x*+8x+9

50. / SR
X2 + 6x + 34

In Exercises 51 — 75, evaluate the indefinite integral.

2
51. /Xizdx
(¥ +3)

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

/ (3)(2 + 2x) (5x3 +5¢ + 2)8 dx

/

X
V1—x2

/x2 csc? (x3 + 1) dx

/ sin(x)+/cos(x)dx

/
/
/
/
/

/

/
/
/
/
/

[ w5mra
[
[#5s
| #ras
| @1

1
x—5

dx

! dx
3x+2

33+ 4 +2x— 22 .

X2 +3x+5

2x+7
——dx
x2+7x+3

9(2x + 3)
3x2+9x+ 7

X +14x* —46x — 7

X2 —7x+1

X
X 4
T
2
4x2 41

1
—dx
xV4ax: — 1

1
———dx
V16 — 9x2

3x—2 "
x2 —2x+ 10

7 —2x "
x2 +12x + 61

x> 4+5x—2

Ix
x2 — 10x + 32
X2

XX —x
dx
X2 +4x+9

sin(x
cos?(x

dx
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cos(x)
72. / de

cos(x)
73. / Tnz(x)dx

3x—3

74. ————dx
VX2 —2x—6

75. de
VX2 —6x+8

In Exercises 76 — 83, evaluate the definite integral.

-3
76./ ! dx
1 X—5

6
77. / xvx — 2dx
2

78.

79.

80.

81.

82.

83.

/2
.2
/ sin” x cos x dx
—7/2

1
/ 2x(1 — x*)* dx
0

—1
/ (x+ l)eXZH’(+1 dx

—2

1
/de
1 1+x
4
/;dx
, x> —6x+10

V3 1
J—t"
1 \/4*X2



6.2 Integration by Parts

Here’s a simple integral that we can’t yet evaluate:

/xcosxdx.

It’s a simple matter to take the derivative of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this section introduces
Integration by Parts, a method of integration that is based on the Product Rule
for derivatives. It will enable us to evaluate this integral.

The Product Rule says that if uand vare functions of x, then (uv)’ = u’v+uv’.
For simplicity, we’ve written u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives

/(uv)’ dx = /(u’v +uv’) dx.

By the Fundamental Theorem of Calculus, the left side integrates to uv. The right
side can be broken up into two integrals, and we have

uv = /u’vdx—!—/uv’dx.

Solving for the second integral we have

/uv’dx:uv—/u’vdx.

Using differential notation, we can write du = u’(x)dx and dv = v/(x)dx and
the expression above can be written as follows:

/udv:uvf/vdu.

This is the Integration by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 48 Integration by Parts
Let u and v be differentiable functions of x on an interval / containing a
and b. Then
/udv:uv—/vdu,
and
Xx=b b x=b
/ udv=uv| — / vdu.
x=a a x=a
Notes:

6.2

Integration by Parts
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Let’s try an example to understand our new technique.

Example 159 Integrating using Integration by Parts
Evaluate /xcosx ax.

SOLUTION The key to Integration by Parts is to identify part of the in-
tegrand as “u” and part as “dv.” Regular practice will help one make good iden-
tifications, and later we will introduce some principles that help. For now, let
u = xand dv = cos x dx.

It is generally useful to make a small table of these values as done below.
Right now we only know u and dv as shown on the left of Figure 6.3; on the right
we fill in the rest of what we need. If u = x, then du = dx. Since dv = cos x dx,
v is an antiderivative of cos x. We choose v = sin x.

u=x v=" u=x vV =sinx

=
du =7 dv = cosx dx du = dx dv = cos x dx

Figure 6.3: Setting up Integration by Parts.

Now substitute all of this into the Integration by Parts formula, giving

/xcosxdx:xsinx—/sinxdx.

We can then integrate sin x to get — cos x + C and overall our answer is
/xcosxdx = xsinx + cosx + C.

Note how the antiderivative contains a product, xsinx. This product is what
makes Integration by Parts necessary.

The example above demonstrates how Integration by Parts works in general.
We try to identify u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the Integration by Parts formula, f vdu will be simpler to integrate
than the original integral f udv.

In the example above, we chose u = x and dv = cos x dx. Then du = dx was
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integrating x cos x dx, we could integrate sin x dx, which we knew how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, | = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = Exponential.

Notes:



6.2

If the integrand contains both a logarithmic and an algebraic term, in general
letting u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

Example 160 Integrating using Integration by Parts

Evaluate / xe* dx.

SOLUTION The integrand contains an Algebraic term (x) and an Exponential
term (e*). Our mnemonic suggests letting u be the algebraic term, so we choose
u = xand dv = e*dx. Thendu = dxand v = e* as indicated by the tables below.

u=x v="7" u=x v=2¢"
=
du="7 dv = e* dx du = dx dv = e* dx

Figure 6.4: Setting up Integration by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The Integration by Parts formula gives

/xexdx:xe"—/e"dx.

The integral on the right is simple; our final answer is
/xe"dx:xe"—e"—i—c.
Note again how the antiderivatives contain a product term.

Example 161 Integrating using Integration by Parts

Evaluate /x2 cos X dx.

SOLUTION The mnemonic suggests letting u = x? instead of the trigono-
metric function, hence dv = cosxdx. Then du = 2xdx and v = sin x as shown
below.

u=x v="7? u=x v =sinx

=
du="7? dv = cos x dx du=2xdx dv=cosxdx

Figure 6.5: Setting up Integration by Parts.

Notes:

Integration by Parts
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The Integration by Parts formula gives
/x2 cosxdx = x*sinx — /2xsinxdx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do Integration by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u=2x v=" N u=2x V= —CoSX
du =7 dv = sinx dx du = 2dx dv = sin x dx

Figure 6.6: Setting up Integration by Parts (again).

/x2 cosxdx = x*sinx — <—2xcosx— /—Zcosxdx).

The integral all the way on the right is now something we can evaluate. It eval-
uates to —2 sinx. Then going through and simplifying, being careful to keep all
the signs straight, our answer is

/chosde:xzsinx+2xcosx— 2sinx + C.

Example 162 Integrating using Integration by Parts
Evaluate / €* cos x dx.

SOLUTION This is a classic problem. Our mnemonic suggests letting u
be the trigonometric function instead of the exponential. In this particular ex-
ample, one can let u be either cos x or e*; to demonstrate that we do not have
to follow LIATE, we choose u = e* and hence dv = cosxdx. Then du = e*dx
and v = sin x as shown below.

u=e¢e" v="7 u=_¢e v =sinx

=
du=7 dv = cos x dx du=¢edx dv=cosxdx

Figure 6.7: Setting up Integration by Parts.

Notice that du is no simpler than u, going against our general rule (but bear
with us). The Integration by Parts formula yields

/e"cosxdx:e"sinx—/e"sinxdx.

Notes:



The integral on the right is not much different than the one we started with, so
it seems like we have gotten nowhere. Let’s keep working and apply Integration
by Parts to the new integral, using u = e* and dv = sin x dx. This leads us to the
following:

u=e v="7 u=e¢e* V= —cosx
. = X .
du=7 dv = sinx dx du=¢e“dx dv=sinxdx

Figure 6.8: Setting up Integration by Parts (again).
The Integration by Parts formula then gives:
/e" cosxdx = e*sinx — (e’( cosXx — / —e* cosxdx)
= e*sinx + e cosx — /e"cosxdx.

It seems we are back right where we started, as the right hand side contains
f e* cos x dx. But this is actually a good thing.

Add /e" cos x dx to both sides. This gives

2/ ¥ cosx dx = e*sinx + e* cos x

Now divide both sides by 2:

/e" cosx dx =

Simplifying a little and adding the constant of integration, our answer is thus

(e*sinx + e* cosx).

N =

1
/e" cosx dx = Ee" (sinx + cos x) + C.

Example 163 Integrating using Integration by Parts: antiderivative of In x
Evaluate / In x dx.

SOLUTION One may have noticed that we have rules for integrating the
familiar trigonometric functions and e*, but we have not yet given a rule for
integrating Inx. That is because In x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its antiderivative by a

Notes:

6.2

Integration by Parts
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clever application of Integration by Parts. Set u = Inx and dv = dx. Thisis a
good, sneaky trick to learn as it can help in other situations. This determines
du = (1/x) dx and v = x as shown below.

u=Inx v="7" N u=Inx V=X
du="7? dv = dx du=1/xdx dv = dx

Figure 6.9: Setting up Integration by Parts.

Putting this all together in the Integration by Parts formula, things work out

very nicely:
1
/Inxdx:xlnx—/xfdx.
X

The new integral simplifies to f 1 dx, which is about as simple as things get. Its
integral is x + C and our answer is

/Inxdx:xlnx—x+C.

Example 164 Integrating using Int. by Parts: antiderivative of arctan x
Evaluate / arctan x dx.

SOLUTION The same sneaky trick we used above works here. Let u =
arctanx and dv = dx. Then du = 1/(1 + x*) dx and v = x. The Integration by
Parts formula gives

X
arctanxdx = xarctanx — | —— dx.
1+ x2

The integral on the right can be solved by substitution. Taking u = 1 + x%, we
get du = 2x dx. The integral then becomes

1 1
/arctanxdx:xarctanx— E/fdu.
u

The integral on the right evaluates to In |u| + C, which becomes In(1 + x?) + C.
Therefore, the answer is

/arctanxdx = xarctanx — In(1 4+ x*) + C.

Notes:



Substitution Before Integration

When taking derivatives, it was common to employ multiple rules (such as
using both the Quotient and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integration techniques. In
particular, here we illustrate making an “unusual” substitution first before using
Integration by Parts.

Example 165 Integration by Parts after substitution

Evaluate/cos(lnx) dx.

SOLUTION The integrand contains a composition of functions, leading
us to think Substitution would be beneficial. Letting u = Inx, we have du =
1/x dx. This seems problematic, as we do not have a 1/x in the integrand. But
consider:

du:%dx:w(-du:dx.

Since u = In x, we can use inverse functions and conclude that x = eY. Therefore
we have that

dx =x-du
=e'du.

We can thus replace In x with u and dx with e¥ du. Thus we rewrite our integral

as
/cos(lnx) dx = /e“ cos u du.

We evaluated this integral in Example 162. Using the result there, we have:

/cos(lnx) dx = /e“ cosu du

1
= Ee“(sinu—i—cosu) +C
1
= Ee'”x(sin(lnx) + cos(Inx)) + C

= %x(sin(lnx) + cos(Inx)) + C.

Definite Integrals and Integration By Parts

So far we have focused only on evaluating indefinite integrals. Of course, we
can use Integration by Parts to evaluate definite integrals as well, as Theorem

Notes:

6.2

Integration by Parts
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48 states. We do so in the next example.
Example 166 Definite integration using Integration by Parts

2
Evaluate / X% In x dx.
1

SOLUTION Our mnemonic suggests letting u = Inx, hence dv = x? dx.
We then get du = (1/x) dx and v = x3/3 as shown below.

u=Inx v="7? _ u=Inx v=1x/3
du=7? dv = x* dx du=1/xdx dv=x*dx

Figure 6.10: Setting up Integration by Parts.

The Integration by Parts formula then gives

2 3 2 2 .3
X x> 1
/lenxdx:—lnx — — —dx
1 3 1 1 3 x
2 .
x3 22
= —Inx| — — dx
3 1 1 3
2 2
x3 x3
= —Inx| — —
1 90

I
P wlo —~ . — w

Q

In general, Integration by Parts is useful for integrating certain products of
functions, like [xe*dx or [x*sinxdx. It is also useful for integrals involving
logarithms and inverse trigonometric functions.

As stated before, integration is generally more difficult than derivation. We
are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar—looking integrals

/xe" dx, /xe"2 dx and /xeX3 dx.

Notes:
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While the firstis calculated easily with Integration by Parts, the second is best
approached with Substitution. Taking things one step further, the third integral
has no answer in terms of elementary functions, so none of the methods we
learn in calculus will get us the exact answer.

Integration by Parts is a very useful method, second only to substitution. In
the following sections of this chapter, we continue to learn other integration
techniques. The next section focuses on handling integrals containing trigono-
metric functions.

Notes:

6.2

Integration by Parts
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Exercises 6.2

Terms and Concepts

1. T/F: Integration by Parts is useful in evaluating integrands
that contain products of functions.

2. T/F:Integration by Parts can be thought of as the “opposite
of the Chain Rule.”

3. For what is “LIATE” useful?

Problems

In Exercises 4 — 33, evaluate the given indefinite integral.

4, /xsinxdx

“dx
X sinx dx
X~ sinx dx
xe* dx
x e dx

10. [ xe dx

12. e~ cosx dx

2x

13. e”sin(3x) d

14. [ e™cos(5x) d

15. sinx cos x dx

16. sin~

17. tan™ dx

-1

18. xtan™ “xd.

e
]
]
e
]
/
I
/
/¢
/
fon
/
/

19. /sin_lxdx
20. /xlnxdx

21, /(x— 2) Inx dx

22 /xln(x— 1) dx
23. /xln(xz) dx

24. /x Inx dx

25. /(Inx)2 dx

2. /(In(x—|— 1)) dx
27. /xseczxdx

28. /xcsczxdx

29. /X\/)ﬁdx

30. /xmdx
31. /secxtanxdx
32. /xsecxtanxdx

33. /xcscxcotx dx

In Exercises 34 — 38, evaluate the indefinite integral after first
making a substitution.

34, /sin(lnx) dx
35. /sin(ﬁ) dx

36. /In(ﬁ) dx

37. / eV dx



38. / e dx

In Exercises 39 — 47, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 4 — 12.

39. / xsin x dx
0

1

40. / xe ¥ dx
—1
w/4

41./ X sinx dx
—r/4
/2

42./ X° sin x dx
—7/2

43.

44.

45.

46.

47.
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6.3 Trigonometric Integrals

Functions involving trigonometric functions are useful as they are good at de-
scribing periodic behavior. This section describes several techniques for finding
antiderivatives of certain combinations of trigonometric functions.

Integrals of the form / sin” x cos” x dx

In learning the technique of Substitution, we saw the integral f sin x cos x dx
in Example 145. The integration was not difficult, and one could easily evaluate
the indefinite integral by letting u = sin x or by letting u = cos x. This integral is
easy since the power of both sine and cosine is 1.

We generalize this integral and consider integrals of the form | sin x cos” x dx,
where m, n are nonnegative integers. Our strategy for evaluating these inte-
grals is to use the identity cos? x + sin>x = 1 to convert high powers of one
trigonometric function into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

Key Idea 11 Integrals Involving Powers of Sine and Cosine

Consider / sin™ x cos” x dx, where m, n are nonnegative integers.

1. If mis odd, then m = 2k + 1 for some integer k. Rewrite

Then

where u = cosx and du = — sin x dx.

. If niis odd, then using substitutions similar to that outlined above we have

where u = sinx and du = cos x dx.

. If both m and n are even, use the power—reducing identities

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.

2k+1 k

. . Sk L2 Nk 2 ko
sin™ x =sin™ " x = sin® xsinx = (sin” x)" sinx = (1 — cos” x)" sinx.

/sin'"xcos"xdx = /(1 — cos’ x)¥ sinxcos” x dx = — /(1 —u®)*u" du,

/sin'"xcos"xdx:/um(l—uz)kdu,

1 + cos(2x) and  sin’x — 1 — cos(2x)

2
CoSs =
X ) 5

Notes:
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We practice applying Key Idea 11 in the next examples.

Example 167 Integrating powers of sine and cosine
Evaluate / sin° x cos® x dx.

SOLUTION The power of the sine term is odd, so we rewrite sin® x as

sin® x = sin®xsinx = (sin?x)? sinx = (1 — cos® x) sin x.

Our integral is now | (1 — cos® x)? cos® xsin x dx. Let u = cos x, hence du =

— sin x dx. Making the substitution and expanding the integrand gives

/(1—cosz)2 cos® xsinxdx = — /(1—u2)2u8 du = —/ (1-2v*+u*)uP du = —/ (u®—2u"+u"?) du.

This final integral is not difficult to evaluate, giving

1 2 1
8 10 12 9 11 13
- — 2+ ) du= -+ —utt - —uB 4 C
/(U u u ) u 9U llu 13U

1 9 2 11 1 13
= ——C0S"X+ —Cc0oS X — —cos~ x+ C.
9 + 11 13 *

Example 168 Integrating powers of sine and cosine

Evaluate / sin® x cos® x dx.

SOLUTION The powers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 11 to either power. We choose to
work with the power of the cosine term since the previous example used the
sine term’s power.

We rewrite cos® x as

cos® x = cos® x cos x
= (cos® x)* cos x
= (1 —sin’x)*cos x

= (1 — 4sin®x + 6sin* x — 45sin® x + sin® x) cos x.

We rewrite the integral as

/sinsxc059xdx: /sinsx(1—4sin2x+ 6sin®x — 4sin® x + sin® x) cos x dx.

Notes:
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Now substitute and integrate, using u = sin x and du = cos x dx.

sin® x(1- 4sin’ x + 6sin* x — 4sin® x + sin® X) cosx dx =

/u5(1 — 4’ +6u’ — 4 + P du = / (v —au" +60° — au +u®) du

1 6 1 8 3 10 1 12 1 14
=—-u —zu —u —zu —u (o
6 2 * 5 3 + 14 *

1 5 1 3 .10
= >sinx— =sin"x+ =sin" x4+ ...
6 2 Jr5 +

1 .1 1
— —sin""x+ —sin" x4+ C.
3 +14 *

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulation, etc.) are important.
Nowadays problems of this sort are often solved using a computer algebra sys-
tem. The powerful program Mathematica® integrates f sin® x cos® x dx as

0.004 -

0.002 |
_ 45cos(2x) 5cos(4x)  19cos(6x)  cos(8x) cos(10x) cos(12x) cos(14x)

fix) = 16384 8192 49152 4096 81920 24576 114688 ’
which clearly has a different form than our answer in Example 168, which is

—0.002 -

1.6 1.3 3 . 10 1.1 1 1
X) = =sin°x — =sin°®x+ —sin™" x — = sin™* x + — sin™" x.
9(x) 6 2 + 5 3 + 14
Figure 6.11: A plot of f(x) and g(x) from Figure 6.11 shows a graph of f and g; they are clearly not equal, but they differ
Example 168 and the Technology Note. only by a constant. That is g(x) = f(x) + C for some constant C. So we have
two different antiderivatives of the same function, meaning both answers are
correct.

Example 169 Integrating powers of sine and cosine

Evaluate / cos® x sin? x dx.

SOLUTION The powers of sine and cosine are both even, so we employ
the power-reducing formulas and algebra as follows.

/cos4xsin2xdx _ / (1 + c;s(Zx))z (1 — ccz)s(Zx)) "

/ 1+ 2cos(2x) + cos?(2x) 1 — cos(2x) J
_ , "
4 2

- / %(1 + cos(2x) — cos?(2x) — cos’(2x)) dx

The cos(2x) term is easy to integrate, especially with Key Idea 10. The cos?(2x)
term is another trigonometric integral with an even power, requiring the power—
reducing formula again. The cos®(2x) term is a cosine function with an odd
power, requiring a substitution as done before. We integrate each in turn below.

Notes:
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1
/cos(Zx) dx = > sin(2x) + C.

1 4 1 1
/cosz(Zx) dx = /%S(X) dx = E(X—i— 2 sin(4x)) + C.

Finally, we rewrite cos3(2x) as
cos®(2x) = cos’(2x) cos(2x) = (1 — sin®(2x)) cos(2x).

Letting u = sin(2x), we have du = 2 cos(2x) dx, hence

/cos3(2x) dx = / (1 — sin®(2x)) cos(2x) dx

1

= [ Z1-u)du
[0

_ 1 (u 1u3) +C

2 3
1 1

= = ( sin(2x) — = sin® 2x) C
> (sin(20 - S sin(20)) +

Putting all the pieces together, we have

1
/cos4xsin2x dx = / 3 (1 + cos(2x) — cos®(2x) — cos®(2x)) dx

%[x—k %sin(Zx) - %(X-ﬁ- %sin(4x)) - %(sin(Zx) - %sin3(2x))} +C
1r1
8

1 1
[Ex — S sin(4x) + = sin3(2x)} +C

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form/sin(mx) sin(nx) dx,/cos(mx) cos(nx) dx,
and/sin(mx) cos(nx) dx.

Functions that contain products of sines and cosines of differing periods are
important in many applications including the analysis of sound waves. Integrals
of the form

/sin(mx) sin(nx) dx, /cos(mx) cos(nx) dx and /sin(mx) cos(nx) dx

Notes:
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are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) = {cos ((m —n)x) — cos ((m + n)x)}
cos(mx) cos(nx) = {cos ((m — n)x) + cos ((m + n)x)}

sin(mx) cos(nx) =

NIRPNIRFRPN|RP

{sin ((m — n)x) +sin ((m + n)x)}

Example 170 Integrating products of sin(mx) and cos(nx)
Evaluate /sin(Sx) cos(2x) dx.

SOLUTION The application of the formula and subsequent integration
are straightforward:

/sin(Sx) cos(2x) dx = /%{sin(:&x) + sin(7x)} dx

L os(3x) — X cos(7x) + C
= ——= COS(>X) — — COS( /X
6 14

Integrals of the form / tan™ x sec” x dx.

When evaluating integrals of the form fsin’”xcos”x dx, the Pythagorean
Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise—versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a function using pow-
ers of cos x, leading to an easy substitution.

The same basic strategy applies to integrals of the form ftan'”xsec”x dx,
albeit a bit more nuanced. The following three facts will prove useful:

¢ Z(tanx) = sec’x,
* Z(secx) = secxtanx, and
e 1+ tan? x = sec? x (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec? x term with the re-
maining secant power even, or if a secxtan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple substitution. This strategy is outlined in the following Key Idea.

Notes:
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Key Idea 12 Integrals Involving Powers of Tangent and Secant

Consider /tan’" xsec” x dx, where m, n are nonnegative integers.

1. If nis even, then n = 2k for some integer k. Rewrite sec” x as

k

sec” x = sec® x = sec®* 2 xsec? x = (1 + tan® x)* ! sec? x.

Then
/tan’”xsec"xdx: /tan”’x(l—ktanzx)k—1 sec’ x dx = /u’"(l—i—uz)"_1 du,

where u = tan x and du = sec? x dx.
2. If mis odd, then m = 2k + 1 for some integer k. Rewrite tan” x sec” x as

2k+1

tan™ xsec” x = tan? ! xsec” x = tan* xsec”" ! xsecxtan x = (sec’x — 1)K sec” ! xsecxtanx.

Then
/tan’"xsec”x dx = /(seczx — 1)¥sec" " xsecxtanx dx = /(u2 — k" du,

where u = secx and du = sec xtan x dx.

3. Ifnis odd and m is even, then m = 2k for some integer k. Convert tan™ x to (sec? x — 1). Expand
the new integrand and use Integration By Parts, with dv = sec? x dXx.

4. If mis even and n = 0, rewrite tan™ x as

tan™ x = tan™ % xtan® x = tan™ % x(sec’ x — 1) = tan™ ?sec’ x — tan 2 x.

/tan’"xdx:/tan’"’zseczxdx = /tan’"’zxdx .

apply rule #1 apply rule #4 again

So

The techniques described initems 1 and 2 of Key Idea 12 are relatively straight-
forward, but the techniques in items 3 and 4 can be rather tedious. A few exam-
ples will help with these methods.

Notes:
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Example 171 Integrating powers of tangent and secant

Evaluate / tan? x sec® x dx.

SOLUTION Since the power of secant is even, we use rule #1 from Key
Idea 12 and pull out a sec? x in the integrand. We convert the remaining powers
of secant into powers of tangent.

/tan2 xsec® x dx = /tan2 xsec* xsec? x dx
2
= /tan2 x(1 + tan®x)” sec® x dx
Now substitute, with u = tan x, with du = sec? x dx.

= /u2(1+u2)2 du

We leave the integration and subsequent substitution to the reader. The final
answer is

1t3+2t5+1t7+C
= —lan  x —tan™ x —Ttan X .
3 5 7

Example 172 Integrating powers of tangent and secant
Evaluate / sec® x dx.

SOLUTION We apply rule #3 from Key Idea 12 as the power of secant is
odd and the power of tangent is even (0 is an even number). We use Integration
by Parts; the rule suggests letting dv = sec? x dx, meaning that u = sec x.

u = secx v=" u = secx v =tanx
=

du="7? dv = sec? x dx du = secxtanxdx dv = sec®xdx

Figure 6.12: Setting up Integration by Parts.

Employing Integration by Parts, we have

sec®xdx = [ secx-sec®xdx
) S -
u

dv

= secxtanx—/secxtanzxdx.

Notes:



This new integral also requires applying rule #3 of Key Idea 12:
= secxtanx — /secx(seczx —1) dx
:secxtanx—/sec3xdx+/secxdx
= secxtanx — /sec3xdx+ In|secx -+ tan x|

In previous applications of Integration by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding fsec3x dx to
both sides, giving:

2/sec3xdx:secxtanx+|n|secx+tanx|

1
/secsxdx: E(secxtanx—k In\secx+tanx\) +C

We give one more example.

Example 173 Integrating powers of tangent and secant
Evaluate /tanexdx.

SOLUTION We employ rule #4 of Key Idea 12.

/tansxdx: /tan4xtan2xdx
= /tan4x(sec2x— 1) dx

:/tan4xsec2xdx—/tan4xdx

Integrate the first integral with substitution, u = tan x; integrate the second by
employing rule #4 again.

1
= gtansx—/tanzxtanzxdx
1
= gtansx— /tanzx(seczx— 1) dx

1
= gtansx—/tanzxseczxdx+/tan2xdx

Notes:

6.3 Trigonometric Integrals
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Again, use substitution for the first integral and rule #4 for the second.

1 1
= gtansx—gtan3x+/(seczx—1) dx

1 5 1.3
= —tan’x — —-tanx +tanx — x+ C.
5 3

These latter examples were admittedly long, with repeated applications of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this solution method is. A trigonometric function of
a high power can be systematically reduced to trigonometric functions of lower
powers until all antiderivatives can be computed.

The next section introduces an integration technique known as Trigonomet-
ric Substitution, a clever combination of Substitution and the Pythagorean The-
orem.

Notes:
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Exercises 6.3

Terms and Concepts

. T/F: / sin® x cos® x dx cannot be evaluated using the tech-

nigues described in this section since both powers of sin x
and cos x are even.

. T/F: /sin3xcos3x dx cannot be evaluated using the tech-

niques described in this section since both powers of sin x
and cos x are odd.

. T/F: This section addresses how to evaluate indefinite inte-

-5 3
grals such as/sm xtan” x dx.

Problems

In Exercises 4 — 26, evaluate the indefinite integral.

4.

10.

11.

12.

13.

14.

15.

16.

/ sinxcos” x dx

sin® x cos x dx
sin® x cos® x dx
sin® x cos® x dx
sin® x cos® x dx
sin? xcos’ x dx
sin® x cos® x dx
sin(5x) cos(3x) dx
sin(x) cos(2x) dx
sin(3x) sin(7x) dx
sin(7x) sin(2mx) dx
cos(x) cos(2x) dx

cos cos(vrx) dx

-/
-/
-/
-/
-/
/
/
/
/
/
/
Jel

4 2
tan” xsec” x dx

.
~

— Y Y Y S Y Y —

2 4
tan® xsec” x dx

-
o

3 4
tan® xsec x dx

-
©

2
tan® x sec® x dx

Y
©

21. tan® xsec® x dx

22. tan® xsec’ x dx
tan” x dx

23.

sec® x dx

N
>

25. tan’ x secx dx

26. / tan’ xsec® x dx

In Exercises 27 — 33, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

T
. 4
27. / sinxcos” x dx
0

28./ sin® x cos x dx
/2

29./ sin? x cos” x dx
/2

30./ sin(5x) cos(3x) dx
0
/2

31./ cos(x) cos(2x) dx
/4

32./ tan® xsec® x dx
0

/4
33. / tan? x sec” x dx
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6.4 Trigonometric Substitution

In Section 5.2 we defined the definite integral as the “signed area under the
curve.” In that section we had not yet learned the Fundamental Theorem of
Calculus, so we evaluated special definite integrals which described nice, geo-
metric shapes. For instance, we were able to evaluate

3
/ \/9—x2dx:9—7T (6.1)
-3

2

as we recognized that f(x) = v/9 — x2 described the upper half of a circle with
radius 3.

We have since learned a number of integration techniques, including Sub-
stitution and Integration by Parts, yet we are still unable to evaluate the above
integral without resorting to a geometric interpretation. This section introduces
Trigonometric Substitution, a method of integration that fills this gap in our inte-
gration skill. This technique works on the same principle as Substitution as found
in Section 6.1, though it can feel “backward.” In Section 6.1, we set u = f(x), for
some function f, and replaced f(x) with u. In this section, we will set x = f(0),
where fis a trigonometric function, then replace x with f(6).

We start by demonstrating this method in evaluating the integral in (6.1).
After the example, we will generalize the method and give more examples.

Example 174 Using Trigonometric Substitution

3
Evaluate / V9 — x2 dx.
3

SOLUTION We begin by noting that 9sin? 6 + 9cos®> # = 9, and hence
9cos?2f =9—9sin? 0. Ifweletx = 3sinf, then9—x2 = 9—9sin? § = 9 cos? b.

Setting x = 3 sin 6 gives dx = 3 cos § df. We are almost ready to substitute.
We also wish to change our bounds of integration. The bound x = —3 corre-
sponds to § = —x/2 (for when § = —7/2, x = 3sind = —3). Likewise, the
bound of x = 3 is replaced by the bound 6 = 7/2. Thus

3 w/2

/ V9 — x2 dx / V9 — 9sin* (3 cos 6) df
-3 —m/2
/2

/ 3v9cos? 6 cos 6 dof

—7/2

/2
:/ 3|3 cos 0| cos 6 db.
—7/2

On [—m/2, /2], cos 8 is always positive, so we can drop the absolute value bars,
then employ a power-reducing formula:

Notes:
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:/ 9 cos® 0 db
—7/2
/71'/2 9

5(1 + cos(26)) db

/2
—7/2
/2

N | ©

(0 + %sin(ZQ))

—m/2

This matches our answer from before.

We now describe in detail Trigonometric Substitution. This method excels
when dealing with integrands that contain v/a? — x2, vx2 — a2 and v/x2 + a2.
The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the re-
lationships between x and 6.

Key Idea 13 Trigonometric Substitution

(a) Forintegrands containing v/a? — x2:

Letx = asin ), dx = acos 8 df
Thus § = sin~*(x/a), for —7/2 < 6 < 70/2. > x
On this interval, cos 8 > 0, so [

V%

va?> —x?> =acosb a2

(b) For integrands containing v/x? + a2
Letx = atan, dx = asec? § df &
Thus 0 = tan~*(x/a), for —7/2 < 0 < /2. ¥ =
On this interval, secf > 0, so ()
Vx2+ a2 = asech a
(c) For integrands containing v/x? — a?:
Let x = asecd, dx = asecftanf db

Thus § = sec™*(x/a). If x/a > 1,then0 < 0 < 7/2; X2 — a2
ifx/a < —1,then7/2 < 6 < 7.

-

We restrict our work to where x > a, so x/a > 1, and a
0 < 6 < /2. On this interval, tan 6 > 0, so

VX% —a?=atanf

Notes:
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Example 175 Using Trigonometric Substitution
Evaluate / — dx.
V5 4 x?
SOLUTION Using Key Idea 13(b), we recognize a = /5 and set x =

/5 tan 0. This makes dx = v/5sec? 6 df. We will use the fact that v/5 + x2 =
V5 +5tan20 = v/5sec? 6 = /5 secf. Substituting, we have:

1 1
——dx = 7\/§SGC20d9
/\/5+x2 /\/5+5tan2
/ﬁsec 9

V/5secd

= /secﬁd&

=In|secf + tanf| + C.

While the integration steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of 6. We must
convert back to x.
The reference triangle given in Key Idea 13(b) helps. With x = v/5tan 6, we
have
x2+5

V5

tanf = and secf =

Sl >

This gives
dx = In‘sec9+tan9’ +C

/F

+C.
5

We can leave this answer as is, or we can use a logarithmic identity to simplify
it. Note:

alYxXAs | ox )

NI e

C=1In

1 2
E( X +5+x)

=In \% +In|Vx+54+x+C

=In|Vx +5+x|+C

where the In (1/1/5) term is absorbed into the constant C. (In Section 6.6 we
will learn another way of approaching this problem.)

Notes:
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Example 176 Using Trigonometric Substitution

Evaluate / v 4x% — 1 dx.

SOLUTION We start by rewriting the integrand so that it looks like vx2 — a?
for some value of a:

Sowe have @ = 1/2, and following Key Idea 13(c), we setx = % sec 6, and hence
dx = % secftan 6 dfl. We now rewrite the integral with these substitutions:

2
/\/4x2—1dx:/2“x2— (;) dx
1 1/1
:/21/fsec29—f (sec@tan&) do
4 4 \ 2
1
_ 2 20 _
7/1/4(sec 0 1)(sec0tan0> do
1
:/\/ftanze(secﬁtanH) do
4
1

= /Etanzesecede

%/(secze—l) sec df
1 sec 6 — secf) db.
2

We integrated sec® § in Example 172, finding its antiderivatives to be

/sec39d0 = %(sec@tan@—kIn\sec0+tan€|) +C.

Thus

, 1 .

\/4x2—1dx:£ (sec®§ — sect) db

1/1

:z(z(seCGtanH-l—lnsec9+tan9|)—In|sec9+tan9>+C
1
:Z(sec0tan0—In\sec9+tan6|)+C.

Notes:
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We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of #. We need to rewrite our answer in terms
of x. Witha = 1/2, and x = %sec 0, the reference triangle in Key Idea 13(c)
shows that

tanf = \/x* — 1/4/(1/2) =2y/x*—1/4 and secf = 2x.
Thus
1 1
Z(sec@tan@— |n|sec9+tan9|) +C= Z(ZX-Z x2—1/4—1In ]2x+ 24/x2 — 1/4|) +C
= %<4x\/x2 —1/4—In|2x+2/x2 — 1/4|) +C

The final answer is given in the last line above, repeated here:

/\/4x2 —1ldx= %(4)(\/)(2 —1/4 —In |2+ 2/x2 — 1/4\) +C.

Example 177 Using Trigonometric Substitution
Vi —x?
Evaluate / — dx.
X
SOLUTION We use Key Idea 13(a) witha = 2, x = 2sin 0, dx = 2cos 6

and hence v4 — x2 = 2 cos 0. This gives
Va4 — x? 2cosf
e ™=

asnZ0 (2cos8) do

= /cot2 0 do

:/(csc29—1) do
= —cotf — 0+ C.

We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea 13(a), we have cot = v/4 — x2/xand 6 = sin"*(x/2). Thus

4 — x? 4 —x2
[ e X (B e

Trigonometric Substitution can be applied in many situations, even those not
of the form Va2 — x2, V/x2 — a? or v'x? + a2. In the following example, we ap-
ply it to an integral we already know how to handle.

Notes:



Example 178 Using Trigonometric Substitution
Evaluate / - dx.
x*+1
SOLUTION We know the answer already as tan~! x-+C. We apply Trigono-

metric Substitution here to show that we get the same answer without inher-
ently relying on knowledge of the derivative of the arctangent function.

Using Key Idea 13(b), let x = tan 8, dx = sec? § df and note that x> + 1 =
tan? 0 + 1 = sec? 6. Thus

1 1
———dx= 20 do
/x2+1 X /sec29Sec
:/1d9

=0+C

1
m dx = tan_1X+C.

Since x = tan 6, 8 = tan—! x, and we conclude that /

The next example is similar to the previous one in that it does not involve a
square—root. It shows how several techniques and identities can be combined
to obtain a solution.

Example 179 Using Trigonometric Substitution
1
Evaluate [ ————— dx
(x? + 6x + 10)2
SOLUTION We start by completing the square, then make the substitu-

tion u = x + 3, followed by the trigonometric substitution of u = tan 6:

1 1 1
——dx= | ———— —dx= | ———— du.
/ (x* + 6x + 10)2 / ((x+3)2 + 1)2 / (u? +1)2
Now make the substitution u = tan 6, du = sec? 6 d0:

1 2
—/msec 0 do

1
:/mseczede

= /cos2 0 de.

Notes:

6.4

Trigonometric Substitution

301



Chapter 6 Techniques of Antidifferentiation

302

Applying a power reducing formula, we have

1 1
/ (2 +3 cos(29)> do
_ %e + %sin(Z@) +c (6.2)

We need to return to the variable x. Asu = tanf, § = tan~!u. Using the
identity sin(20) = 2sinfcos§ and using the reference triangle found in Key
Idea 13(b), we have

1,(29) 1 wu 1 1 wu
—sin =z : = - .
4 22 +1 Vur+1 2u+1

Finally, we return to x with the substitution u = x4 3. We start with the expres-
sion in Equation (6.2):

1.1 1 1 u
59+Zsin(29)+C: Etarr1u+ +C

20241
1 1 x+3

=St lx+3) o4
2 O+ e 10)

Stating our final result in one line,

/ ! =~ “x+3)+ x+3 +C
5 ax = —1an X S -
(x* + 6x 4 10)2 2 2(x* 4+ 6x + 10)

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric Substitution,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of 6, then converting back to x) and then
evaluate using the original bounds. It is much more straightforward, though, to
change the bounds as we substitute.

Example 180 Definite integration and Trigonometric Substitution
5 2
X
Evaluate / —— dx.
0o Vx*4+25
SOLUTION Using Key Idea 13(b), we set x = 5tan, dx = 5sec? 0 db,

and note that v/x2 + 25 = 5secf. As we substitute, we can also change the
bounds of integration.

The lower bound of the original integral is x = 0. As x = 5 tan 6, we solve for
6 and find @ = tan~(x/5). Thus the new lower bound is = tan=1(0) = 0. The

Notes:



original upper bound is x = 5, thus the new upper bound is § = tan=1(5/5) =

/4.
Thus we have

5 2 /4
/0 \/x2X+ 25 / 22 zzn 99 sec’ 0o
= 25/ tan® @ sec df.
0
We encountered this indefinite integral in Example 176 where we found
/tan2 O sec df = %(sec&tan@ —In|sec +tan6)|).

So
w/4 25 /4
25/ tanzé’sec9d9:7(sec9tan9—In\sec9+tan9|)
0
0

= 275(\[27 In(v2 + 1))

~ 6.661.

The following equalities are very useful when evaluating integrals using Trigono-

metric Substitution.

Key Idea 14 Useful Equalities with Trigonometric Substitution

1. sin(20) = 2sin 0 cos 6

2. cos(20) = cos? —sin?f = 2cos*H) —1 =1 — 2sin* 0

3. /sec 0 do = 2(sec9tan9+ln]sec9+tan9|) +C

4. /cosZGdOZ/%(lﬁ-cos(Zﬁ)) d0:%(0+sin0cos€)+c

The next section introduces Partial Fraction Decomposition, which is an alge-
braic technique that turns “complicated” fractions into sums of “simpler” frac-

tions, making integration easier.

Notes:

6.4 Trigonometric Substitution
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Exercises 6.4

Terms and Concepts

1. Trigonometric Substitution works on the same principles as
Integration by Substitution, though it can feel “

2. If one uses Trigonometric Substitution on an integrand con-
taining v/25 — x2, then one should set x =

3. Consider the Pythagorean Identity sin* § + cos® 6 = 1.

(a) What identity is obtained when both sides are di-
vided by cos? 6?

(b) Use the new identity to simplify 9tan? 6 + 9.
4. Why does Key Idea 13(a) state that v/a? — x> = acos¥,

and not |a cos 0|?

Problems

In Exercises 5 — 16, apply Trigonometric Substitution to eval-
uate the indefinite integrals.

5. /\/x2 + 1dx

6. /\/x2 + 4 dx

~

./de

o]

./\/9—7)(2dx
9. /\/mdx
10. /de
11. /\/de
12. /\/mdx
13. /mdx
14. /\/%?dx
15. /\/%dx

16

5d

In Exercises 17 — 26, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric Substitution.

/ Vx2—11 dx
’ X

17

1

18. / m dx

19

/ X
' Vx2 -3
20. /xzx/l — x2 dx

X
21. /7()(2+9)3/2 dx

22

/ 5x*
. — dx
Vx2 —10
1
23. —— d
/ 0 +axt132
24, /x2(1 —x*) 7 ax

25

/ V5 —x?
. ———dx
7x2

X2
26. / —dx
Vx2+3
In Exercises 27 — 32, evaluate the definite integrals by mak-
ing the proper trigonometric substitution and changing the
bounds of integration. (Note: each of the corresponding

indefinite integrals has appeared previously in this Exercise
set.)

1
27. / V1 —x%dx
-1
8
28. / Vx% — 16 dx
4
2
29. / VX2 4+ 4 dx
0
1
1
30. —d,
/,1 O+ 12 ™
1
31. / V9 — x2 dx
—1

1
32. / V1 — x2 dx
-1



6.5 Partial Fraction Decomposition

In this section we investigate the antiderivatives of rational functions. Recall that
rational functions are functions of the form f(x) = %, where p(x) and g(x) are
polynomials and g(x) # 0. Such functions arise in many contexts, one of which

is the solving of certain fundamental differential equations.

We begin with an example that demonstrates the motivation behind this

dx. We do not have a simple formula

section. Consider the integral/ 5
xc—1

for this (if the denominator were x> 4+ 1, we would recognize the antiderivative
as being the arctangent function). It can be solved using Trigonometric Substi-
tution, but note how the integral is easy to evaluate once we realize:

1 1/2 1/2
-1 x—1 x+1

Thus

1 1/2 1/2
/ dx:/idx—/de
x2—1 x—1 x+1

= 1In|x 1| 1In|x+1|+C
) 2 '

This section teaches how to decompose

1/2 1/2
into / — / .
x2—1 x—1 x+1

We start with a rational function f(x) = %, where p and g do not have any
common factors and the degree of p is less than the degree of g. It can be shown
that any polynomial, and hence g, can be factored into a product of linear and
irreducible quadratic terms. The following Key Idea states how to decompose a
rational function into a sum of rational functions whose denominators are all of

lower degree than g.

Notes:

6.5 Partial Fraction Decomposition
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Key Idea 15 Partial Fraction Decomposition

X
Let & be a rational function, where the degree of p is less than the

q(x)

degree of g.

1. Linear Terms: Let (x —a) divide g(x), where (x —a)" is the highest
power of (x— a) that divides g(x). Then the decomposition of %
will contain the sum

A Ay An

6—a) -z T x—ar

2. Quadratic Terms: Let x*> + bx + ¢ divide g(x), where (x> + bx + ¢)"
is the highest power of x> + bx + c that divides g(x). Then the
decomposition of % will contain the sum

Bix + Cy Box + G, B,x + C,
x2+bx+c (X2+ bx+c)? (2 +bx+c)"’

To find the coefficients A;, B; and C;:

1. Multiply all fractions by q(x), clearing the denominators. Collect
like terms.

2. Equate the resulting coefficients of the powers of x and solve the
resulting system of linear equations.

Decompose f(x) =

The following examples will demonstrate how to put this Key Idea into prac-
tice. Example 181 stresses the decomposition aspect of the Key Idea.

Example 181 Decomposing into partial fractions
1

(x+5)(x—23(2+x+2)(x2+x+7)?

for the resulting coefficients.

SOLUTION The denominator is already factored, as both x*> + x + 2 and
x*> + x + 7 cannot be factored further. We need to decompose f(x) properly.
Since (x 4 5) is a linear term that divides the denominator, there will be a

A
x+5

Notes:
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term in the decomposition.
As (x — 2)3 divides the denominator, we will have the following terms in the
decomposition:

B C d D
, ——— and ——.
x—2 (x—2)? (x—2)3
Ex+F
The x? + x + 2 term in the denominator results in a _BXAFR term.
X2+ x+2
Finally, the (x* + x + 7)? term results in the terms
Gx+H an Ix+J
X2+ x+7 02 +x+7)%
All together, we have
1 A . B C D
(X+5)(x =23 +x+2)x+x+7)2  x+5 x—-2 (x—2)2 (x—2)3
Ex+F Gx+H Ix+J

X2 +x+2 +x2+x+7 + (2 +x+7)?

Solving for the coefficients A, B. . .J would be a bit tedious but not “hard.”

Example 182 Decomposing into partial fractions
Perform the partial fraction decomposition of —
X p—
SOLUTION The denominator factors into two linear terms: x> — 1 =

(x —1)(x+1). Thus
1 A B

21 x-1 xil
To solve for A and B, first multiply through by x* — 1 = (x — 1)(x + 1):

Ax—1)(x+1) B(x—1)(x+1)
x—1 x+1

=Ax+1)+B(x—1)

=Ax+A+Bx—B

1=

Now collect like terms.

= (A+B)x+ (A—B).
The next step is key. Note the equality we have:

1=(A+B)x+(A—B).

Notes:

Partial Fraction Decomposition
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Note: Equation 6.3 offers a direct route to
finding the values of A, B and C. Since the
equation holds for all values of x, it holds
in particular when x = 1. However, when
x = 1, the right hand side simplifies to
A(1+ 2)* = 9A. Since the left hand side
isstill 1, we have 1 = 9A. Hence A = 1/9.
Likewise, the equality holds when x =
—2; this leads to the equation 1 = —3C.
Thus C = —1/3.

Knowing A and C, we can find the value of
B by choosing yet another value of x, such
as x = 0, and solving for B.

308

For clarity’s sake, rewrite the left hand side as
Ox+1=(A+B)x+ (A—B).

On the left, the coefficient of the x term is 0; on the right, it is (A + B). Since
both sides are equal, we must have that 0 = A + B.

Likewise, on the left, we have a constant term of 1; on the right, the constant
termis (A — B). Therefore we have 1 = A — B.

We have two linear equations with two unknowns. This one is easy to solve
by hand, leading to

A+B=0 A=1/2
A—B=1 B=-1/2"
Thus
1 12 1)2
-1 x—-1 x+1
Example 183 Integrating using partial fractions
1
Use partial fraction decomposition to integrate [ ————— dx.
P P & /(x_l)(x+z)2
SOLUTION We decompose the integrand as follows, as described by Key
Idea 15:

1 _ A B, <
(x—1)(x+22 x—-1 x+2 (x+2)

To solve for A, B and C, we multiply both sides by (x — 1)(x + 2)? and collect like
terms:

1=A(x+2)>+B(x—1)(x+2) +C(x — 1) (6.3)
= AxX* + 4Ax +48A +BxX* +Bx — 2B+ Cx — C
=(A+B)X + (4A+ B+ CO)x+ (4A— 2B - C)

We have
0% +0x+1=(A+B)x*+ (4A+ B+ C)x + (4A — 2B —C)
leading to the equations
A+B=0, 4A+B+C=0 and 4A—-2B—-C=1.
These three equations of three unknowns lead to a unique solution:

A=1/9, B=-1/9 and C=-1/3.

Notes:



6.5 Partial Fraction Decomposition

Thus

/de:/)ﬂgldx+/)j_/;)dx+/ﬁf)zdx

Each can be integrated with a simple substitution withu = x—1oru = x+2
(or by directly applying Key Idea 10 as the denominators are linear functions).
The end result is

1 1 1 1
. dx=Zhx—1—hx+2/+——FC
/(xfl)(erZ)z K=gink—t=ghnx+2l+ =+

Example 184 Integrating using partial fractions
3

X
Use partial fraction decomposition to integrate | —————— dx.
P P 8 / (x—5)(x+3)

SOLUTION Key Idea 15 presumes that the degree of the numerator is
less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that
Note: The values of A and B can be quickly
X 19x + 30 found using the technique described in

— =X+ 2+ — . ;
(x—=5)(x+3) tot (x —5)(x+3) the margin of Example 183.

Using Key Idea 15, we can rewrite the new rational function as:

19x + 30 A B

x—5)(x+3) x—5 x+3

for appropriate values of A and B. Clearing denominators, we have
19x+30=A(x+3)+B(x—5)
= (A+ B)x+ (3A — 5B).
This implies that:

19=A+8B
30 =3A - 58B.

Solving this system of linear equations gives

125/8 = A
27/8 = B.

Notes:
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We can now integrate.

/%dx/<x+z+%+ﬁ> dx

x2 125 27
:?+2x+?In|x—5|+§ln\x+3|+c

Example 185 Integrating using partial fractions
7x* +31x + 54

(x+1)(x* + 6x+11)

Use partial fraction decomposition to evaluate /
SOLUTION The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 15. We have:

X +31x+54 A L Bx+cC
(x+1)(x>+6x+11) x+1 x2+6x+11

Now clear the denominators.

7% +31x+ 54 = A(X* + 6x + 11) + (Bx + C)(x + 1)
= (A+B)x* + (6A+ B+ CO)x+ (11A+ C).

This implies that:

7=A+8B
31=6A+B+C
54 =11A4C.

Solving this system of linear equations gives the nice result of A =5, B = 2 and
C= —1.Thus

7x* + 31x + 54 5 2x—1
dx = + dx.
(x+1)(x* + 6x+11) x+1 x2+4+6x+11

The first term of this new integrand is easy to evaluate; itleadstoa 5 In [x+1]
term. The second term is not hard, but takes several steps and uses substitution
techniques.

2x —
————— has a quadratic in the denominator and a linear
x2 4+ 6x+ 11
term in the numerator. This leads us to try substitution. Let u = x? + 6x+ 11, so
du = (2x + 6) dx. The numerator is 2x — 1, not 2x + 6, but we can get a 2x + 6

The integrand

Notes:
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term in the numerator by adding 0 in the form of “7 — 7.

-1  x—1+47-7
X +6x+11 x2+6x+11
2x+6 7

T X f6x+11 X2 fex+11°

We can now integrate the first term with substitution, leading to a In [x*+6x+11|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

7 7
X2+6x+11  (x+3)2+2°

An antiderivative of the latter term can be found using Theorem 46 and substi-

tution:
7 7 x+3
- dx=—tan} | — C.
/x2+6x+11 X ﬁan (ﬁ>+

Let’s start at the beginning and put all of the steps together.

/ 7% + 31x + 54 / 5 2x—1
dx = + dx
(x+1)(x* + 6x + 11) x+1 x*+6x+11
= S dx + _2x+6 dx — 7 dx
x+1 x2 4+ 6x+11 x2 4+ 6x+11
7 _ 3
=5In|x+1/+In|x +6x+11] — —=tan"" (X+ ) +C.
V2 V2
As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately after seeing the problem.
Rather, given the initial problem, we break it down into smaller problems that
are easier to solve. The final answer is a combination of the answers of the
smaller problems.

Partial Fraction Decomposition is an important tool when dealing with ratio-
nal functions. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriting a fraction in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

The next section introduces new functions, called the Hyperbolic Functions.
They will allow us to make substitutions similar to those found when studying
Trigonometric Substitution, allowing us to approach even more integration prob-
lems.

Notes:

Partial Fraction Decomposition
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Exercises 6.5

Terms and Concepts

1.

7
. Decompose

X —
. Decompose

Fillin the blank: Partial Fraction Decomposition is a method
of rewriting functions.

. T/F: It is sometimes necessary to use polynomial division

before using Partial Fraction Decomposition.

1 . . -
. Decompose R without solving for the coefficients, as
X2 — 3x

done in Example 181.

— X
9 without solving for the coefficients, as

X2 —
done in Example 181.

3 . -
7 without solving for the coefficients, as

done in Example 181.

2x+5 . -
. Decompose 2XHS without solving for the coefficients, as
X3+ 7x

done in Example 181.

Problems

In Exercises 7 — 25, evaluate the indefinite integral.

7 7
7. de
x2 +3x—10

7x —2
/ )2( dx
X2+ x

-
9. /7dx
32 — 12

10.

11.

[N

12.

13.

14.

312

/7)(_'—7 dx
(x+5)?

/ ~3x-20
(x+8)?

/‘ 9’ + 11x+ 7
——— dx
x(x+1)?
/ —12x* —x 433
dx
(x—1)(x+3)(3—2x)
/ 94x* — 10x
dx
(7x+3)(5x — 1)(3x — 1)

15.

X +x+5
x2 +4x + 10

12x* +21x + 3
(x+1)(3x2 +5x — 1)

2 p—
1. / 6x" +8x—4 dx
(x —3)(x® + 6x + 10)

- / w4+ x+1
’ (x+1)(x+9)

2 — —
73, / x° —20x — 69 dx
(x=7)(x*+2x+17)

/ 9x* — 60x + 33
24,
(x—9)(x* —2x + 11)

/ 6x% + 45x + 121
25.
(x 4+ 2)(x* + 10x + 27)

In Exercises 26 — 29, evaluate the definite integral.
2 8x+21
26. / —— dx
1 (x+2)(x+3)
3 14x + 6
27. / L L Y
o (3x+2)(x+4)

/1 xX* +5x—5
28.
_1 (x—10)(x* +4x+5)

! b's
29. dx
/o (x+21)0+2x+1)




6.6 Hyperbolic Functions

The hyperbolic functions are a set of functions that have many applications to
mathematics, physics, and engineering. Among many other applications, they
are used to describe the formation of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have application to the theory
of special relativity. This section defines the hyperbolic functions and describes
many of their properties, especially their usefulness to calculus.

These functions are sometimes referred to as the “hyperbolic trigonometric
functions” as there are many, many connections between them and the stan-
dard trigonometric functions. Figure 6.13 demonstrates one such connection.
Just as cosine and sine are used to define points on the circle defined by x> +y* =
1, the functions hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x? — y? = 1.

We begin with their definition.

Definition 23 Hyperbolic Functions

e - 1
1. coshx = Seach 4. sechx =
2 cosh x
_p—X 1
2. sinhx = g-e’ 5. cschx = —
2 sinh x
i cosh
3. tanhx = slohx 6. cothx = — .
cosh x sinh x

These hyperbolic functions are graphed in Figure 6.14. In the graphs of cosh x
and sinh x, graphs of €/2 and e™* /2 are included with dashed lines. As x gets
“large,” cosh x and sinh x each act like €*/2; when x is a large negative number,
cosh x acts like e7*/2 whereas sinh x acts like —e™*/2.

Notice the domains of tanh x and sech x are (—oo, 00), whereas both coth x
and csch x have vertical asymptotes at x = 0. Also note the ranges of these
functions, especially tanh x: as x — oo, both sinh x and cosh x approach e™*/2,
hence tanh x approaches 1.

The following example explores some of the properties of these functions
that bear remarkable resemblance to the properties of their trigonometric coun-
terparts.

Notes:

6.6 Hyperbolic Functions

y

(cos 6,sin )
0
2
X
1 J

(cosh 6,sinh 0)

-

Figure 6.13: Using trigonometric func-
tions to define points on a circle and hy-
perbolic functions to define points on a
hyperbola. The area of the shaded re-
gions are included in them.

<

2+

8
2

Pronunciation Note:

“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”
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f(x) = coshx
—10 |
y
2+ f(x) = cothx
1 A 1
-2 \ 2
f(x) = tanhx

2 |

—10

f(x) = sinhx

f(x) = cschx

Figure 6.14: Graphs of the hyperbolic functions.

Example 186

Exploring properties of hyperbolic functions

Use Definition 23 to rewrite the following expressions.

1. cosh?x — sinh? x

2. tanh?x + sech? x

3. 2coshxsinhx

SOLUTION

Q‘Q

Q‘Q

Q

X

X

|a

X

(coshx)
(sinhx)

(tanhx)

Notes:



6.6

X —x\ 2 X —e X 2
1. coshzx—sinhzx:<e te > —( ¢ )

2 2
B er + 2eXe X + e—2x er — eXe X + e—2x
N 4 4
4
=_=1
4
So cosh? x — sinh? x = 1.
2 tanh? x + sech®x = sinh’” x !
' cosh’x  cosh®x
sinh?x + 1 . .
= Now use identity from #1.
cosh” x
B cosh? x B
cosh’x
So tanh? x + sech?x = 1.
e“+e* ef—e™*
3. 2coshxsinhx =2 +
2 2
5 er _ e—2x
B 4
er _ e—Zx
= —— =ssinh(2x).
. (20)
Thus 2 cosh x sinh x = sinh(2x).
d d [e¥+e*
4, —(coshx) = — | —
dx( ) dx < 2 )
B eX—e ¥
2
= sinh x.
So & (coshx) = sinhx.
d d [e—e*
5. —(sinhx) = — | —
dx( ) dx < 2 >
e te™
2
= cosh x.

So & (sinhx) = coshx.

Notes:

Hyperbolic Functions
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6. d(tanhx):d<5inhx>
dx dx \ coshx
_coshxcoshx — sinhxsinh x
B cosh? x
_ 1
~ cosh®x
= sech® x.

So £ (tanhx) = sech’x.

The following Key Idea summarizes many of the important identities relating
to hyperbolic functions. Each can be verified by referring back to Definition 23.

Key Idea 16 Useful Hyperbolic Function Properties

Basic Identities Derivatives Integrals
1. cosh’x —sinh®x = 1 1. g (coshx) =sinhx 1. /coshxdx = sinhx + C
2. tanh?x + sech’x =1 2. & (sinhx) = coshx
3 coth?x — cschix — 1 3. %(tanhx) _ sech’x 2. /sinhxdx: coshx +C
4. cosh 2x = cosh® x + sinh? x 4. 9(sechx) = —sechxtanhx 3 /tanhxdx — Irfieeshg & €
5. sinh 2x = 2 sinh x cosh x 5 %(cschx) — — eslhrasiing
6. cosh?x — coshix—i—l 6. < (cothx) — — csch®x 4. /cothxdx= In|sinhx|+C
7. sinh*x = —COSh iX -

We practice using Key Idea 16.

Example 187 Derivatives and integrals of hyperbolic functions
Evaluate the following derivatives and integrals.

d In2
1. a(coshZX) 3./0 cosh x dx

2. /sech2(7t —3)dt

Notes:
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SOLUTION

1. Using the Chain Rule directly, we have £ (cosh 2x) = 2sinh 2x.

Just to demonstrate that it works, let’s also use the Basic Identity found in
Key Idea 16: cosh 2x = cosh? x + sinh? x.

d d
d—(cosh 2X) = d—(coshzx—i- sinh? x) = 2 coshxsinh x -+ 2 sinh x cosh x
X

= 4 cosh xsinh x.

Using another Basic Identity, we can see that 4 cosh xsinhx = 2 sinh 2x.
We get the same answer either way.

2. We employ substitution, with u = 7t — 3 and du = 7dt. Applying Key
Ideas 10 and 16 we have:

1
/sech2(7t —3)dt= 7 tanh(7t — 3) + C.

In2

In2
/ coshx dx = sinhx| = sinh(In2) — sinh 0 = sinh(In 2).
0

0
We can simplify this last expression as sinh x is based on exponentials:

ean_e—InZ _2_1/2_3
2 T2 A

sinh(In2) =

Inverse Hyperbolic Functions

Just as the inverse trigonometric functions are useful in certain integrations,
the inverse hyperbolic functions are useful with others. Figure 6.15 shows the
restrictions on the domains to make each function one-to-one and the resulting
domains and ranges of their inverse functions. Their graphs are shown in Figure
6.16.

Because the hyperbolic functions are defined in terms of exponential func-
tions, their inverses can be expressed in terms of logarithms as shown in Key Idea
17. It is often more convenient to refer to sinh~* x than to In (x+ VX2 4 1), es-
pecially when one is working on theory and does not need to compute actual
values. On the other hand, when computations are needed, technology is often
helpful but many hand-held calculators lack a convenient sinh™* x button. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situation, the logarithmic representation is useful. The reader is not encouraged
to memorize these, but rather know they exist and know how to use them when
needed.

Notes:

6.6 Hyperbolic Functions
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X

x|

Function Domain Range Function Domain Range
cosh x [0, 0) [1,00) cosh™tx [1,00) [0, 0)
sinh x (=00, 0) (—00,00) sinh~tx (—00, ) (=00, 00)
tanh x (=00, ) (-1,1) tanh ' x (—1,1) (—00,0)
sechx [0, 0) (0,1] sech™'x (0,1] [0, 00)
cschx  (—00,0)U(0,00)  (—00,0) U (0, 00) csch™'x  (—o0,0)U(0,00)  (—00,0) U (0, 00)
cothx  (—00,0) U (0,00) (—o0,—1)U(1,00) coth™x (=00, —1)U(1,00) (—00,0)U (0, c0)

Figure 6.15: Domains and ranges of the hyperbolic and inverse hyperbolic functions.
v y
y = coshx P 10 P
// y = sinhx — P ’
/// 57 ///
7 1 - 1 ! > X
’ y = cosh™"x -0 -5 — 5 ‘ 10
//// 5+ y =sinh~!x
” — X s
5 10 4 10 +
y y
| 3
| 2 + |
| I\ y=coth—1x 2
I | 11
| |
1 1 t X X
‘ \2
: : y = tanh 1x
5 | |
|
|
Figure 6.16: Graphs of the hyperbolic functions and their inverses.
Key Idea 17 Logarithmic definitions of Inverse Hyperbolic Functions
1. cosh 'x=In(x+vVx2—1);x>1 4. sinh™'x=In (x + /x> + 1)
_ 1 1+4+x _ 1 x+1
2. tanh Ix=ZIn(—=); x| <1 5. coth 'x=Z1In ;X >1
2 1-—x 2 x—1
_ 1+v1-—x2 B 1 V1+x?
3. sech 1x:ln<7>;0<x§1 6. csch 1x=|n<—+— i x#0

Notes:




6.6

The following Key Ideas give the derivatives and integrals relating to the in-
verse hyperbolic functions. In Key Idea 19, both the inverse hyperbolic and log-
arithmic function representations of the antiderivative are given, based on Key
Idea 17. Again, these latter functions are often more useful than the former.
Note how inverse hyperbolic functions can be used to solve integrals we used
Trigonometric Substitution to solve in Section 6.4.

Hyperbolic Functions

Key Idea 18 Derivatives Involving Inverse Hyperbolic Functions
d 1 d -1
1. —(cosh™x) = ——:; x>1 4, —(sech™'x) = ———;0<x<1
dx( ) 2 — 1 dx( ) xx/m,
d 1 d -1
2. —(sinh™1x) = —— 5. —(csch™ix) = ———: x#£0
dx( ) V2 +1 dx( ) X|v1 42 7
d _ 1 d 1
3. —(tanh™'x) = ——; x| < 1 = 1y =
dx( X) T |x| 6. dx(coth X) T x| >1
Key Idea 19 Integrals Involving Inverse Hyperbolic Functions
1 /;dx = cosh_l({)+C'0<a<x :In‘x+ x> —a?|+C
’ /X2 — q? a !
1 X
2. ———dx = sinh ™t (—) C,a>0 =In ’x \/ x2 02‘ C
/ T a + G, F = F
1 —1(x 2 2
1 = tanh (a)+C x-<a 1 a4 x
3 w2 dx = = E In ad—x +C
a =X leoth™ (%) +C  a?<x
4 / ! dx ! h—l(x)+c 0<x< 1|n< X >+c
. = X = ——sec - . xX<a = -7
xva? — x2 a a ’ a a+ Va2 —x2
1 1 X 1 X
5. ——dx = ——cschfll—‘+C‘x 0,a>0 =-In|——|+C
/X\/xz—l—a2 a a 3 X7 0, a |a++va2+x2

We practice using the derivative and integral formulas in the following ex-
ample.

Notes:
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Example 188 Derivatives and integrals involving inverse hyperbolic func-
tions
Evaluate the following.
d 3x—2 1
1. — |cosh™ [ =—= 3. / ——dx
dx { < 5 ﬂ VIx2 + 10
1
2. dx
/x2 -1
SOLUTION

1. Applying Key Idea 18 with the Chain Rule gives:

d 1 (3x—2 1 3
— |cosh =" .z
dx 5 (3X_2)2 1 5

5

1
dx =
x2—1

dx. The second integral can be solved with a direct application

2. Multiplying the numerator and denominatorby(—l)gives:/

— XZ
of item #3 from Key Idea 19, with a = 1. Thus

1 1
/xz—ldx__/l—xzdx

—tanh™*(x)+C x*<1

—coth™'(x)+C 1<x

x+1
+C
|

2 X —

x—1
x+1

2

’ + C. (6.4)

We should note that this exact problem was solved at the beginning of
Section 6.5. In that example the answer was given as % Injx—1|— % In |[x+
1| 4 C. Note that this is equivalent to the answer given in Equation 6.4, as
In(a/b) =Ina—Inb.

3. This requires a substitution, then item #2 of Key Idea 19 can be applied.

Let u = 3x, hence du = 3dx. We have

1 1 1
———dx=- | ——du.
/\/9x2+10 3/\/u2+10

Notes:



Note a?> = 10, hence a = /10. Now apply the integral rule.

1
gln ‘3x+ vV 9x? —&-10‘ +C

This section covers a lot of ground. New functions were introduced, along
with some of their fundamental identities, their derivatives and antiderivatives,
their inverses, and the derivatives and antiderivatives of these inverses. Four
Key Ideas were presented, each including quite a bit of information.

Do not view this section as containing a source of information to be memo-
rized, but rather as a reference for future problem solving. Key Idea 19 contains
perhaps the most useful information. Know the integration forms it helps evalu-
ate and understand how to use the inverse hyperbolic answer and the logarith-
mic answer.

The next section takes a brief break from demonstrating new integration
techniques. It instead demonstrates a technique of evaluating limits that re-
turn indeterminate forms. This technique will be useful in Section 6.8, where
limits will arise in the evaluation of certain definite integrals.

Notes:

6.6 Hyperbolic Functions
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Exercises 6.6

Terms and Concepts

1. InKeyIdea 16, the equation /tanhxdx = In(coshx)+Cis

given. Why is “In | cosh x|” not used —i.e., why are absolute
values not necessary?

2. The hyperbolic functions are used to define points on the
right hand portion of the hyperbola x* — y* = 1, as shown
in Figure 6.13. How can we use the hyperbolic functions to
define points on the left hand portion of the hyperbola?

Problems

In Exercises 3 — 10, verify the given identity using Definition
23, as done in Example 186.

3. coth®’x — csch®’x =1

4. cosh 2x = cosh? x + sinh? x

cosh2x + 1
2

5. cosh’x =

cosh2x — 1
2

6. sinh’x =

d
7. — [sechx| = — sech xtanh
I [ x] b's X

p [cothx] = — csch’ x

9. /tanhxdx = In(coshx) + C

10. /cothxdx: In|sinhx| 4+ C

In Exercises 11 — 21, find the derivative of the given function.
11. f(x) = cosh 2x
12. f(x) = tanh(x®)
13. f(x) = In(sinh x)
14. f(x) = sinhxcosh x
15. f(x) = xsinhx — coshx
16. f(x) = sech™*(x)
17. f(x) = sinh~*(3x)
18. f(x) = cosh™1(2x?)

19. f(x) =tanh (x +5)

20. f(x) = tanh~*(cos x)
21. f(x) = cosh™*(secx)

In Exercises 22 — 26, find the equation of the line tangent to
the function at the given x-value.

22. f(x) =sinhxatx =0

23. f(x) = coshxatx =1In2
24. f(x) = sech’xatx =1In3
25. f(x) =sinh *xatx=0
26. f(x) = cosh 'xatx = /2

In Exercises 27 — 40, evaluate the given indefinite integral.
27. /tanh(Zx) dx

28. cosh(3x — 7) dx

29. sinh x cosh x dx

xsinh x dx

[ e
/
/
/s

32. 9 — x2

33, / \/% dx
34, \/% dx
35. 1 dx

36. / 21 dx
X° 4+ X
X
37. /eidx
e +1
38. /sinhflxdx
39. /tanh_lxdx



In2
40. /sechx dx  (Hint: mutiply by Egzﬂi, set u = sinhx.) 42. / cosh x dx

—1In2

In Exercises 41 — 43, evaluate the given definite integral. 1
43, / tanh ™! x dx
0

1
41. / sinh x dx

-1
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6.7 L'Hopital’s Rule

While this chapter is devoted to learning techniques of integration, this section
is not about integration. Rather, it is concerned with a technique of evaluating
certain limits that will be useful in the following section, where integration is
once more discussed.

Our treatment of limits exposed us to “0/0”, an indeterminate form. If lim f(x) =
X—C

0and )I(m g(x) = 0, we do not conclude that lmf(x)/g(x) is 0/0; rather, we use
0/0 as notation to describe the fact that both the numerator and denominator
approach 0. The expression 0/0 has no numeric value; other work must be done
to evaluate the limit.

Other indeterminate forms exist; they are: co/o0, 000, 00 — 00, 0°, 1 and
oc®. Just as “0/0” does not mean “divide 0 by 0,” the expression “co/o0” does
not mean “divide infinity by infinity.” Instead, it means “a quantity is growing
without bound and is being divided by another quantity that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 - co” does not mean “multiply zero by infinity.” Instead,
it means “one quantity is shrinking to zero, and is being multiplied by a quantity
that is growing without bound.” We cannot determine from such a description
what the result of such a limit will be.

This section introduces I’'Hopital’s Rule, a method of resolving limits that pro-
duce the indeterminate forms 0/0 and co/co. We'll also show how algebraic
manipulation can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem 49 L’Hopital’s Rule, Part 1
Let lim f(x) = 0 and lim g(x) = 0, where fand g are differentiable func-
X—C X—C

tions on an open interval / containing ¢, and g’(x) # 0 on I except possi-

bly at c. Then )
lim fx) = lim Lt

x—=eg(x)  xoeg/(x)

We demonstrate the use of I’'Hopital’s Rule in the following examples; we
will often use “LHR” as an abbreviation of “I’'Hé6pital’s Rule.”

Notes:
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Example 189 Using I’Hopital’s Rule
Evaluate the following limits, using I'Hopital’s Rule as needed.
sinx 2
1. lim — 3. lim _x
x—=0 X x—0 1 — cosx
 Wx+3-2 . X 4+x—6
2. lim ———— 4. lm —
x—1 1—x x—=2x2 —3x+2
SOLUTION

1. We proved this limit is 1 in Example 13 using the Squeeze Theorem. Here
we use I'Hépital’s Rule to show its power.

_ sinx bYWHR - cogx
lim— = |lim— =1.
x—0 X x—0 1
VX3 —2 bylHR %(x—|—3)’1/2 1
2. lim—m = |lm*YQ—mm = ——.
x—1 1—x x—1 —1 4
. »2 bylHR 2x
3. im — = |lim —.
x—0 1 — cosx x—0 sin x

This latter limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply I’'Hopital’s Rule again.

Iim— = — =2.
x—0 sin x cos X
2
. X
Thus Im —— =2
x—0 1 — cosx

4. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

2 -6 -2 3 3
i X TX=6 . x=2)(x+3) . x+3

= —_ —5~
x=2x2 —3x+2 x=2(x—2)(x—1) x=2x-—1

We now show how to solve this using I’'Hopital’s Rule.

X2 4x—6 bYHR 9y q
Im —— = lim =5
x—=2 X2 —3x+2 x—22X — 3

Note that at each step where I’'Hopital’s Rule was applied, it was needed: the
initial limit returned the indeterminate form of “0/0.” If the initial limit returns,
for example, 1/2, then I’H6pital’s Rule does not apply.

Notes:

6.7 L'Hopital’s Rule

325



Chapter 6

326

Techniques of Antidifferentiation

The following theorem extends our initial version of I’'Hopital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form oo/oo
and to limits where x approaches +-oc.

Theorem 50 L’Hopital’s Rule, Part 2

1. Let lim f(x) = +o00 and lim g(x) = +oo, where fand g are differ-
X—a X—a
entiable on an open interval / containing a. Then
/
0 _ . f)

lim —=% = .
Xl_rg g(x) x—=ag’(x)

2. Letfand g be differentiable functions on the open interval (a, oo)
for some value a, where g’(x) # 0 on (a,00) and lim f(x)/g(x)
X— 00

returns either 0/0 or co/co. Then
/
0 _ £

lim —=% = .
x—l>oo g(x) X—500 g’(x)

A similar statement can be made for limits where x approaches
—0Q.

Example 190 Using I’Hopital’s Rule with limits involving oo
Evaluate the following limits.

. 3x*2—100x+2 e
1. Im ———— 2. lim —.
x—00 4x% + 5x — 1000 x—00 X3
SOLUTION

1. We can evaluate this limit already using Theorem 11; the answer is 3/4.
We apply I'Hopital’s Rule to demonstrate its applicability.

3x> —100x +2 DPYUHR - gx— 100 PYUR 3
im ——— = lim —— = lim = = —.
x—00 4x% + 5x — 1000 x—oo 8x+5 x>0 8 4
e by LHR e by LHR e by LHR e
2. lim - = lim — = lim — = lim — = co.
X—00 X x—00 3x2 x—00 6X x—00 6

Recall that this means that the limit does not exist; as x approaches oo,
the expression /x> grows without bound. We can infer from this that
e* grows “faster” than x3; as x gets large, e* is far larger than x3. (This

Notes:



has important implications in computing when considering efficiency of
algorithms.)

Indeterminate Forms O - oo and co — o0

L'Hépital’s Rule can only be applied to ratios of functions. When faced with
anindeterminate form such as 0- 0o or co — 0o, we can sometimes apply algebra
to rewrite the limit so that I'Hopital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 191 Applying I’'Hopital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim x-e'/ 3. limIn(x+1)—Inx
x—0t X—00
H _ X
2. lim x-e'* 4. xl)n;oxz €

x—0~

SOLUTION

1. Asx — 0", x — 0 and e'/* — co. Thus we have the indeterminate form
1/x

e
1/% 35 7 oW as X — 01, we get
X

0 - co. We rewrite the expression x - e
the indeterminate form oo /oo to which I’'Hépital’s Rule can be applied.

1/x by LHR 2) pl/x

. . e . —1/x%)e .

lim x-e* = lim = lim % = lim eY* = .
x—0t x—0F 1/X x—0F *1/X x—0F

Interpretation: el/* grows “faster” than x shrinks to zero, meaning their

product grows without bound.

2. Asx — 07, x — 0and el/* — = — 0. The the limit evaluates to 0 - 0
which is not an indeterminate form. We conclude then that

lim x-e* =0.
x—0~

3. This limit initially evaluates to the indeterminate form oo —oco. By applying
a logarithmic rule, we can rewrite the limit as

1
lim In(x+1) —Inx = lim In (X+ )

X—00 X—»00 X

As x — o0, the argument of the In term approaches oo/0co, to which we
can apply I'Hopital’s Rule.

x+1 by LHR 1
lim = =

x—00 X 1

1.

Notes:

6.7 L'Hopital’s Rule
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x+1
Since x — oo implies — 1, it follows that

x+1
X — oo implies In <+>%In10.
X

Thus

X—00 X— 00

1
lim In(x+ 1) —Inx = lim In (H> =0.
X

Interpretation: since this limit evaluates to 0, it means that for large x,
there is essentially no difference between In(x + 1) and In x; their differ-
ence is essentially 0.

4. Thelimit lim x> — e initially returns the indeterminate form oo — co. We

X—r 00

eX
can rewrite the expression by factoring out x%; x> — & = x? (1 — 2> .
X

We need to evaluate how e*/x* behaves as x — oo:

eX by LHR e by LHR e
lim — = |lm — = I|m — =o0.
x—00 X2 x—o00 2X x—00 2

Thus limy_, o, X2(1 — €*/x?) evaluates to oo - (—oc), which is not an inde-
terminate form; rather, co - (—o0) evaluates to —oco. We conclude that

lim x> — & = —o0.
X— 00

Interpretation: as x gets large, the difference between x? and e* grows
very large.

Indeterminate Forms 0°, 1°° and o°

When faced with an indeterminate form that involves a power, it often helps
to employ the natural logarithmic function. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 20 Evaluating Limits Involving Indeterminate Forms
0%, 1*° and oc®

If lim In (f(x)) =L, then lim f(x) = lim e"®) = e*.

X—C X—C X—C

Notes:

328




Example 192 Using I’'Hopital’s Rule with indeterminate forms involving
exponents
Evaluate the following limits.
1 X
1. lim <1 + ) 2. lim x*.
X—»00 ¢ x—0t
SOLUTION

1. This equivalent to a special limit given in Theorem 3; these limits have
important applications within mathematics and finance. Note that the
exponent approaches co while the base approaches 1, leading to the in-
determinate form 1°. Let f(x) = (14 1/x)*; the problem asks to evaluate

f(x). Let's first evaluate lim In (f(x)).

lim
X— 00

lim In (f(x)) = lim In (1 + i)x

X— 00 X—00

. 1
= lim xIn <1+ )
X— 00 X

| 1
i M)
X— 00 1/x

This produces the indeterminate form 0/0, so we apply I’"Hopital’s Rule.

lim
x—oo 1+ 1/)(

=1.
Thus lim In (f(x)) = 1. We return to the original limit and apply Key Idea

X—00
20.

1 X
lim <1 + x) = lim f(x) = lim ") — ¢l —e,

X—00 X— 00 X— 00

2. This limit leads to the indeterminate form 0°. Let f(x) = x* and consider

Notes:

6.7 L'Hopital’s Rule
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Figure 6.17: A graph of f(x) = x* support-
ing the fact that as x — 0T, f(x) — 1.

330

first lim In (f(x)).

x—07F
xl—ig]Jr In (f(X)) - xl—i:’:)’]Jr In (XX)

= lim xlnx
x—0t

. Inx
im —.
x—0+ 1/x

This produces the indeterminate form —oo /0o so we apply I’Hopital’s Rule.

1/x

= lim /
x—0+ 71/X2

= lim —x
x—0t

=0.

Thus lim In (f(x)) = 0. We return to the original limit and apply Key Idea

x—0t

20.
lim X = lim f(x) = lim e"0)) = ¢0 — 1,

x—0t x—0t x—0t

This result is supported by the graph of f(x) = x* given in Figure 6.17.

Our brief revisit of limits will be rewarded in the next section where we con-
sider improper integration. So far, we have only considered definite integrals

where the bounds are finite numbers, such as / f(x) dx. Improper integration

0
considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applications, in addition to generating ideas that are
enlightening.

Notes:



Exercises 6.7

Terms and Concepts

1.

. T/F: I'HOpital’s Rule states that —

List the different indeterminate forms described in this sec-
tion.

. T/F:I'Hopital’s Rule provides a faster method of computing

derivatives.

d {J’(ﬁx)] _f'®

dx Lgx)]  g'(x)’
. Explain what the indeterminate form “1°°” means.
X
. Fillin the blanks: The Quotient Rule is applied to % when
g(x
taking ; I'Hopital’s Rule is applied when taking
certain
. Create (but do not evaluate!) a limit that returns “cc®”.

. Create a function f(x) such that Iimlf(x) returns “0%”.
X—r

Problems

In Exercises 8 — 52, evaluate the given limit.

8.

10.

11.

12.

13.

14. lim

15.

16.

17.

18.

X4+ x=2
lim ————
x—1 x—1

X +x—6
x—2 x2 — 7x + 10

. lim

R sinx
lim

X—7 X — T

sinx — cos x
im ——
x—=7/4  €0s(2x)

lim sin(5x)
x—0 X

lim sin(2x)
x—=0 X+ 2

sin(2x)
x—0 sin(3x)

. sin(ax)
lim —
x—0 sin(bx)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

lim —
x—oco eX

lim
X—» 00

lim

oo /X

e
lim —
x—o0 2X

lim —
x—o00 3X

X =5 +3x+9
lim >————— =
x—3 x3 — 7x* + 15x — 9

) X+ 4% + 4x
lim
x——2 X3 + 7x% 4+ 16x + 12

. Inx
lim —
x—oo X

lim In(x)

X—00 X

. (lnx)2

X—»00 X

lim x-Inx
x—0+

lim v/x-Inx

x—071

. 1
lim xe'/*

x—01

. 3 2
lim x° — x
X—» 00

lim v — Inx

X—r 00

lim xe*
X—r — 00

. 1 5
lim —e /x
x—0t+ X

lim (14 x)"/*

x—01

lim (2x)*

x—071

lim (2/x)"

x—07F

lim (sinx)* Hint: use the Squeeze Theorem.
x—07F
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40.

41.

42.

43.

44,

45.

46.

lim (1 —x)*™*
x~>1+( )

lim (x)*/

X—> 00

lim (1/x)*
X—r 00

lim (Inx)*~*
x%1+( )

lim (1 + x)"*
X—r 00

lim (14 x*)*/*
X—»00

lim tanxcosx
x—m/2

47.

48.

49.

50.

51.

52.

lim tanxsin(2x)
x—7/2

. 1 1
im — —
x—1tInx  x—1

X

lim 5 —
x=3FXx2—9 x-—3

lim xtan(1/x)
X— 00

| 3
lim (Inx)
X—r 00 X

X X +x—2
lim ———

x—1 Inx



6.8 Improper Integration

We begin this section by considering the following definite integrals:

00 4
. / — = dx ~ 1.5608,
o 14x?

1+ x

1000
. / — = dx~ 1.5707.
0 1+x?

1000
o / —— dx~ 1.5698,
0

Notice how the integrand is 1/(1 + x?) in each integral (which is sketched in
Figure 6.18). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:

b 1 b
/ —— dx=tan"'x
o 1+x 0

Asb — oo, tan"1h — 7 /2. Therefore it seems that as the upper bound b grows,

=tan"'bh—tan 10 =tan"1bh.

b
1
the value of the definite integral / T2 dx approaches 7/2 a2 1.5708. This
0

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

b
Whenwedeﬁnedthedeﬁniteintegral/ f(x) dx, we made two stipulations:
a

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The function f(x) was continuous on [a, b] (ensuring that the range of f
was finite).

In this section we consider integrals where one or both of the above condi-
tions do not hold. Such integrals are called improper integrals.

Notes:

6.8 Improper Integration

0.5

5 10
1

Figure 6.18: Graphing f(x) = Toe
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Chapter 6 Techniques of Antidifferentiation

Improper Integrals with Infinite Bounds

Definition 24 Improper Integrals with Infinite Bounds; Converge,
Diverge

1. Let f be a continuous function on [a, c0). Define

/f )dx tobe Ilm/f

2. Let fbe a continuous function on (—oo, b]. Define

/_boof(x)dx to be I|m /f

3. Letfbe a continuous function on (—oo, 00). Let ¢ be any real num-
ber; define

0o c b
/ f(x) dx tobe aﬂrp /f(x) dx+blim /f(x) dx

An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Example 193 Evaluating improper integrals
Evaluate the following improper integrals.

1-/ ;dx 3./ e* dx
1

— 00
0.5 | 1 0o
2. —dx 4 _1 d
X : 2 9X
1 oo L4 x
| ‘ —> x SOLUTION
1 5 10
Figure 6.19: A graph of f(x) = % in Ex- 1. / —dx = lim / —dx = lim —
ample 193. 1 b—o0 b—oo X I1
-1
= lim — +1
b—oco b +
=1

A graph of the area defined by this integral is given in Figure 6.19.

Notes:
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6.8 Improper Integration

1 1
= lim In|x]|
o0
= lim In(b)
0.5 |
= 00.
1
The limit does not exist, hence the improper integral 5 dx diverges.
R . 71 ; : > x
Compare the graphs in Figures 6.19 and 6.20; notice how the graph of 1 < 10
f(x) = 1/xis noticeably larger. This difference is enough to cause the
improper integral to diverge. Figure 6.20: A graph of f(x) = * in Exam-
o 0 ple 193.
3. / e dx= lim / e dx
—c0 a——0o0 a
0
= lim ¢€*
a——0o0 a
H 0 a y
= |lim e —e¢
a——0o0
=1
A graph of the area defined by this integral is given in Figure 6.21.
4. We will need to break this into two improper integrals and choose a value
of ¢ as in part 3 of Definition 24. Any value of c is fine; we choose ¢ = 0.
0 b t t X
o0 1 1 1 —10 -5 -1
X a——0o0 X X
- a o e Jo . Figure 6.21: A graph of f(x) = €*in Exam-
= lim tan x| + lim tan™?! x' ple 193.
a——o0 a b—o0 0
= lim (tan"'0—tan"'a) + lim (tan~'b —tan~'0)
a——00 b—ro0

—(o- 2T+ (W 0)
N 2 2 ' y
Each limit exists, hence the original integral converges and has value:

= T.

A graph of the area defined by this integral is given in Figure 6.22.

Figure 6.22: A graph of f(x) = 1+sz in Ex-
Notes: ample 193.

335



Chapter 6 Techniques of Antidifferentiation

The previous section introduced I’'Hopital’s Rule, a method of evaluating lim-
y its that return indeterminate forms. It is not uncommon for the limits resulting

from improper integrals to need this rule as demonstrated next.
0.4 |
[ . . .
flx) = % Example 194 Improper integration and I’Hopital’s Rule
*“Inx
0.2 | Evaluate the improper integral / — dx.
1 X
‘ — SOLUTION This integral will require the use of Integration by Parts. Let
1 < 10 u=Inxanddv = 1/x* dx. Then
b
Figure 6.23: A graph of f(x) = X in Ex- > Inx dx = lim Inx dx
ample 194. ' b—oo J; X2
Inx b b
= lim < +/ = dx>
b—o0 X 1 1 X

I
U:
e
/T\
|2
|
X |
N———

Inb
The 1/b and In 1 terms go to 0, leaving blim e + 1. We need to evaluate
— 00

o Imb
lim —— with I’"Hopital’s Rule. We have:
—oco b

. Inp bYWR - 1/p
lim — = lim —
b—oo b b—oo 1

=0.

Thus the improper integral evaluates as:

> Inx
1 X

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integration
was infinite. We now consider another type of improper integration, where the
range of the integrand is infinite.

Notes:

336



Example 195
Evaluate the following improper integrals:

Definition 25 Improper Integration with Infinite Range

Let f(x) be a continuous function on [a, b] except at ¢, a < ¢ < b, where
X = cis a vertical asymptote of f. Define

/abf(x) dx = lim /atf(x) dx + lim /tbf(x) dx.

t—c— t—ct

Improper integration of functions with infinite range

1 1
1 1
1. — dx 2. — dx.

SOLUTION

1. Agraph of f(x) = 1/+/xis given in Figure 6.24. Notice that f has a vertical
asymptote at x = 0; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?

1 1
—dx=li —d
/0\& ) aL“S+/g i
1
lim 24/x
a

a—0t
lim 2 (ﬁ _ \/E)
a—0t

= 2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathematics when considering
the infinite).

2. The function f(x) = 1/x* has a vertical asymptote at x = 0, as shown
in Figure 6.25, so this integral is an improper integral. Let’s eschew using
limits for a moment and proceed without recognizing the improper nature
of the integral. This leads to:

Notes:

6.8 Improper Integration

Note: In Definition 25, c can be one of the
endpoints (g or b). In that case, there is
only one limit to consider as part of the
definition.

Figure 6.24: A graph of f(x) = - in Ex-
ample 195.

+ u u > X
-1 —0.5 0.5 1

Figure 6.25: A graph of f(x) = % in Ex-
ample 195.
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Chapter 6 Techniques of Antidifferentiation

Clearly the area in question is above the x-axis, yet the area is supposedly
negative! Why does our answer not match our intuition? To answer this,
evaluate the integral using Definition 25.

14 t 14
/ —dx = lim / —dx+ lim / — dx
1 X2 t—0— J_1 X t—>ot Jp X2

t 1
+ lim ——
-1 t—0t Xt

. 1
= lim ——
t=0— X

1 1
= lim —?—1—1— Ilm —1+f

t—0—

= (oo—1) + (—1+oo).

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical.

Understanding Convergence and Divergence

Oftentimes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integrating.

1
Our first tool is to understand the behavior of functions of the form >
X

Example 196 Improper integration of 1/x”
o0

1
Determine the values of p for which / = dx converges.
y J1 X

SOLUTION We begin by integrating and then evaluating the limit.

/ —dx— Ilm/—dx
1 b— o0

= lim / x~P dx (assume p # 1)
1

b—o0
b
= lim x Pt
| X b—oco —p + 1 1
1 . 1 1— 1—
= lim —— (b*P —117),
b—ool—p

Figure 6.26: Plotting functions of the form

1/x” in Example 196.
When does this limit converge —i.e., when is this limit not co? This limit con-
verges precisely when the power of b is less than 0: when1 —p <0 =1 < p.

Notes:
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o0

1
Our analysis shows that if p > 1, then / = dx converges. Whenp < 1
X

the improper integral diverges; we showed inlExampIe 193 that when p = 1 the
integral also diverges.

Figure 6.26 graphs y = 1/x with a dashed line, along with graphs of y = 1/x",
p < 1l,andy = 1/x9, g > 1. Somehow the dashed line forms a dividing line
between convergence and divergence.

The result of Example 196 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

1
1
improper integrals of the form / o dx. These results are summarized in the
0

following Key Idea.

6.8 Improper Integration

1

< 1 1
Key Idea 21 Convergenceoflmproperlntegrals/ ;dxand/ X—pdx.
0

o0
1
1. The improper integral / v dx converges when p > 1 and diverges when p < 1.
1 X

1
1

2. The improper integral / v dx converges when p < 1 and diverges when p > 1.
0 X

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We often use integrands of the form 1/x” to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

Theorem 51 Direct Comparison Test for Improper Integrals

Let f and g be continuous on [a, co) where 0 < f(x) < g(x) for all x in
[a,0).

1. If/ g(x) dx converges, then/ f(x) dx converges.
a a

2. If/ f(x) dx diverges, then/ g(x) dx diverges.
a a

Notes:

Note:

We used the upper and lower

bound of “1” in Key Idea 21 for conve-
nience. It can be replaced by any a where

a>0.
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Chapter 6 Techniques of Antidifferentiation

y Example 197 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

° P e 1
1. e ™ dx 2. / ——— dx
/1 3 VX2 —x
SOLUTION

1. The function f(x) = e~ does not have an antiderivative expressible in
terms of elementary functions, so we cannot integrate directly. It is com-
2
X parable to g(x) = 1/x%, and as demonstrated in Figure 6.27, e < 1/x?

o0
1
, on [1,00). We know from Key Idea 21 that/ — dx converges, hence
Figure 6.27: Graphs of f(x) = e™™ and 1 X

o0
f(x) = 1/x* in Example 197. / e~ dx also converges.
1
2. Note that for | I f ! ! ! We k f K
. Note that for large values of x, —— ~ —— = —. We know from Key
Vxt—x x2 X
oo

1
Idea 21 and the subsequent note that / — dx diverges, so we seek to

3 X

compare the original integrand to 1/x.

1 It is easy to see that when x > 0, we have x = Vx2 > v/x2 — x. Taking
o | fo) = Ve x reciprocals reverses the inequality, giving
1 1
- < .
1 X X2 v
0.2 ¢ fx) = X
<1 o 1
‘ ‘ o x Using Theorem 51, we conclude that since/ — dxdiverges,/ T dx
} t ; 3 X 3 Xc =X
2 4 6 diverges as well. Figure 6.28 illustrates this.

Figure 6.28: Graphs of f(x) = 1/v/x* — x
and f(x) = 1/x in Example 197. . " . p - .
Being able to compare “unknown” integrals to “known” integrals is very use-

ful in determining convergence. However, some of our examples were a little

1 1

“too nice.” For instance, it was convenient that — < = but what if the
X X2 —x

“—x" were replaced with a “+2x + 5”? That is, what can we say about the con-

1 1
dx? We have — > ————, so we cannot

e 1
vergence of/ —_—
3 VX2 +2x+5 X X2 +2x+5
use Theorem 51.
In cases like this (and many more) it is useful to employ the following theo-
rem.

Notes:
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Theorem 52 Limit Comparison Test for Improper Integrals

Let fand g be continuous functions on [a, o) where f(x) > 0and g(x) >
0 for all x. If
fix)

lim 2% —
Ao glx)

/aoof(x) dx and /aoo g(x) dx

either both converge or both diverge.

0<L<oo,

then

Example 198 Determining convergence of improper integrals
(o]
1
Determine the convergence of/ — dx.
3 VX2+2x+5
SOLUTION As x gets large, the quadraticinside the square root function

1 1
———— to ~ with
VX2 +2x+5 X

will begin to behave much like y = x. So we compare

the Limit Comparison Test:

.1/ +2x+5 . X
im ———— = Im ————.
X—00 1/x x—00 \/x2 £ 2x+ 5

The immediate evaluation of this limit returns co /oo, an indeterminate form.
Using I’'Hopital’s Rule seems appropriate, but in this situation, it does not lead
to useful results. (We encourage the reader to employ I'Hépital’s Rule at least
once to verify this.)

The trouble is the square root function. To get rid of it, we employ the fol-
lowing fact: If lim f(x) = L, then )I(i_rpcf(x)z = 2. (This is true when either c or L
is 00.) So we consider now the limit

2
lim —.
x—00 X2 +2x+5
This converges to 1, meaning the original limit also converged to 1. As x gets

very large, the function looks very much like % Since we know that

x24+2x+5
0 1 o0 1
= dxdiverges, by the Limit Comparison Test we knowthat/ —_—dx
/3 X 8 Y P 3 VX2 +2x+5

also diverges. Figure 6.29 graphs f(x) = 1/v/x* + 2x+ 5 and f(x) = 1/x, illus-
trating that as x gets large, the functions become indistinguishable.

Notes:

6.8 Improper Integration

0.2 |
: : : o x
5 10 15 20
Figure 6.29: Graphing f(x) = ———
A/ x24-2x+5

and f(x) = * in Example 198.
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Chapter 6 Techniques of Antidifferentiation

342

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
aninfinite range, but as they are a bit wordy and a little more difficult to employ,
they are omitted from this text.

This chapter has explored many integration techniques. We learned Substi-
tution, which “undoes” the Chain Rule of differentiation, as well as Integration
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric functions and introduced the hyperbolic functions,
which are closely related to the trigonometric functions. All techniques effec-
tively have this goal in common: rewrite the integrand in a new way so that the
integration step is easier to see and implement.

As stated before, integration is, in general, hard. It is easy to write a function
whose antiderivative is impossible to write in terms of elementary functions,
and even when a function does have an antiderivative expressible by elementary
functions, it may be really hard to discover what it is. The powerful computer
algebra system Mathematica® has approximately 1,000 pages of code dedicated
to integration.

Do not let this difficulty discourage you. There is great value in learning in-
tegration techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximat-
ing the value of integration.

The next chapter stresses the uses of integration. We generally do not find
antiderivatives for antiderivative’s sake, but rather because they provide the so-
lution to some type of problem. The following chapter introduces us to a number
of different problems whose solution is provided by integration.

Notes:



Exercises 6.8

Terms and Concepts

1. The definite integral was defined with what two stipula-
tions?
b oo
2. If blim / f(x) dx exists, then the integral / f(x) dxis
— 00 0 0
said to
3. If/ f(x) dx =10, and 0 < g(x) < f(x) for all x, then we
! oo
know that/ g(x) dx
1
. <1
4. For what values of p will / v dx converge?
. X
. <1
5. For what values of p will / — dx converge?
10 X
. 1
6. For what values of p will / v dx converge?
0 X
Problems

In Exercises 7 — 33, evaluate the given improper integral.

7.

®

©

10.

11.

12.

13.

14.

15.

16.

oo
5—2.
/ e ¥ dx
0

dx
x2+9

[ 7
/

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

< 1
/ dx
, x—1

oo

7dx

— 00 e_x

/ xInxdx
0
/°° Inx
— dx
1 X

oo
/ e “sinxdx
0
o0
/ e ¥ cos x dx
0
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In Exercises 34 — 43, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what function the integrand is being com-
pared to.

34,

o 3
/ SN S
10 \/3X2+2X*5

> 4
35. ——dx
/2 VT8 —x

o0 Vx+3
0o VX —x2+x+1

37. / e “Inxdx
1

36. dx

40.

41.

42.

43

i 1
[
, X2 +sinx
e
o X*+cosx

<1
/ dx
0 X+ e

>~ 1

/ dx

0o € —x




/: APPLICATIONS OF INTEGRATION

We begin this chapter with a reminder of a few key concepts from Chapter 5.
Let f be a continuous function on [a, b] which is partitioned into n equally spaced
subintervals as

a<Xx1<Xp<:--<Xp<Xpy1=Db.

Let Ax = (b — a)/n denote the length of the subintervals, and let ¢; be any
x-value in the i ™" subinterval. Definition 21 states that the sum

Zf(c;)Ax

is a Riemann Sum. Riemann Sums are often used to approximate some quan-
tity (area, volume, work, pressure, etc.). The approximation becomes exact by
taking the limit

nILm Zf(c,)Ax.
i=1

Theorem 38 connects limits of Riemann Sums to definite integrals:

n b
nILrT;o Zf(c,-)Ax = / f(x) dx.
i=1 a

Finally, the Fundamental Theorem of Calculus states how definite integrals can
be evaluated using antiderivatives.

This chapter employs the following technique to a variety of applications.
Suppose the value Q of a quantity is to be calculated. We first approximate the
value of Q using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Key Idea 22 Application of Definite Integrals Strategy

Let a quantity be given whose value Q is to be computed.
1. Divide the quantity into n smaller “subquantities” of value Q;.

2. Identify a variable x and function f(x) such that each subquantity
can be approximated with the product f(c;) Ax, where Ax repre-
sents a small change in x. Thus Q; = f(c;) Ax. A sample approxi-
mation f(c;) Ax of Q; is called a differential element.

n n
3. Recognize that Q = ZQ" = Zf(c,-)Ax, which is a Riemann
i=1 i=1
Sum.

b
4. Taking the appropriate limit gives Q = / f(x) dx
a

This Key Idea will make more sense after we have had a chance to use it
several times. We begin with Area Between Curves, which we addressed briefly
in Section 5.5.4.



Chapter 7 Applications of Integration

<

> /\_/f(x)
K/gw
t t X
a b

<

<

Figure 7.1: Subdividing a region into ver-
tical slices and approximating the areas
with rectangles.
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7.1 Area Between Curves

We are often interested in knowing the area of a region. Forget momentarily
that we addressed this already in Section 5.5.4 and approach it instead using
the technique described in Key Idea 22.

Let Q be the area of a region bounded by continuous functions fand g. If we
break the region into many subregions, we have an obvious equation:

Total Area = sum of the areas of the subregions.

The issue to address next is how to systematically break a region into sub-
regions. A graph will help. Consider Figure 7.1 (a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
particularly efficient way is to “slice” it vertically, as shown in Figure 7.1 (b), into
n equally spaced slices.

We now approximate the area of a slice. Again, we have many options, but
using a rectangle seems simplest. Picking any x-value c; in the i ™ slice, we set
the height of the rectangle to be f(c;) — g(c;), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with Ax. Figure 7.1 (c) shows sample points ¢; chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differential element.) Each slice has an area approximately equal to
(f(c,—) — g(c,-))Ax; hence, the total area is approximately the Riemann Sum

Q= Z (flei) — glci)) Ax.

Taking the limit as n — oo gives the exact area as fab (f(x) — g(x)) dx.

Theorem 53 Area Between Curves (restatement of Theorem 41)

Let f(x) and g(x) be continuous functions defined on [a, b] where f(x) >
g(x) for all x in [a,b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the linesx = aand x = b is

b
/ (F00) — 9(0)) dix.

Example 199 Finding area enclosed by curves
Find the area of the region bounded by f(x) = sinx + 2, g(x) = 3 cos(2x) — 1,
x = 0 and x = 4, as shown in Figure 7.2.

SOLUTION The graph verifies that the upper boundary of the region is

Notes:



given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral

/047T (f(x) — g(x)) dx = /OM (sinx+ 2 - (% cos(2x) — 1)) dx

A

1.
= —cosx— o sin(2x) + 3x

0
127 = 37.7 units?.

Example 200 Finding total area enclosed by curves
Find the total area of the region enclosed by the functions f(x) = —2x + 5 and
g(x) = x> — 7x* + 12x — 3 as shown in Figure 7.3.

SOLUTION A quick calculation shows that f = gat x = 1,2 and 4. One
4

(f(x) — g(x)) dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact,lthe thoughtless integration returns
—9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1,2] and [2, 4] and using the
proper integrand in each.

can proceed thoughtlessly by computing /

Total Area = /1 (g(x) — f(x)) dx%—/2 (f(x) — g(x)) dx

2 4
=/ (x3—7x2+14x—8)dx+/ (=X +7x — 14x + 8) dx
1 2

=5/12 +8/3
= 37/12 = 3.083 units?.

The previous example makes note that we are expecting area to be positive.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negative area.” That doesn’t apply here; area is
to be positive.

The previous example also demonstrates that we often have to break a given
region into subregions before applying Theorem 53. The following example
shows another situation where this is applicable, along with an alternate view
of applying the Theorem.

Example 201 Finding area: integrating with respect to y
Find the area of the region enclosed by the functionsy = /x + 2,y = —(x —
1)2 +3and y = 2, as shown in Figure 7.4.

Notes:

7.1 Area Between Curves

2 f(x)

-2

Figure 7.2: Graphing an enclosed region
in Example 199.

Figure 7.3: Graphing a region enclosed by
two functions in Example 200.

y

s ly=vitr _y=-(=1"+3

Figure 7.4: Graphing a region for Example
201.
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Chapter 7 Applications of Integration

v SOLUTION We give two approaches to this problem. In the first ap-
sl x=(-22 x=+3-y+1 proach, we notice that the region’s “top” is defined by two different curves.
On [0, 1], the top function is y = /x + 2; on [1, 2], the top function is y =
‘ . —(x —1)2 4 3. Thus we compute the area as the sum of two integrals:
AN
2 1 2
Total Area = / ((\/)?+2) - 2) dx+/ (( —(x—1)*+3) - 2) dx
1! 0 1
=2/3+4+2/3
} } . =4/3.
1 2
The second approach is clever and very useful in certain situations. We are
Figure 7.5: The region used in Example used to viewing curves as functions of x; we input an x-value and a y-value is re-
201 with boundaries relabeled as func- turned. Some curves can also be described as functions of y: input a y-value and
tions of y. an x-value is returned. We can rewrite the equations describing the boundary

by solving for x:
y=vx+2 = x=(y-2)
y=—-(x—-1°+3 = x=3-y+1
Figure 7.5 shows the region with the boundaries relabeled. A differential
element, a horizontal rectangle, is also pictured. The width of the rectangle is
a small change in y: Ay. The height of the rectangle is a difference in x-values.

The “top” x-value is the largest value, i.e., the rightmost. The “bottom” x-value
is the smaller, i.e., the leftmost. Therefore the height of the rectangle is

(V3-y+1)—(y—2)>~

The area is found by integrating the above function with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “bottom” functions exist on the y interval [2, 3]. Thus

3
Total Area = / (V3-y+1—-(y—2)%)dy
2

= (*%(3*y)3/2+y*%(y72)3)‘
= 4/3.

3

2

This calculus—based technique of finding area can be useful even with shapes
that we normally think of as “easy.” Example 202 computes the area of a trian-
gle. While the formula “3 x base x height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.

Notes:
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7.1 Area Between Curves

Example 202 Finding the area of a triangle y
Compute the area of the regions bounded by the lines
y=x+1y=—-2x+7andy = —1x+ 3, as shown in Figure 7.6. 34
SOLUTION Recognize that there are two “top” functions to this region, 2l
causing us to use two definite integrals.
2 1 5 3 1 5
Total Area = / (x+1) = (-3x+2)) dx+/ (—2x+7) — (—=x+ 2)) dx y
L 27 "2 . 2" "2
=3/4+3/4 : : : x
— 3/2. 1 2 3
We can also approach this by converting each function into a function of y. This Figure 7.6: Graphing a triangular region in
also requires 2 integrals, so there isn’t really any advantage to doing so. We do Example 202.

it here for demonstration purposes.
The “top” function is always x = % while there are two “bottom” func-
tions. Being mindful of the proper integration bounds, we have
77—y

TotaIArea:/lz(2 —(5-2y)) dy+/23 (% —(y=1))dy

—3/4+3/4
—3/2.

Of course, the final answer is the same. (It is interesting to note that the area of
all 4 subregions used is 3/4. This is coincidental.)

While we have focused on producing exact answers, we are also able to make (a)
approximations using the principle of Theorem 53. The integrand in the theo- y
rem is a distance (“top minus bottom”); integrating this distance function gives
an area. By taking discrete measurements of distance, we can approximate an
area using numerical integration techniques developed in Section 5.5. The fol-
lowing example demonstrates this.

Example 203 Numerically approximating area

To approximate the area of a lake, shown in Figure 7.7 (a), the “length” of the
lake is measured at 200-foot increments as shown in Figure 7.7 (b), where the
lengths are given in hundreds of feet. Approximate the area of the lake.

=N w £y u O N
L

SOLUTION The measurements of length can be viewed as measuring
“top minus bottom” of two functions. The exact answer is found by integrating

12 Figure 7.7: (a) A sketch of a lake, and (b)
/ (f(x) — g(x)) dx, but of course we don’t know the functions f and g. Our the lake with length measurements.
0

discrete measurements instead allow us to approximate.

Notes:
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Chapter 7 Applications of Integration

We have the following data points:

(0,0), (2,2.25), (4,5.08), (6,6.35), (8,5.21), (10,2.76), (12,0).

We also have that Ax = b%” = 2, so Simpson’s Rule gives

2
Area~ (1:0+4-22542-508+4-635+2-521+4-276+10)
= 44.013 units’.
Since the measurements are in hundreds of feet, units?> = (100 ft)*> =

10, 000 ft?, giving a total area of 440, 133 ft%. (Since we are approximating, we’d
likely say the area was about 440, 000 ft?, which is a little more than 10 acres.)

In the next section we apply our applications—of-integration techniques to
finding the volumes of certain solids.

Notes:
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Exercises 7.1
Terms and Concepts y

2 y=sinx+1

1. T/F: The area between curves is always positive.

2. T/F:Calculus can be used to find the area of basic geometric y = sinx

shapes.
t X
/2 7\

3. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

Problems
In Exercises 4 — 10, find the area of the shaded region in the 8.
given graph.
y = sin(4x)
+ X
/8 n/&
y
1 -t
4
y = sinx
4. A 0.5 +
2 y=2cosx+1
—~_ :
t + X
™ 2
y
3 4+
y=—3"4+3x+2
2
5.
1
10.
t > X
= 1
\_/_l/ V= XZ + x—1
+ + X
0.5 1
y
3 y=2 In Exercises 11 — 16, find the total area enclosed by the func-
tions fand g.
11. f(x) =2 +5x—3,9(x) =X +4x — 1
6. 1 =1
12. f(x) =x* —3x+2,9(x) = —3x+ 3
} oy 13. f(x) =sinx, g(x) = 2x/7
/2 ™
14. fxX) =X =4 +x—1,g(x) = —x* +2x— 4
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15. f(x) = x, g(x) = v/x
16. f(x) = —x* + 5 + 2x+1,9(x) =3x* +x+3

17. The functions f(x) = cos(2x) and g(x) = sinx intersect
infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises 18 — 22, find the area of the enclosed region in
two ways:

1. by treating the boundaries as functions of x, and
2. by treating the boundaries as functions of y.

18.
t t t X
1 2 3
y
1 T
y=vx
0.5 +
y=—2x+3
19.
t t X
1 2
—0.5 |+
y=—3x
—1 1
y
4
y=x+2
y=x
20. )
t t t X
-1 1 2
y
1 €1
X = —%y-&-l
t X
21. 1 2
[
x =1y
—2 1

22.

In Exercises 23 - 26, find the area triangle formed by the given
three points.

23. (1,1), (2,3), and (3,3)
24. (-1,1), (1,3), and (2,-1)
25. (1,1), (3,3), and (3,3)
26. (0,0), (2,5), and (5,2)

27. Use the Trapezoidal Rule to approximate the area of the
pictured lake whose lengths, in hundreds of feet, are mea-
sured in 100-foot increments.

PVZIRN

5.2
7.3
4.5

%

28. Use Simpson’s Rule to approximate the area of the pictured
lake whose lengths, in hundreds of feet, are measured in
200-foot increments.

— R
\\__/




7.2 Volume by Cross-Sectional Area; Disk and Washer Methods

7.2 Volume by Cross-Sectional Area; Disk and Washer
Methods

The volume of a general right cylinder, as shown in Figure 7.8, is

Area of the base x height.
We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cutting it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
sectional area x thickness. (These slices are the differential elements.)

By orienting a solid along the x-axis, we can let A(x;) represent the cross-
sectional area of the i ™ slice, and let Ax; represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

n
Volume =~ Z [Area X thickness
i=1

= i A(X,')AX,'.
i=1

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Theorem 54 Volume By Cross-Sectional Area

The volume V of a solid, oriented along the x-axis with cross-sectional
area A(x) fromx=atox =b,is

V= /abA(x) dx.

Example 204 Finding the volume of a solid
Find the volume of a pyramid with a square base of side length 10 in and a height
of 5in.

SOLUTION There are many ways to “orient” the pyramid along the x-
axis; Figure 7.9 gives one such way, with the pointed top of the pyramid at the
origin and the x-axis going through the center of the base.

Each cross section of the pyramid is a square; this is a sample differential
element. To determine its area A(x), we need to determine the side lengths of

Notes:

base area = A
Volume=A-h

Figure 7.8: The volume of a general right
cylinder

10

N\_4

NN

Figure 7.9: Orienting a pyramid along the
x-axis in Example 204.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();





Chapter 7 Applications of Integration

. ¥

Figure 7.10: Cutting a slice in they pyra-
mid in Example 204 at x = 3.
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the square.

When x = 5, the square has side length 10; when x = 0, the square has side
length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross-sectional square has side length 2x, giving A(x) = (2x)? = 4x2.

If one were to cut a slice out of the pyramid at x = 3, as shown in Figure
7.10, one would have a shape with square bottom and top with sloped sides. If
the slice were thin, both the bottom and top squares would have sides lengths
of about 6, and thus the cross—sectional area of the bottom and top would be
about 36in?. Letting Ax; represent the thickness of the slice, the volume of this
slice would then be about 36 Ax;in3.

Cutting the pyramid into n slices divides the total volume into n equally—
spaced smaller pieces, each with volume (2x;)? Ax, where x; is the approximate
location of the slice along the x-axis and Ax represents the thickness of each
slice. One can approximate total volume of the pyramid by summing up the
volumes of these slices:

n
Approximate volume = Z(ZX;)ZAX.
i=1

Taking the limit as n — oo gives the actual volume of the pyramid; recoginizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem 54.

We have

n

_ 32
V—nllmo 2(2&) Ax
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5
:/ 4x% dx

0
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500 . , .3
= Tln ~ 166.67 in".
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We can check our work by consulting the general equation for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

1 x area of base x height.
Certainly, using this formula from geometry is faster than our new method, but
the calculus—based method can be applied to much more than just cones.

An important special case of Theorem 54 is when the solid is a solid of rev-
olution, that is, when the solid is formed by rotating a shape around an axis.

Start with a function y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross sections

Notes:




7.2 Volume by Cross-Sectional Area; Disk and Washer Methods

are disks (thin circles). Let R(x) represent the radius of the cross-sectional disk
at x; the area of this disk is 7R(x)2. Applying Theorem 54 gives the Disk Method.

Key Idea 23 The Disk Method

Let a solid be formed by revolving the curve y = f(x) fromx = atox = b
around a horizontal axis, and let R(x) be the radius of the cross-sectional
disk at x. The volume of the solid is

b
V= 7r/ R(x)? dx.
a

Example 205 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, fromx = 1
to x = 2, around the x-axis.

SOLUTION A sketch can help us understand this problem. In Figure
7.11(a) the curve y = 1/x is sketched along with the differential element — a
disk — at x with radius R(x) = 1/x. In Figure 7.11 (b) the whole solid is pictured,
along with the differential element.

The volume of the differential element shown in part (a) of the figure is ap-
proximately 7R(x;)2Ax, where R(x;) is the radius of the disk shown and Ax is
the thickness of that slice. The radius R(x;) is the distance from the x-axis to the
curve, hence R(x;) = 1/x;.

Slicing the solid into n equally—spaced slices, we can approximate the total
volume by adding up the approximate volume of each slice:

n 2
1
Approximate volume = E 7T(X> Ax.
i=1 i

Taking the limit of the above sum as n — oo gives the actual volume; recog-
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite
integral, which matches the formula given in Key Idea 23:

n 1 2
V:nll?;ozﬁ(x,) Ax

i=1

Notes:

y=1/x

Figure 7.11: Sketching a solid in Example
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1 x=1/y

Figure 7.12: Sketching a solid in Example
206.

(b)

Figure 7.13: Establishing the Washer
Method; see also Figure 7.14.
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While Key Idea 23 is given in terms of functions of x, the principle involved
can be applied to functions of y when the axis of rotation is vertical, not hori-
zontal. We demonstrate this in the next example.

Example 206 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, fromx = 1
to x = 2, about the y-axis.

SOLUTION Since the axis of rotation is vertical, we need to convert the
function into a function of y and convert the x-bounds to y-bounds. Since y =
1/x defines the curve, we rewrite it as x = 1/y. The bound x = 1 corresponds to
the y-bound y = 1, and the bound x = 2 corresponds to the y-bound y = 1/2.

Thus we are rotating the curve x = 1/y, fromy = 1/2 to y = 1 about the
y-axis to form a solid. The curve and sample differential element are sketched
in Figure 7.12 (a), with a full sketch of the solid in Figure 7.12 (b). We integrate

to find the volume:
1
1
12 ¥

w1

y
= 7 units®.

1/2

We can also compute the volume of solids of revolution that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespective of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V= w/b R(x)? dx — w/b r(x)? dx = w/b (R(x)* = r(x)?) dx.

One can generate a solid of revolution with a hole in the middle by revolving
aregion about an axis. Consider Figure 7.13(a), where a region is sketched along

Notes:







7.2 Volume by Cross-Sectional Area; Disk and Washer Methods

with a dashed, horizontal axis of rotation. By rotating the region about the axis,
asolid is formed as sketched in Figure 7.13(b). The outside of the solid has radius
R(x), whereas the inside has radius r(x). Each cross section of this solid will be a
washer (a disk with a hole in the center) as sketched in Figure 7.14(c). This leads
us to the Washer Method.

Key Idea 24 The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross section at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V= ﬂ/ab (R(x)2 — r(x)z) dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

Example 207 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the region bounded by y =
x? — 2x+ 2 and y = 2x — 1 about the x-axis.

SOLUTION A sketch of the region will help, as given in Figure 7.15(a).
Rotating about the x-axis will produce cross sections in the shape of washers,
as shown in Figure 7.15(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = 2x+ 1; the inside radius is r(x) = x> — 2x+ 2. As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute
the volume.

—x4—|—4x3—4x2—|—4x—3) dx

V7r/3 ((Zx—l)z—(x2—2x+2)z) dx
(
1

3
1

104 3
= —7m & 21.78 units”.
15

When rotating about a vertical axis, the outside and inside radius functions
must be functions of y.

Notes:

Figure 7.14: Establishing the Washer
Method; see also Figure 7.13.

54
T T —x
1 2 3
—54
(a)
y
5_
_ 1 3 ;
— 54
(b)

Figure 7.15: Sketching the differential el-
ement and solid in Example 207.
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34

Figure 7.16: Sketching the solid in Exam-
ple 208.
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Example 208 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the triangular region with ver-
ticesat (1,1), (2,1) and (2, 3) about the y-axis.

SOLUTION The triangular region is sketched in Figure 7.16(a); the dif-
ferential element is sketched in (b) and the full solid is drawn in (c). They help us
establish the outside and inside radii. Since the axis of rotation is vertical, each
radius is a function of y.

The outside radius R(y) is formed by the line connecting (2,1) and (2, 3); it
is a constant function, as regardless of the y-value the distance from the line to
the axis of rotation is 2. Thus R(y) = 2.

The inside radius is formed by the line connecting (1, 1) and (2, 3). The equa-
tion of this lineisy = 2x— 1, but we need to refer to it as a function of y. Solving
forx gives r(y) = 2(y + 1).

We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V= 71'/13 (22 — (%(y—k 1))2) dy

{ 15, 1, + 15 ”3
= ’n’ —_—— —_— —
12y 4y 4 y
10 3
= ?7’1' =~ 10.47 units”.

1

This section introduced a new application of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quantities; in this
section, we computed volume.

The ultimate goal of this section is not to compute volumes of solids. That
can be useful, but what is more useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea 22: to find the exact value of some
quantity,

¢ we start with an approximation (in this section, slice the solid and approx-
imate the volume of each slice),

¢ then make the approximation better by refining our original approxima-
tion (i.e., use more slices),

¢ then use limits to establish a definite integral which gives the exact value.

We practice this principle in the next section where we find volumes by slic-
ing solids in a different way.

Notes:






Exercises 7.2
Terms and Concepts y

1. T/F: A solid of revolution is formed by revolving a shape y= V&
around an axis.

2. Inyour own words, explain how the Disk and Washer Meth- 0.5

ods are related.

3. Explain the how the units of volume are found in the in- ‘ ‘
tegral of Theorem 54: if A(x) has units of in?, how does 0s 1
J A(x) dx have units of in*?

In Exercises 8 — 11, a region of the Cartesian plane is shaded.

Prob/ems Use the Disk/Washer Method to find the volume of the solid
of revolution formed by revolving the region about the y-
In Exercises 4 — 7, a region of the Cartesian plane is shaded. axis.
Use the Disk/Washer Method to find the volume of the solid
of revolution formed by revolving the region about the x- y
axis.
4.
10 +
y
10 y = 5x
y = 5x
9. s |
5. s |
t t t = X
0.5 1 1.5 2
‘ ‘ ; > x
0.5 1 1.5 2 y
y
10.
6.
X
x (Hint: Integration By Parts will be necessary, twice. First let

u = arccos? x, then let u = arccos x.)
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11.

y In Exercises 18 —21, a solid is described. Orient the solid along

14 the x-axis such that a cross-sectional area function A(x) can
B be obtained, then apply Theorem 54 to find the volume of
y =X the solid.
0.5 + y=x 18. Aright circular cone with height of 10 and base radius of 5.
: > x
0.5 1

In Exercises 12 — 17, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revolution formed by rotating the region about
each of the given axes. 19. Askew right circular cone with height of 10 and base radius

12.

13.

14.

15.

16.

17.

of 5. (Hint: all cross-sections are circles.)
Region bounded by: y = /X,y = O and x = 1.
Rotate about:

(a) the x-axis (c) the y-axis
(b) y=1 (d) x=1

Region bounded by: y = 4 — x> and y = 0.

Rotate about:
20. Aright triangular cone with height of 10 and whose base is

1 a right, isosceles triangle with side length 4.

(a) the x-axis (c) y
(b) y=14 (d) x

2

The triangle with vertices (1, 1), (1,2) and (2, 1).
Rotate about:

(a) the x-axis (c) the y-axis
= = . Asolid with lengt with a rectangular base and triangu-
(b) y=2 (d) x=1 21. Asolid with length 10 with lar b d tri
lar top, wherein one end is a square with side length 5 and
Region bounded by y = x* — 2x +2andy = 2x — 1. the other end is a triangle with base and height of 5.

Rotate about:

(a) the x-axis (c) y=5
(b) y=1

Region bounded by y = 1/4/x* +1,x = —1,x = 1and
the x-axis.
Rotate about:

(a) the x-axis (c) y=-1
(b) y=1

Region bounded by y = 2x,y = xand x = 2.
Rotate about:

(a) the x-axis (c) the y-axis
(b) y=14 (d) x=2



7.3 The Shell Method

Often a given problem can be solved in more than one way. A particular method
may be chosen out of convenience, personal preference, or perhaps necessity.
Ultimately, it is good to have options.

The previous section introduced the Disk and Washer Methods, which com-
puted the volume of solids of revolution by integrating the cross—sectional area
of the solid. This section develops another method of computing volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotation
creating cross-sections, we now slice it parallel to the axis of rotation, creating
“shells.”

Consider Figure 7.17, where the region shown in (a) is rotated around the
y-axis forming the solid shown in (b). A small slice of the region is drawn in (a),
parallel to the axis of rotation. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (c) of the figure. The previous section
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 27r. Thus the area is A = 27rh; see Figure 7.18 (a).

Do a similar process with a cylindrical shell, with height h, thickness Ax, and
approximate radius r. Cutting the shell and laying it flat forms a rectangular solid
with length 27r, height h and depth Ax. Thus the volume is V &~ 27rh Ax; see
Figure 7.18 (b). (We say “approximately” since our radius was an approxima-
tion.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

n
V= Z 271"',"7,‘AX,'7
i=1
where r;, h; and Ax; are the radius, height and thickness of the it shell, respec-
tively.
This is a Riemann Sum. Taking a limit as the thickness of the shells ap-
proaches 0 leads to a definite integral.

Notes:

7.3 The Shell Method

(c)

Figure 7.17:  Introducing the Shell
Method.
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27r

A = 27rh h

(b)

Figure 7.18: Determining the volume of a thin cylindrical shell.

Key Idea 25 The Shell Method

Let a solid be formed by revolving a region R, bounded by x = a and
x = b, around a vertical axis. Let r(x) represent the distance from the axis
of rotation to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of

the solid is

V=2r /b r(x)h(x) dx.

Special Cases:

1. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x) — g(x).

2. When the axis of rotation is the y-axis (i.e., x = 0) then r(x) = x.
Let’s practice using the Shell Method.
Example 209 Finding volume using the Shell Method

Find the volume of the solid formed by rotating the region bounded by y = 0,
y=1/(1+x%),x =0and x = 1 about the y-axis.

oy 1 SOLUTION This is the region used to introduce the Shell Method in Fig-

_ . o ure 7.17, but is sketched again in Figure 7.19 for closer reference. Aline is drawn

;'g;re 7.19: Graphing a region in Example in the region parallel to the axis of rotation representing a shell that will be
Notes:
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carved out as the region is rotated about the y-axis. (This is the differential ele-
ment.)

The distance this line is from the axis of rotation determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the lineis aty = 1/(1 + x?), whereas the bottom
of the lineis aty = 0. Thus h(x) = 1/(1 + x*) — 0 = 1/(1 + x*). The region is
bounded from x = 0 to x = 1, so the volume is

1
V:27r/ X dx
o 1+x?

This requires substitution. Let u = 1 + x%, so du = 2x dx. We also change the
bounds: u(0) = 1 and u(1) = 2. Thus we have:

2
1

:ﬂ'/ —du
1 u

2
=mlnu

1
= 7In2 &~ 2.178 units>.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example 210 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the triangular region determined
by the points (0, 1), (1,1) and (1, 3) about the line x = 3.

SOLUTION The region is sketched in Figure 7.20(a) along with the dif-
ferential element, a line within the region parallel to the axis of rotation. In part
(b) of the figure, we see the shell traced out by the differential element, and in
part (c) the whole solid is shown.

The height of the differential element is the distance fromy = 1toy = 2x+
1, the line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x+1—1 = 2x.
The radius of the shell formed by the differential element is the distance from
xto x = 3; thatis, it is r(x) = 3 — x. The x-bounds of the region are x = 0 to

Notes:

7.3 The Shell Method

Figure 7.20: Graphing a region in Example

210.
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3 n
N,
NG
N,
1 %
2
————
h(y)
! ")
+ X
1
(a)

(b)

(c)

Figure 7.21: Graphing a region in Example
211.

364

x =1, giving
1
V= 27r/ (3 — x)(2x) dx
0
1
= 27r/ (6x — 2x%) dx
0

2 1
=27 (3x2 - x3) ‘
3 0

14 .3
= ?w ~ 14.66 units”.

When revolving a region around a horizontal axis, we must consider the ra-
dius and height functions in terms of y, not x.

Example 211 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the region given in Example 210
about the x-axis.

SOLUTION The region is sketched in Figure 7.21(a) with a sample dif-
ferential element. In part (b) of the figure the shell formed by the differential
element is drawn, and the solid is sketched in (c). (Note that the triangular re-
gion looks “short and wide” here, whereas in the previous example the same
region looked “tall and narrow.” This is because the bounds on the graphs are
different.)

The height of the differential element is an x-distance, between x = %y — %
andx = 1. Thush(y) = 1—(3y—3) = —2y+ 3. The radius is the distance from
y to the x-axis, so r(y) = y. The y bounds of the regionarey = 1andy = 3,
leading to the integral

|
]

10 .3
= ?77 ~~ 10.472 units”.

Notes:





At the beginning of this section it was stated that “it is good to have options.”
The next example finds the volume of a solid rather easily with the Shell Method,
but using the Washer Method would be quite a chore.

Example 212 Finding volume using the Shell Method
Find the volume of the solid formed by revolving the region bounded by y = sin x
and the x-axis from x = 0 to x = 7 about the y-axis.

SOLUTION The region and a differential element, the shell formed by
this differential element, and the resulting solid are given in Figure 7.22. The
radius of a sample shell is r(x) = x; the height of a sample shell is h(x) = sinx,
each from x = 0 to x = 7. Thus the volume of the solid is

s
V= 27r/ xsin x dx.
0

This requires Integration By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:
™
/ cosxdx}
0

2T

—XCOSX

)

~~ 19.74 units®.

2T [7r + sinx
27 [ﬂ + 0}
a2~

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine function. We leave it to the reader
to verify that the outside radius function is R(y) = 7 — arcsiny and the inside
radius function is r(y) = arcsiny. Thus the volume can be computed as

1
77/ {(ﬂ‘ — arcsiny)? — (arcsiny)?| dy.
0

This integral isn’t terrible given that the arcsin? y terms cancel, but it is more
onerous than the integral created by the Shell Method.

We end this section with a table summarizing the usage of the Washer and
Shell Methods.

Notes:

7.3 The Shell Method

h(x)

r(x)

3

Figure 7.22: Graphing a region in Example
212.
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Key Idea 26 Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds

y=candy =d.
Washer Method Shell Method
Horizontal b d
i 7r/ (R(x)* — r(x)?) dx 27r/ r(y)h(y) dy
Xis a c

Axis

: d g
Vertical 7T/c (R(y)z _ r(y)z) dy 27;/0 r(x)h(x) dx

As in the previous section, the real goal of this section is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximating, then using limits to refine the approximation to give the
exact value. In this section, we approximate the volume of a solid by cutting it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximation of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summation can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next section, where we find the
length of curves in the plane.

Notes:
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Exercises 7.3
Terms and Concepts y

1. T/F: A solid of revolution is formed by revolving a shape

around an axis. 7.
2. T/F: The Shell Method can only be used when the Washer
Method fails. X
3. T/F: The Shell Method works by integrating cross—sectional
areas of a solid. y
1 €1
4. T/F: When finding the volume of a solid of revolution that y=vx
was revolved around a vertical axis, the Shell Method inte- _
grates with respect to x. 8 0.5 | y=x
: > X
0.5 1

Problems

In Exercises 5 — 8, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
lution formed by revolving the region about the y-axis.

In Exercises 9 — 12, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
lution formed by revolving the region about the x-axis.

10 + 10 +
y = 5x

y = 5x
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11.

12. 0s | y=x

0.5 1

In Exercises 13 — 18, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revolution formed by rotating the region about each of the
given axes.

13. Region bounded by: y = v/x, y = O and x = 1.
Rotate about:

(a) the y-axis (c) the x-axis
(b) x=1 d y=1

14.

15.

16.

17.

18.

Region bounded by: y = 4 — x> and y = 0.

Rotate about:
(@) x=2 (c) the x-axis

(b) x=—2 (d) y=4

The triangle with vertices (1, 1), (1,2) and (2, 1).

Rotate about:
(a) the y-axis (c) the x-axis

(b) x=1 (d) y=2

Region bounded by y = x* — 2x+2andy = 2x — 1.

Rotate about:

(a) the y-axis () x=-1
(b) x=1

Region bounded by y = 1/4/x> + 1, x = 1 and the x and
y-axes.

Rotate about:

(a) the y-axis (b) x=1

Region bounded by y = 2x, y = xand x = 2.

Rotate about:

(a) the y-axis (c) the x-axis
(b) x=2 (d) y=4



7.4 Arc Length and Surface Area

In previous sections we have used integration to answer the following questions:
1. Given a region, what is its area?
2. Given a solid, what is its volume?

In this section, we address a related question: Given a curve, what is its
length? This is often referred to as arc length.

Consider the graph of y = sin x on [0, 7] given in Figure 7.23 (a). How long is
this curve? That s, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approximating; later, we will refine
our answer using limits to get an exact solution.

The length of straight—line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximating
the curve with straight lines and measuring their lengths.

In Figure 7.23 (b), the curve y = sinx has been approximated with 4 line
segments (the interval [0, 7] has been divided into 4 equally—lengthed subinter-
vals). It is clear that these four line segments approximate y = sin x very well
on the first and last subinterval, though not so well in the middle. Regardless,
the sum of the lengths of the line segments is 3.79, so we approximate the arc
length of y = sinx on [0, 7] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Leta = x; < x; < ... < X, < Xp41 = b be a partition
of [a, b] into n subintervals. Let Ax; represent the length of the i™" subinterval
[Xi, Xi 1]

Figure 7.24 zoom:s in on the i " subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line
segment as they hypotenuse of a right triangle whose sides have length Ax;
and Ay;. Using the Pythagorean Theorem, the length of this line segment is

\/ Ax? + Ay?. Summing over all subintervals gives an arc length approximation

n
L~ Z\/Ax,»z—FAyiz.
i—1

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a little algebra.

Notes:

7.4 Arc Length and Surface Area

1]
0.5 1
z x 3 7}
4 2 y
(a)
y
1 n
v |
2
0.5 1
x M 3 ;
4 2 ry
(b)

Figure 7.23: Graphing y = sinx on [0, 7]
and approximating the curve with line
segments.

Yit1

Vi o

Figure 7.24: Zooming in on the i ™ subin-
terval [x;, xi+1] of a partition of [a, b].
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370

In the above expression factor out a Ax? term:

n n 2
;\/Ax% LAy = ;,/Ax,z <1+ ﬁ;)

Now pull the Ax? term out of the square root:

n
Ay?
= ; 1+ AXZ AX,‘.

i

This is nearly a Riemann Sum. Consider the Ay?/Ax? term. The expression
Ay;/ Ax; measures the “change in y/change in x,” that is, the “rise over run” of
fon the it subinterval. The Mean Value Theorem of Differentiation (Theorem
27) states that there is a ¢; in the i ™" subinterval where f'(c;) = Ay;/ Ax;. Thus
we can rewrite our above expression as:

=Y V1+f(c) Ax.
i=1

This is a Riemann Sum. As long as f’ is continuous, we can invoke Theorem 38
and conclude

[ VT

Key Idea 27 Arc Length

Let f be differentiable on an open interval containing [a, b], where f’ is
also continuous on [a, b]. Then the arc length of ffromx = atox = b is

L:/b\/l )2 dx.

As the integrand contains a square root, it is often difficult to use the for-
mula in Key Idea 27 to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximating definite in-
tegrals. The following examples will demonstrate this.

Notes:



Example 213 Finding arc length
Find the arc length of f(x) = x*/2 from x = O to x = 4.

SOLUTION We begin by finding f'(x) = %xl/z. Using the formula, we

find the arc length L as

4 3 2
:/ 1—|—<X1/2> dx
O 2
4
9
:/ A/ 14 —xdx
0 4
4 1/2
/ (1—1—9x> dx
0 4
24 9 \*%
= —— 1 —
39( +4’() ’o

8
_ 5 (103/2 _ 1) ~ 9.07units.

A graph of fis given in Figure 7.25.

Example 214 Finding arc length
1
Find the arc length of f(x) = gxz —Inxfromx=1tox = 2.

SOLUTION This function was chosen specifically because the resulting
integral can be evaluated exactly. We begin by finding f'(x) = x/4 — 1/x. The

arc length is
L*/ \/1+ - == dx
/\/1+ = 7dX
XZ
/\(E“F +X7dX
x 1
= -+—-| d
[ e

Notes:

7.4 Arc Length and Surface Area

2 4

Figure 7.25: A graph of f(x) = /2 from
Example 213.
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0.5 +

t t > X
PN

Figure 7.26: A graph of f(x) = 1x* — Inx
from Example 214.

X v1+ cos?x

0 V2
/4 3/2
/2 1
3n/4 3/2

7r V2

Figure 7.27: A table of values of y =

v/1+ cos? x to evaluate a definite inte-
gral in Example 215.
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= X2+Inx
-\ 8

3
= 3 +1In2 =~ 1.07 units.

1

A graph of fis given in Figure 7.26; the portion of the curve measured in this
problem is in bold.

The previous examples found the arc length exactly through careful choice
of the functions. In general, exact answers are much more difficult to come by
and numerical approximations are necessary.

Example 215 Approximating arc length numerically
Find the length of the sine curve fromx = 0to x = 7.

SOLUTION This is somewhat of a mathematical curiosity; in Example
127 we found the area under one “hump” of the sine curve is 2 square units;
now we are measuring its arc length.

The setup is straightforward: f(x) = sinx and f'(x) = cosx. Thus

L:/ v/ 1+ cos? x dx.
0

This integral cannot be evaluated in terms of elementary functions so we will ap-
proximate it with Simpson’s Method with n = 4. Figure 7.27 gives v/1 + cos? x
evaluated at 5 evenly spaced points in [0, 7r]. Simpson’s Rule then states that

/ﬁ\/l—i-coszxdx%L?(ﬁ+4m+2(l)+4m+ﬁ)

4.
= 3.82918.

Using a computer with n = 100 the approximation is L ~ 3.8202; our approxi-
mation with n = 4 is quite good.

Notes:



Surface Area of Solids of Revolution

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of computing its volume, we now consider its
surface area.

We begin as we have in the previous sections: we partition the interval [a, b]
with n subintervals, where the it subinterval is [Xi, Xi+1]. On each subinterval,
we can approximate the curve y = f(x) with a straight line that connects f(x;)
and f(x;11) as shown in Figure 7.28(a). Revolving this line segment about the x-
axis creates part of a cone (called a frustum of a cone) as shown in Figure 7.28(b).
The surface area of a frustum of a cone is

27 - length - average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to

state that
L= /14 f"(c;))Ax

for some c; in the i ™" subinterval. The radii are just the function evaluated at the
endpoints of the interval. That is,

R =f(xiy1) and r=f(x;).

Thus the surface area of this sample frustum of the cone is approximately

2

Since fis a continuous function, the Intermediate Value Theorem states there
fOa) + f(Xit1)

> ; we can use this to rewrite

is some d; in [x;, x;+1] such that f(d;) =
the above equation as

27Tf(d,) V1 +f/(Ci)2AXj.

Summing over all the subintervals we get the total surface area to be approxi-
mately

n
Surface Area ~ Z 2rf(di) /14 f'(c;)? Ax;,
i=1

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following Key Idea.

Notes:

7.4 Arc Length and Surface Area

Xit1 b

Figure 7.28: Establishing the formula for
surface area.
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Figure 7.29: Revolving y = sinx on [0, 7]
about the x-axis.
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Key Idea 28 Surface Area of a Solid of Revolution

Let f be differentiable on an open interval containing [a, b] where f’ is
also continuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) > 0, about the x-axis is

b
Surface Area = 27r/ fOOV/ 1+ f/(x)? dx.
a

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b > 0, is

b
Surface Area = 27r/ xv/1+ f!(x)? dx.

a

(When revolving y = f(x) about the y-axis, the radii of the resulting frustum
are x; and x;11; their average value is simply the midpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Key Idea 28.)

Example 216 Finding surface area of a solid of revolution
Find the surface area of the solid formed by revolving y = sinx on [0, 7] around
the x-axis, as shown in Figure 7.29.

SOLUTION The setup is relatively straightforward. Using Key Idea 28,
we have the surface area SA is:

s
SA = 277/ sinxy\/1 + cos? x dx
0
s

1
= —27r§ (sinh_l(cosx) + cosxy/ 1+ cos? x)
0
=27 (\fZ + sinh ™! 1)

~ 14.42 units®.

The integration step above is nontrivial, utilizing an integration method called
Trigonometric Substitution.

Itis interesting to see that the surface area of a solid, whose shape is defined
by a trigonometric function, involves both a square root and an inverse hyper-
bolic trigonometric function.

Notes:





Example 217 Finding surface area of a solid of revolution
Find the surface area of the solid formed by revolving the curve y = x? on [0, 1]
about:

1. the x-axis

2. the y-axis.

SOLUTION

1. The integral is straightforward to setup:
1
SA = 27r/ xX*\/1+ (2x)2 dx.
0
Like the integral in Example 216, this requires Trigonometric Substitution.

= (2(8x3 +x)V1+44x2 — sinh_1(2x)) ‘1

32 0

- (18\@ — sinh~1 2)

32
~ 3.81 units?.

The solid formed by revolving y = x? around the x-axis is graphed in Figure
7.30 (a).

2. Since we are revolving around the y-axis, the “radius” of the solid is not
f(x) but rather x. Thus the integral to compute the surface area is:

1
SA = 27r/ xy/1+ (2x)% dx.
0

This integral can be solved using substitution. Set u = 1 + 4x?; the new
bounds are u = 1 to u = 5. We then have

5
:I/ Vudu
4 Ji
5
T2 32
43 1

- F(eiy

~ 5.33 units®.

The solid formed by revolving y = x2 about the y-axis is graphed in Figure
7.30 (b).

Our final example is a famous mathematical “paradox.”

Notes:

7.4 Arc Length and Surface Area

(b)

Figure 7.30: The solids used in Example
217.
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Figure 7.31: A graph of Gabriel’s Horn.
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Example 218 The surface area and volume of Gabriel’s Horn

Consider the solid formed by revolving y = 1/x about the x-axis on [1, c0). Find
the volume and surface area of this solid. (This shape, as graphed in Figure 7.31,
is known as “Gabriel’s Horn” since it looks like a very long horn that only a su-
pernatural person, such as an angel, could play.)

SOLUTION To compute the volume it is natural to use the Disk Method.
We have:
(oo}
1
V= 7T/ 3 dX
1 X
b
1
= lim 7 — dx
b—oo 1 X

m e (5)

lim 7 —
b—o0 X 1
li 1 1
m _ =
bl>oo7r b

= 7 units®.

Gabriel’s Horn has a finite volume of 7 cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straightforward to setup:

> q
SA = 27r/ “V1+ 1% dx.
1

Integrating this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 < y/1 + 1/x* on [1, c0), we can state that

<1 1
271'/ ;dx<27r/ ;Vl—i—l/x“dx.
1 1

By Key Idea 21, the improper integral on the left diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Horn with a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = 1/x* on [1, 00) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

A standard equation from physics is “Work = force x distance”, when the
force applied is constant. In the next section we learn how to compute work
when the force applied is variable.

Notes:




Exercises 7.4

Terms and Concepts

1. T/F: The integral formula for computing Arc Length was
found by first approximating arc length with straight line
segments.

2. T/F:Theintegral formula for computing Arc Length includes
a square—root, meaning the integration is probably easy.

Problems

In Exercises 3 — 12, find the arc length of the function on the
given interval.

3. f(x) =xon|0,1].
4. f(x) = V8xon[-1,1].

5. flx) = gxm —x"*on [0, 1].

1 1
6. f(x) = Ex3 + Zon (1, 4].

7. f(x) = 2x*/% — %ﬁon [0,9].

8. f(x) = coshxon [—In2,In2].

9. flx) = %(ex +e ) on[0,In5].
10. f(x) = 1—12x5 + 5% on [.1,1].

11. f(x) = In (sinx) on [ /6,7 /2].
12. f(x) =In (cosx) on [0, 7/4].

In Exercises 13 — 20, set up the integral to compute the arc
length of the function on the given interval. Do not evaluate
the integral.

13. f(x) = x* on [0, 1].
14. f(x) =x"°on [0, 1].
15. f(x) = v/xon[0,1].

16. f(x) = Inxon [1,e€].

17. f(x) = V1 —x? on [—1,1]. (Note: this describes the top
half of a circle with radius 1.)

18. f(x) = y/1 —x*/90n [—3, 3]. (Note: this describes the top
half of an ellipse with a major axis of length 6 and a minor
axis of length 2.)

19. f(x) = %on [1,2].

20. f(x) = secxon [—7/4,7/4].
In Exercises 21 — 28, use Simpson’s Rule, with n = 4, to ap-
proximate the arc length of the function on the given interval.
Note: these are the same problems as in Exercises 13-20.

21. f(x) = x" on [0, 1].

22. f(x) =xon|0,1].

23. f(x) = v/xon [0, 1]. (Note: f'(x) is not defined at x = 0.)

24. f(x) =Inxon[1,e€].

25. f(x) = V1 —x2 on [—1,1]. (Note: f'(x) is not defined at
the endpoints.)

26. f(x) = /1 —x2/9 on [-3,3]. (Note: f'(x) is not defined
at the endpoints.)

27. fx) = %on 1,2].

28. f(x) =secxon [—7/4,m/4].

In Exercises 29 — 33, find the surface area of the described
solid of revolution.

29. The solid formed by revolving y = 2x on [0, 1] about the
X-axis.

30. The solid formed by revolving y = x* on [0, 1] about the
y-axis.

31. The solid formed by revolving y = x* on [0, 1] about the
X-axis.

32. The solid formed by revolving y = /x on [0, 1] about the
X-axis.

33. The sphere formed by revolvingy = /1 — x? on [—1,1]
about the x-axis.
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Note: Mass and weight are closely re-
lated, yet different, concepts. The mass
m of an object is a quantitative measure
of that object’s resistance to acceleration.
The weight w of an object is a measure-
ment of the force applied to the object by
the acceleration of gravity g.

Since the two measurements are pro-
portional, w = m - g, they are often
used interchangeably in everyday conver-
sation. When computing work, one must
be careful to note which is being referred
to. When mass is given, it must be multi-
plied by the acceleration of gravity to ref-
erence the related force.
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7.5 Work

Work is the scientific term used to describe the action of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performedis W = F - d.

The S unit of force is the Newton, (kg-m/s?), and the Sl unit of distance is
a meter (m). The fundamental unit of work is one Newton—meter, or a joule
(). That is, applying a force of one Newton for one meter performs one joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (Ib) and distance is measured in feet (ft), hence work is measured in
ft—Ib.

When force is constant, the measurement of work is straightforward. For
instance, lifting a 200 Ib object 5 ft performs 200 - 5 = 1000 ft—Ib of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 ft rope up a vertical face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force function on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = ato x = b. We can
approximate the amount of work being done by partitioning [a, b] into subinter-
valsa = x; < x; < --- < Xp41 = b and assuming that F is constant on each
subinterval. Let ¢; be a value in the it subinterval [Xi, Xi+1]- Then the work done
on this interval is approximately W; =~ F(c;) - (xiz1 — i) = F(c;) Ax;, a constant
force x the distance over which it is applied. The total work is

n

W= i W; =~ Z F(C;)AX,‘.
i=1

i=1

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero give an exact value of work which can be evaluated through a definite
integral.

Key Idea 29 Work

Let F(x) be a continuous function on [a, b] describing the amount of force
being applied to an object in the direction of travel from distance x = a
to distance x = b. The total work W done on [a, b] is

W= /ab F(x) dx.

Notes:




Example 219 Computing work performed: applying variable force

A 60m climbing rope is hanging over the side of a tall clifi. How much work
is performed in pulling the rope up to the top, where the rope has a mass of
66g/m?

SOLUTION We need to create a force function F(x) on the interval [0, 60].

To do so, we must first decide what x is measuring: it is the length of the rope
still hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convention that x is the
amount of rope pulled in. This seems to match intuition better; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope still hanging is 60— x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The the mass of the
rope still hanging is 0.066(60 — x) kg; multiplying this mass by the acceleration
of gravity, 9.8 m/s?, gives our variable force function

F(x) = (9.8)(0.066)(60 — x) = 0.6468(60 — X).

Thus the total work performed in pulling up the rope is
60
W= / 0.6468(60 — x) dx = 1,164.24 ).
0

By comparison, consider the work done in lifting the entire rope 60 meters.
The rope weights 60 x 0.066 x 9.8 = 38.808 N, so the work applying this force
for 60 meters is 60 x 38.808 = 2,328.48 J. This is exactly twice the work calcu-
lated before (and we leave it to the reader to understand why.)

Example 220 Computing work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

SOLUTION From Example 219 we know the total work performed is
1,164.24 ). We want to find a height h such that the work in pulling the rope
from a height of x = 0 to a height of x = h is 582.12, half the total work. Thus
we want to solve the equation

h
/ 0.6468(60 — x) dx = 582.12
0

for h.

Notes:

7.5 Work
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Note: In Example 220, we find that half of h

the work performed in pulling up a 60 m / 0.6468(60 — x) dx = 582.12
rope is done in the last 42.43 m. Why is it 0 h

not coincidental that 60/v/2 = 42.43? (38.808X _ 0.3234)(2) ’ —582.12

0
38.808h — 0.3234h% = 582.12

—0.3234h? + 38.808h — 582.12 = 0.
Apply the Quadratic Formula.

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57. Thus about
half the work is done pulling up the first 17.5m the other half of the work is done
pulling up the remaining 42.43m.

Example 221 Computing work performed: applying variable force

A box of 100 Ib of sand is being pulled up at a uniform rate a distance of 50 ft
over 1 minute. The sand is leaking from the box at a rate of 1 Ib/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 Ib/ft.

1. How much work is done lifting just the rope?
2. How much work is done lifting just the box and sand?

3. What is the total amount of work performed?

SOLUTION

1. We start by forming the force function F.(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is F.(x) = 0.2(50 — x) = 10 — 0.2x. (Note that we do not
have to include the acceleration of gravity here, for the weight of the rope
per foot is given, not its mass per meter as before.) The work performed
lifting the rope is

50
w, = / (10 — 0.2x) dx = 250 ft—Ib.
0

Notes:
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2. The sand is leaving the box at a rate of 1 Ib/s. As the vertical trip is to take
one minute, we know that 60 |b will have left when the box reaches its final
height of 50 ft. Again letting x represent the height of the box, we have
two points on the line that describes the weight of the sand: whenx = 0,
the sand weight is 100 Ib, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 Ib, producing the point (50, 40). The slope of
this line is 22220 = —1.2, giving the equation of the weight of the sand
at height x as w(x) = —1.2x + 100. The box itself weighs a constant 5 Ib,
so the total force function is F,(x) = —1.2x+ 105. Integrating fromx = 0

to x = 50 gives the work performed in lifting box and sand:

50
W, = / (—1.2x + 105) dx = 3750 ftIb.
0

3. The total work is the sum of W, and W,: 250 4+ 3750 = 4000 ft—lb. We
can also arrive at this via integration:

50
W= / (Fr(x) + Fp(x)) dx
0
50
= / (10 — 0.2x — 1.2x + 105) dx
0

50
:/ (—1.4x 4 115) dx
0

= 4000 ft-1b.

Hooke’s Law and Springs

Hooke’s Law states that the force required to compress or stretch a spring x
units from its natural length is proportional to x; that is, this force is F(x) = kx
for some constant k. For example, if a force of 1 N stretches a given spring
2 cm, then a force of 5 N will stretch the spring 10 cm. Converting the dis-
tances to meters, we have that stretching this spring 0.02 m requires a force
of F(0.02) = k(0.02) = 1 N, hence k = 1/0.02 = 50 N/m.

Example 222 Computing work performed: stretching a spring

A force of 20 Ib stretches a spring from a natural length of 7 inches to a length
of 12 inches. How much work was performed in stretching the spring to this
length?

SOLUTION In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care

Notes:

7.5 Work
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that 20 |b of force stretches the spring to a length of 12 inches, but rather that
a force of 20 Ib stretches the spring by 5 in. This is illustrated in Figure 7.32;
we only measure the change in the spring’s length, not the overall length of the

spring.

Figure 7.32: lllustrating the important aspects of stretching a spring in computing work
in Example 222.

Converting the units of length to feet, we have
F(5/12) = 5/12k = 20 b.

Thus k = 48 Ib/ft and F(x) = 48x.
We compute the total work performed by integrating F(x) from x = 0 to
x=5/12:

5/12
W= / 48x dx
0

" 5/12
= 24x

0
— 25/6 ~ 4.1667 ft-Ib.

Pumping Fluids

Another useful example of the application of integration to compute work

Fluid Ib/ft3 kg/m?
Concrete 150 2400 comes in the pumping of fluids, often illustrated in the context of emptying a
Fuel Oil 55.46 890.13 storage tank by pumping the fluid out the top. This situation is different than
Gasoline 45.93 737.22 our previous examples for the forces involved are constant. After all, the force

lodine 307 4927 required to move one cubic foot of water (about 62.4 Ib) is the same regardless
Methanol 49.3 791.3 of its location in the tank. What is variable is the distance that cubic foot of
Mercury 844 13546 water has to travel; water closer to the top travels less distance than water at

Milk 63.6-65.4  1020-1050 the bottom, producing less work.

Water 624 1000 We demonstrate how to compute the total work done in pumping a fluid out

Figure 7.33: Weight and Mass densities of the top of a tank in the next two examples.

Notes:
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Example 223 Computing work performed: pumping fluids

A cylindrical storage tank with a radius of 10 ft and a height of 30 ft is filled with
water, which weighs approximately 62.4 Ib/ft>. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

SOLUTION We will refer often to Figure 7.34 which illustrates the salient
aspects of this problem.

We start as we often do: we partition an interval into subintervals. We orient
our tank vertically since this makes intuitive sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y-interval [0, 30] into n subintervals as

0=y1<ys <-- <Y1 =30

Consider the work W; of pumping only the water residing in the i ™" subinterval,
illustrated in Figure 7.34. The force required to move this water is equal to its
weight which we calculate as volume x density. The volume of water in this
subinterval is V; = 1027 Ay;; its density is 62.4 |b/ft3. Thus the required force is
62407 Ay; lb.

We approximate the distance the force is applied by using any y-value con-
tained in the it subinterval; for simplicity, we arbitrarily use y; for now (it will
not matter later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 ft. Thus the distance the water at
height y; travels is 35 — y; ft.

In all, the approximate work W; peformed in moving the water in the it
subinterval to a point 5 feet above the tank is

W; = 62407 Ay;(35 — y;).

To approximate the total work performed in pumping out all the water from the
tank, we sum all the work W; performed in pumping the water from each of the
n subintervals of [0, 30]:

n n
W~ Z w; = Z 62407 Ay;(35 — y;).
i=1 i=1
This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

30
W= / 62407 (35 — y) dy
0

= (62407 (35y — 1/2y?) EO

= 11,762,123 ft-Ib
/2 1.176 x 10’ ft—lb.

Notes:

7.5 Work

Figure 7.34: lllustrating a water tank in
order to compute the work required to
empty it in Example 223.

383



Chapter 7 Applications of Integration

y
35+

35—y

Figure 7.35: A simplified illustration for
computing work.

V(y) = m(% +2)°dy
—10 +

Figure 7.36: A graph of the conical water
tank in Example 224.
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We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.35 shows the tank from
Example 223 without the ith subinterval identified. Instead, we just draw one
differential element. This helps establish the height a small amount of water
must travel along with the force required to move it (where the force is volume
X density).

We demonstrate the concepts again in the next examples.

Example 224 Computing work performed: pumping fluids

A conical water tank has its top at ground level and its base 10 feet below ground.
The radius of the cone at ground level is 2 ft. It is filled with water weighing 62.4
Ib/ft® and is to be emptied by pumping the water to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

SOLUTION The conical tank is sketched in Figure 7.36. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the convention
of the wording given in the problem and let y = 0 represent ground level and
hence y = —10 represents the bottom of the tank. The actual “height” of the
water does not matter; rather, we are concerned with the distance the water
travels.

The figure also sketches a differential element, a cross—sectional circle. The
radius of this circle is variable, depending on y. When y = —10, the circle has
radius 0; when y = 0, the circle has radius 2. These two points, (—10,0) and
(0, 2), allow us to find the equation of the line that gives the radius of the cross—
sectional circle, which is r(y) = 1/5y + 2. Hence the volume of water at this
height is V(y) = w(1/5y + 2)2dy, where dy represents a very small height of
the differential element. The force required to move the water at height y is
F(y) = 62.4 x V(y).

The distance the water at height y travels is given by h(y) = 3 — y. Thus the
total work done in pumping the water from the tank is

0
W= / 62.47(1/5y +2)*(3 —y) dy
—10

0
1 17 8
= 62.47r/ (—y3 -y ——y+ 12) dy

—10

22
=62.27 - TO ~ 14,376 ft-Ib.

Notes:



Example 225 Computing work performed: pumping fluids

A rectangular swimming pool is 20 ft wide and has a 3 ft “shallow end” and a 6 ft
“deep end.” It is to have its water pumped out to a point 2 ft above the current
top of the water. The cross—sectional dimensions of the water in the pool are
given in Figure 7.37; note that the dimensions are for the water, not the pool
itself. Compute the amount of work performed in draining the pool.

SOLUTION For the purposes of this problem we choose to sety = 0
to represent the bottom of the pool, meaning the top of the water is at y = 6.
Figure 7.38 shows the pool oriented with this y-axis, along with 2 differential
elements as the pool must be split into two different regions.

The top region lies in the y-interval of [3, 6], where the length of the differen-
tial element is 25 ft as shown. As the pool is 20 ft wide, this differential element
represents a this slice of water with volume V(y) = 20 - 25 - dy. The water is
to be pumped to a height of y = 8, so the height function is h(y) = 8 — y. The
work done in pumping this top region of water is

6
W, = 62.4/ 500(8 — y) dy = 327, 600 ft-Ib.
3

The bottom region lies in the y-interval of [0, 3]; we need to compute the
length of the differential element in this interval.

One end of the differential element is at x = 0 and the other is along the line
segment joining the points (10, 0) and (15, 3). The equation of this line is y =
3/5(x—10); as we will be integrating with respect to y, we rewrite this equation
as x = 5/3y + 10. So the length of the differential element is a difference of
x-values: x = 0 and x = 5/3y + 10, giving a length of x = 5/3y + 10.

Again, as the pool is 20 ft wide, this differential element represents a thin
slice of water with volume V(y) = 20 - (5/3y + 10) - dy; the height function is
the same as before at h(y) = 8 — y. The work performed in emptying this part
of the pool is

3
W, = 62.4 / 20(5/3y + 10)(8 — ) dy — 299, 520 ft-Ib.
0
The total work in empyting the pool is

W = W, + W, = 327,600 + 299,520 = 627, 120 ft-Ib.

Notice how the emptying of the bottom of the pool performs almost as much
work as emptying the top. The top portion travels a shorter distance but has
more water. In the end, this extra water produces more work.

The next section introduces one final application of the definite integral, the
calculation of fluid force on a plate.

Notes:

7.5 Work

25 ft

3ft.

6 ft.
10 ft.

10 ft.

Figure 7.37: The cross—section of a swim-
ming pool filled with water in Example
225.
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Figure 7.38: Orienting the pool and show-
ing differential elements for Example 225.
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Exercises 7.5

Terms and Concepts
1. What are the typical units of work?

2. If a man has a mass of 80 kg on Earth, will his mass on the
moon be bigger, smaller, or the same?

3. If a woman weighs 130 Ib on Earth, will her weight on the
moon be bigger, smaller, or the same?

Problems

4. A 100 ft rope, weighing 0.1 lb/ft, hangs over the edge of a
tall building.

(a) How much work is done pulling the entire rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

5. A 50 m rope, with a mass density of 0.2 kg/m, hangs over
the edge of a tall building.

(a) How much work is done pulling the entire rope to the
top of the building?

(b) How much work is done pulling in the first 20 m?

6. A rope of length £ ft hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope has a weight density of d Ib/ft.

(a) How much work is done pulling the entire rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

7. A 20 m rope with mass density of 0.5 kg/m hangs over the
edge of a 10 m building. How much work is done pulling
the rope to the top?

8. A crane lifts a 2,000 Ib load vertically 30 ft with a 1” cable
weighing 1.68 Ib/ft.

(a) How much work is done lifting the cable alone?
(b) How much work is done lifting the load alone?

(c) Could one conclude that the work done lifting the ca-
ble is negligible compared to the work done lifting the
load?

9. A 100Ib bag of sand is lifted uniformly 120 ft in one minute.
Sand leaks from the bag at a rate of 1/4 Ib/s. What is the
total work done in lifting the bag?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A box weighing 2 Ib lifts 10 Ib of sand vertically 50 ft. A crack
in the box allows the sand to leak out such that 9 Ib of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in lifting
the box and sand?

Aforce of 1000 Ib compresses a spring 3 in. How much work
is performed in compressing the spring?

A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

Aforce of 50 Ib compresses a spring from a natural length of
18into 12 in. How much work is performed in compressing
the spring?

A force of 20 Ib stretches a spring from a natural length of
6 in to 8 in. How much work is performed in stretching the
spring?

A force of 7 N stretches a spring from a natural length of 11
c¢cm to 21 cm. How much work is performed in stretching
the spring from a length of 16 cm to 21 cm?

A force of f N stretches a spring d m from its natural length.
How much work is performed in stretching the spring?

A 20 Ib weight is attached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1ftto6in.

How much work is done in lifting the box 1.5 ft (i.e, the
spring will be stretched 1 ft beyond its natural length)?

A 20 |b weight is attached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1ftto6in.

How much work is done in lifting the box 6 in (i.e, bringing
the spring back to its natural length)?

A 5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass density of 737.22 kg/m>. Com-
pute the total work performed in pumping all the gasoline
to the top of the tank.

A 6 ft cylindrical tank with a radius of 3 ft is filled with wa-
ter, which has a weight density of 62.4 Ib/ft®. The water is
to be pumped to a point 2 ft above the top of the tank.

(a) How much work is performed in pumping all the wa-
ter from the tank?

(b) How much work is performed in pumping 3 ft of wa-
ter from the tank?

(c) At what point is 1/2 of the total work done?

A gasoline tanker is filled with gasoline with a weight den-
sity of 45.93 Ib/ft>. The dispensing valve at the base is
jammed shut, forcing the operator to empty the tank via



22.

pumping the gas to a point 1 ft above the top of the tank.
Assume the tank is a perfect cylinder, 20 ft long with a di-
ameter of 7.5 ft. How much work is performed in pumping
all the gasoline from the tank?

A fuel oil storage tank is 10 ft deep with trapezoidal sides,
5 ft at the top and 2 ft at the bottom, and is 15 ft wide (see
diagram below). Given that fuel oil weighs 55.46 Ib/ft>, find
the work performed in pumping all the oil from the tank to
a point 3 ft above the top of the tank.

5

23. A conical water tank is 5 m deep with a top radius of 3 m.

(This is similar to Example 224.) The tank is filled with pure
water, with a mass density of 1000 kg/m3.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top 2.5 m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

24. A water tank has the shape of a truncated cone, with di-

25.

26.

mensions given below, and is filled with water with a weight
density of 62.4 Ib/ft®. Find the work performed in pumping
all water to a point 1 ft above the top of the tank.

‘IO&

A water tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
density of 1000 kg/m>. Find the work performed in pump-
ing all water to a point 5 m above the top of the tank.

2m

S

A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with wa-
ter with a mass density of 1000 kg/m>. Find the work per-
formed in pumping all water to a point 1 m above the top
of the tank.

5m

T

/1

2m
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10 ft

......

Figure 7.39: A cylindrical tank in Example
226.

Figure 7.40: A rectangular tank in Exam-
ple 226.
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7.6 Fluid Forces

In the unfortunate situation of a car driving into a body of water, the conven-
tional wisdom is that the water pressure on the doors will quickly be so great
that they will be effectively unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiting until
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
options.)

How can this be true? How much force does it take to open the door of
a submerged car? In this section we will find the answer to this question by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equations:

Force
Area

Pressure = < Force = Pressure X Area.

In the context of fluids, we have the following definition.

Definition 26 Fluid Pressure

Let w be the weight—density of a fluid. The pressure p exerted on an
object at depth d in the fluidisp = w - d.

We use this definition to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Example 226 Computing fluid force

1. Acylindrical storage tank has a radius of 2 ft and holds 10 ft of a fluid with
a weight—density of 50 Ib/ft3. (See Figure 7.39.) What is the force exerted
on the base of the cylinder by the fluid?

2. Arectangular tank whose base is a 5 ft square has a circular hatch at the
bottom with a radius of 2 ft. The tank holds 10 ft of a fluid with a weight—
density of 50 Ib/ft3. (See Figure 7.40.) What is the force exerted on the
hatch by the fluid?

SOLUTION

1. Using Definition 26, we calculate that the pressure exerted on the cylin-
der’s base is w - d = 50 Ib/ft3 x 10 ft = 500 Ib/ft2. The area of the base is

Notes:



7.6 Fluid Forces

7 - 2% = 41 ft2. So the force exerted by the fluid is
F =500 x 47 = 6283 Ib.

Note that we effectively just computed the weight of the fluid in the tank.

2. The dimensions of the tank in this problem are irrelevant. All we are con-
cerned with are the dimensions of the hatch and the depth of the fluid.
Since the dimensions of the hatch are the same as the base of the tank
in the previous part of this example, as is the depth, we see that the fluid
force is the same. That is, F = 6283 Ib.

A key concept to understand here is that we are effectively measuring the
weight of a 10 ft column of water above the hatch. The size of the tank
holding the fluid does not matter.

The previous example demonstrates that computing the force exerted on a
horizontally oriented plate is relatively easy to compute. What about a vertically
oriented plate? For instance, suppose we have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?
Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all directions. Thus the pressure on any portion of a plate that is 1 ft
below the surface of water is the same no matter how the plate is oriented.
(Thus a hollow cube submerged at a great depth will not simply be “crushed”
from above, but the sides will also crumple in. The fluid will exert force on all
sides of the cube.)
So consider a vertically oriented plate as shown in Figure 7.41 submerged in
a fluid with weight—density w. What is the total fluid force exerted on this plate?
We find this force by first approximating the force on small horizontal strips.
Let the top of the plate be at depth b and let the bottom be at depth a. (For e N e g
now we assume that surface of the fluid is at depth 0, so if the bottom of the
plate is 3 ft under the surface, we have a = —3. We will come back to this later.) d
We partition the interval [a, b] into n subintervals /

a=y1 <y, <-<Ypp1=>b, / &4
} {
with the it" subinterval having length Ay;. The force F; exerted on the plate in / éa)
the it subinterval is F; = Pressure x Area.
The pressure is depth xw. We approximate the depth of this thin strip by Figure 7.41: A thin, vertically oriented
choosing any value d; in [y;, yi11]; the depth is approximately —d;. (Our conven- plate submerged in a fluid with weight—
tion has d; being a negative number, so —d; is positive.) For convenience, we let density w.

d; be an endpoint of the subinterval; we let d; = y;.
The area of the thin strip is approximately length x width. The width is Ay;.
The length is a function of some y-value ¢; in the it" subinterval. We state the

Notes:
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4ft

Figure 7.42: A thin plate in the shape of
an isosceles triangle in Example 227.

390

length is £(c;). Thus
F; = Pressure X Area
=—yi-wx £(q) - Ay;.

To approximate the total force, we add up the approximate forces on each of
the n thin strips:

n n
F= ZF/%Z—W')//'E(C/) Ay,
i=1 i=1

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to 0; we evaluate this limit with a definite
integral.

Key Idea 30 Fluid Force on a Vertically Oriented Plate

Let a vertically oriented plate be submerged in a fluid with weight—
density w where the top of the plate is at y = b and the bottom is at
y = a. Let £(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

b
F:/ w- (=) - £(y) dy.

2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate by
the fluid is

F= [ wedw)- ) o,

Example 227 Finding fluid force

Consider a thin plate in the shape of an isosceles triangle as shown in Figure 7.42
submerged in water with a weight—density of 62.4 Ib/ft3. If the bottom of the
plate is 10 ft below the surface of the water, what is the total fluid force exerted
on this plate?

SOLUTION We approach this problem in two different ways to illustrate
the different ways Key Idea 30 can be implemented. First we will lety = 0 rep-
resent the surface of the water, then we will consider an alternate convention.

Notes:
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1. We let y = 0 represent the surface of the water; therefore the bottom of

the plate is at y = —10. We center the triangle on the y-axis as shown in
Figure 7.43. The depth of the plate at y is —y as indicated by the Key Idea. y
We now consider the length of the plate at y. water line
We need to find equations of the left and right edges of the plate. The f’i*lAA;Af’ T
right hand side is a line that connects the points (0, —10) and (2, —6):
that line has equation x = 1/2(y + 10). (Find the equation in the familiar 2T &
y = mx-+b format and solve for x.) Likewise, the left hand side is described al T
by the line x = —1/2(y + 10). The total length is the distance between J
these two lines: ¢(y) = 1/2(y + 10) — (—1/2(y + 10)) = y + 10. (—2,—6) 2. —6)
The total fluid force is then: y 1

s 8 +

F= / 62.4(—y)(y + 10) dy
—10 —-10
(0, —10)

176
=62.4- 3 ~ 3660.8 |b.
Figure 7.43: Sketching the triangular

2. Sometimes it seems easier to orient the thin plate nearer the origin. For plate in Example 227 with the convention
instance, consider the convention that the bottom of the triangular plate that the water levelis at y = 0.
is at (0,0), as shown in Figure 7.44. The equations of the left and right
hand sides are easy to find. They arey = 2x and y = —2x, respectively,
which we rewrite as x = 1/2y and x = —1/2y. Thus the length function
isl(y) =1/2y — (-1/2y) =y.
As the surface of the water is 10 ft above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth function is the
distance between y = 10 and y; d(y) = 10 — y. We compute the total

fluid force as: water line
NP ANAN -
4
F= / 62.4(10 — y)(y) dy a
0 8+ S
~ 3660.8 Ib. I
6 8
\
The correct answer is, of course, independent of the placement of the plate in (<2.4) 2.4 <
the coordinate plane as long as we are consistent. \ 7y 1
2 —+
Example 228 Finding fluid force
Find the total fluid force on a car door submerged up to the bottom of its window M
in water, where the car door is a rectangle 40” long and 27” high (based on the —2-11] 1 2

dimensions of a 2005 Fiat Grande Punto.)
Figure 7.44: Sketching the triangular

SOLUTION The car door, as a rectangle, is drawn in Figure 7.45. Its plate in Example 227 with the convention
length is 10/3 ft and its height is 2.25 ft. We adopt the convention that the that the base of the triangle is at (0, 0).
Notes:
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top of the door is at the surface of the water, both of which are at y = 0. Using
the weight—density of water of 62.4 Ib/ft3, we have the total force as

y 0
(0,0) (33,0) F= / 62.4(—y)10/3 dy
X —2.25
0
y :/ —208y dy
—2.25
(0, —2.25) (3.3, —2.25) 0
= 7104y2‘
—2.25

Figure 7.45: Sketching a submerged car

door in Example 228. = 526.51b.

Most adults would find it very difficult to apply over 500 Ib of force to a car
door while seated inside, making the door effectively impossible to open. This
is counter—intuitive as most assume that the door would be relatively easy to
open. The truth is that it is not, hence the survival tips mentioned at the begin-
ning of this section.

Example 229 Finding fluid force
water line An underwater observation tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each vertically oriented porthole is to
NS N have a 3 ft diameter whose center is to be located 50 ft underwater. Find the
a total fluid force exerted on each porthole. Also, compute the fluid force on a
\T‘/ horizontally oriented porthole that is under 50 ft of water.
2+ j SOLUTION We place the center of the porthole at the origin, meaning
T the surface of the water is aty = 50 and the depth function will be d(y) = 50—y;
l\y - see Figure 7.46
— i The equation of a circle with a radius of 1.5 is x> + y?> = 2.25; solving for
-2 _il 1Yy x we have x = £4/2.25 — y2, where the positive square root corresponds to
the right side of the circle and the negative square root corresponds to the left
-2 ot to scale side of the circle. Thus the length function at depth y is ¢(y) = 2,/2.25 — y2.
Integrating on [—1.5,1.5] we have:
Figure 7.46: Measuring the fluid force on s
an underwater porthole in Example 229. F— 62.4/ 2(50 — y)m dy
—1.5
1.5
= 62.4/ (100y/2.25 — y2 — 2y\/2.25 — y?) dy
—-15
1.5 1.5
= 6240/ (V2.25 —y?) dy — 62.4/ (2y\/2.25 — y?) dy.
—1.5 —1.5

Notes:
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The second integral above can be evaluated using Substitution. Let u = 2.25—)?
with du = —2y dy. The new bounds are: u(—1.5) = 0 and u(1.5) = 0; the new
integral will integrate from u = 0 to u = 0, hence the integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus the
first integral evaluates to 6240 - 7 - 1.52/2 = 22,054. Thus the total fluid force
on a vertically oriented porthole is 22,054 |b.

Finding the force on a horizontally oriented porthole is more straightforward:

F = Pressure x Area = 62.4 - 50 x 7 - 1.5 = 22,054 Ib.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a vertically oriented circle whose center is at depth d is the
same as force applied to a horizontally oriented circle at depth d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revolution. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximating the solution, then refining the approximation, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is ben-
eficial as it helps solve problems found in the exercises, and other mathematical
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summation of approximations; each summation was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.

The next chapter addresses an entirely different topic: sequences and series.
In short, a sequence is a list of numbers, where a series is the summation of a list
of numbers. These seemingly—simple ideas lead to very powerful mathematics.

Notes:
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Exercises 7.6

Terms and Concepts

1. State in your own words Pascal’s Principle.

2. State in your own words how pressure is different from
force.

Problems

In Exercises 3 — 12, find the fluid force exerted on the given
plate, submerged in water with a weight density of 62.4
Ib/ft>.

11ft

2 ft

2 ft

11t

2 ft

1ft

6 ft

4t

6 ft

5 ft
7.
N NN NN NN
5ft
8.
5 ft
9.
2 ft
4 ft
5 ft
10.
4 ft
2ft
NN NN NS
I
11t
I
2 ft
11.



11t

12.
21t

2 ft

In Exercises 13 — 18, the side of a container is pictured. Find
the fluid force exerted on this plate when the container is full
of:

1. water, with a weight density of 62.4 Ib/ft>, and

2. concrete, with a weight density of 150 lb/ft>.

13. >ft

3ft

4 ft

14. aft

15.

16.

17.

18.

19.

20.

<
|
IS
|
x

N =

=3 =3
N
=+

i

y=—vV1—x*

i

y=+v1-—x2

(10

y=—-v9—x?

How deep must the center of a vertically oriented circular
plate with a radius of 1 ft be submerged in water, with a
weight density of 62.4 [b/ft?, for the fluid force on the plate
to reach 1,000 Ib?

How deep must the center of a vertically oriented square
plate with a side length of 2 ft be submerged in water, with
a weight density of 62.4 Ib/ft3, for the fluid force on the
plate to reach 1,000 Ib?
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8: SEQUENCES AND SERIES

This chapter introduces sequences and series, important mathematical con-
structions that are useful when solving a large variety of mathematical prob-
lems. The content of this chapter is considerably different from the content of
the chapters before it. While the material we learn here definitely falls under
the scope of “calculus,” we will make very little use of derivatives or integrals.
Limits are extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
information about a function and its derivatives at a point, such as f(1) = 3,
f'(1)=1,f"(1) = =2,f"(1) = 7, and so on. What can | say about f(x) itself?
Is there any reasonable approximation of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximations
of functions when limited knowledge of the function is available.

8.1 Sequences

We commonly refer to a set of events that occur one after the other as a se-
quence of events. In mathematics, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one after the other.”

For instance, the numbers 2, 4, 6, 8, ..., form a sequence. The order is impor-
tant; the first numberis 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and often this can be done. For instance, the
sequence above could be described by the function a(n) = 2n, for the values of
n =1,2,...To find the 10" term in the sequence, we would compute a(10).
This leads us to the following, formal definition of a sequence.

Definition 27 Sequence

A sequence is a function a(n) whose domain is N. The range of a
sequence is the set of all distinct values of a(n).

The terms of a sequence are the values a(1), a(2), ..., which are usually
denoted with subscripts as a4, ay, ....

A sequence a(n) is often denoted as {a, }.

Notation: We use N to describe the set of
natural numbers, that is, the integers 1, 2,
3, ..

Factorial: The expression 3! refers to the
number3-2-1=6.

Ingeneral,n! =n-(n—1)-(n—2)---2-1,
where n is a natural number.

We define 0! = 1. While this does not
immediately make sense, it makes many
mathematical formulas work properly.



Chapter 8 Sequences and Series

Example 230 Listing terms of a sequence
v List the first four terms of the following sequences.

o L= {3 2wy s =

(_1)n(n+1)/2

n! n?

SOLUTION

o= Lo 3, 2 9 3?9 3 7
n! .Cll—i as G4—E -

=3 az

RETRY

ETRY

n We can plot the terms of a sequence with a scatter plot. The “x”-axis is

1 2 3 4 used for the values of n, and the values of the terms are plotted on the

(a) y-axis. To visualize this sequence, see Figure 8.1(a).

2.00=4+(-1)'=3; a,=4+(-1)?=5;

a3 =4+(-1)* =3; as = 4+ (—1)* = 5. Note that the range of this

4+ sequence is finite, consisting of only the values 3 and 5. This sequence is

plotted in Figure 8.1(b).

, | B (—1)42)/2 o B (—1)%3)/2 1
da=mp =l ==y

v (_1)3(4)/2 _ E o (_1)4(5)/2 _ i

n 3 32 9 4 42 16’

_1)5(6)/2
(b) = ST L
52 25

1/2 %

1/4 | This sequence is plotted in Figure 8.1(c).
[ ]

1 2 3 4
012 Example 231 Determining a formula for a sequence
(_1)n n

n? .
each of the given sequences.

1. 2,5,8,11,14, ...
(c)
. ) . 2. 2,-5,10,-17,26, —-37, ...
Figure 8.1: Plotting sequences in Example

230. 3.1,1,2,6,24,120, 720, ...

55 15 5 25

We gave one extra term to begin to show the pattern of signsis “—, —, +,
+, —, —, ..., dueto the fact that the exponent of —1is a special quadratic.

0= Find the n'™ term of the following sequences, i.e., find a function that describes

Notes:
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SOLUTION We should first note that there is never exactly one function that
describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possibly more than one
answer.

1. Note how each term is 3 more than the previous one. This implies a linear
function would be appropriate: a(n) = a, = 3n+ b for some appropriate
value of b. Aswe wanta; = 2, wesetb = —1. Thusa, =3n— 1.

2. First notice how the sign changes from term to term. This is most com-
monly accomplished by multiplying the terms by either (—1)" or (—1)"1.
Using (—1)" multiplies the odd terms by (—1); using (—1)"* multiplies
the even terms by (—1). As this sequence has negative even terms, we
will multiply by (—1)"*1,

After this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a pattern of some sort: what do the numbers 2, 5,
10, 17, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
Thatis, 2 = 1' +1,5 = 22 + 1, 10 = 3% + 1, etc. Thus our formula is
a, = (—1)"(n? +1).

3. One who is familiar with the factorial function will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start withn = 1,
we cannot write a, = n!, for this misses the 0! term. Instead, we shift by
1, and write a, = (n — 1)1.

4. This one may appear difficult, especially as the first two terms are the
same, but a little “sleuthing” will help. Notice how the terms in the nu-
merator are always multiples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as a, = 3—2’ work?

When n = 1, we see that we indeed get 5/2 as desired. Whenn = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence.

A common mathematical endeavor is to create a new mathematical object
(for instance, a sequence) and then apply previously known mathematics to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will investigate what it means to find the limit of a sequence.

Notes:

8.1 Sequences
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Definition 28 Limit of a Sequence, Convergent, Divergent

Let {a,} be a sequence and let L be a real number. Given any € > 0, if
an m can be found such that |a, — L| < ¢ for all n > m, then we say the

limit of {a,}, as n approaches infinity, is L, denoted

If

lim a, = L.
n— o0

lim a, exists, we say the sequence converges; otherwise, the se-
n—o0

quence diverges.

This definition states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjective
terms, but hopefully the intent is clear.

This definition is reminiscent of the e—§ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definition; we

do so

here as well.

Theorem 55 Limit of a Sequence

Let {a,} be a sequence and let f(x) be a function whose domain contains
the positive real numbers where f(n) = a, for all n in N.

If

lim f(x) =L, then lim a, = L.

X—»00 n—o0

Theorem 55 allows us, in certain cases, to apply the tools developed in Chap-
ter 1 to limits of sequences. Note two things not stated by the theorem:

1.

If lim f(x) does not exist, we cannot conclude that lim a, does not exist.
X—00 n—o0

It may, or may not, exist. For instance, we can define a sequence {a,} =
{cos(2mn)}. Let f(x) = cos(2mx). Since the cosine function oscillates
over the real numbers, the limit lim f(x) does not exist.

X—00

However, for every positive integer n, cos(2wn) = 1,s0 lim a, = 1.
n—oo

. If we cannot find a function f(x) whose domain contains the positive real

numbers where f(n) = a, for all nin N, we cannot conclude lim a, does
n—o00
not exist. It may, or may not, exist.

Notes:



Example 232
Determine the convergence or divergence of the following sequences.

1. Using Theorem 11, we can state that lim

Theorem 56

Determining convergence/divergence of a sequence

n? — 1000 n

o) = P20 2 e =t 3 qan = {2

SOLUTION

3¢ —2x+1
X et = 3. (We could
x—oco X2 — 1000
have also directly applied I’Hépital’s Rule.) Thus the sequence {a,} con-
verges, and its limit is 3. A scatter plot of every 5 values of a,, is given in
Figure 8.2 (a). The values of a, vary widely near n = 30, ranging from
about —73 to 125, but as n grows, the values approach 3.

. The limit lim cos x does not exist, as cos x oscillates (and takes on every

X— 00
value in [—1, 1] infinitely many times). Thus we cannot apply Theorem 55.

The fact that the cosine function oscillates strongly hints that cos n, when
nisrestricted to N, will also oscillate. Figure 8.2 (b), where the sequence is
plotted, shows that this is true. Because only discrete values of cosine are
plotted, it does not bear strong resemblance to the familiar cosine wave.

We conclude that lim a, does not exist.
n—oo

. We cannot actually apply Theorem 55 here, as the function f(x) = (—1)*/x
is not well defined. (What does (—1)‘/2 mean? In actuality, thereisan an-
swer, but it involves complex analysis, beyond the scope of this text.) So
for now we say that we cannot determine the limit. (But we will be able
to very soon.) By looking at the plot in Figure 8.2 (c), we would like to
conclude that the sequence converges to 0. That is true, but at this point
we are unable to decisively say so.

It seems that {(—1)"/n} converges to 0 but we lack the formal tool to prove

it. The following theorem gives us that tool.

Absolute Value Theorem

Let {a,} be a sequence. If lim |a,| =0, then lim a, =0
n— oo n—oo

Example 233

Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

Notes:

10 +

—10 +

0.5

—05

0.5 +

—0.5 +

8.1 Sequences

3 — 2+ 1
x2 — 1000

(a)

an =

(c)

Figure 8.2: Scatter plots of the sequences
in Example 232.
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2 | (=1)"(n+1)
ap, =
° n
14 ® ® 00606060 0 o
5 10 15 20
-1+ e o o o
° ° [} [ ] [ ]
—2 te

Figure 8.3: A plot of a sequence in Exam-
ple 233, part 2.
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o= {0 2 g - {2

SOLUTION

1.

This appeared in Example 232. We want to apply Theorem 56, so consider
the limit of {|a,|}:

. . —1)"
lim |a,| = lim
n—oo n—oo n
. 1
= lim —
n—oo N
=0.

Since this limit is 0, we can apply Theorem 56 and state that lim a, = 0.
n—o0

. Because of the alternating nature of this sequence (i.e., every other term

—1)*(x+1
is multiplied by —1), we cannot simply look at the limit lim M
X—+00 X

We can try to apply the techniques of Theorem 56:

lim |a,| = lim
n—o0o n—o0o

(=1)"(n+1)
n
. n+1
lim
n—o0o n

=1.

We have concluded that when we ignore the alternating sign, the sequence
approaches 1. This means we cannot apply Theorem 56; it states the the
limit must be 0 in order to conclude anything.

Since we know that the signs of the terms alternate and we know that
the limit of |a,| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and —1, meaning the sequence
diverges. A plot of this sequence is given in Figure 8.3.

We continue our study of the limits of sequences by considering some of the
properties of these limits.

Notes:
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Theorem 57 Properties of the Limits of Sequences

Let {a,} and {b,} be sequences such that lim a, =L, lim b, = K, and
n— o0 n—oo
let ¢ be a real number.

1. lim (a, £by) =LEK 3. lim (a,/by) =L/K,K#0
n—o0 n—o00
2. lim (a,-by) =L -K 4. lim c-ap,=c-L
n—o0 n—o0
Example 234 Applying properties of limits of sequences

Let the following sequences, and their limits, be given:

n+1
n2

1 n
e {b,} = {(1 + ) }, and lim b, = e; and
n n— oo

e {¢cn} ={n-sin(5/n)},and lim ¢, =5.

o = {

}, and lim a, =0;
n—-o00

Evaluate the following limits.

1. lim (a, + bn) 2. lim (by - cpn) 3. lim (1000 - ay,)

n—o0 n—o0 n—oo
SOLUTION We will use Theorem 57 to answer each of these.

1. Since lim a, = 0and lim b, = e, we conclude that lim (a, + b,) =
n—oo n—oo n—oo

0 + e = e. So even though we are adding something to each term of the
sequence b,, we are adding something so small that the final limit is the
same as before.

2. Since lim b, = e and lim ¢, = 5, we conclude that lim (b, - c,) =
n—o0 n—o00 n—oo
e-5=>5e.
3. Since lim a, = 0, we have lim 1000a, = 1000 - 0 = 0. It does not

n—-o00 n—oo
matter that we multiply each term by 1000; the sequence still approaches

0. (It just takes longer to get close to 0.)

There is more to learn about sequences than just their limits. We will also
study their range and the relationships terms have with the terms that follow.
We start with some definitions describing properties of the range.

Notes:
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11 e
1
a, = —
n
1/2 + °
[ ]
1/4 |
/ ° . .
1/10 | ® e o o
123 45 6 7 8 910
(a)
y
[
200 +
a, = 2"
[}
100 +
[ ]
[
o a o ® : :
2 4 6 8
(b)

Figure 8.4: A plot of {a,} = {1/n} and
{an} = {2"} from Example 235.
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Definition 29 Bounded and Unbounded Sequences

A sequence {a,} is said to be bounded if there exists real numbers m
and M such that m < a, < Mforallnin N.

As

equence {a,} is said to be unbounded if it is not bounded.

A sequence {a,} is said to be bounded above if there exists an M such
that a, < M for all nin N; it is bounded below if there exists an m such
that m < a, forallnin N.

It follows from this definition that an unbounded sequence may be bounded

above
simply

or bounded below; a sequence that is both bounded above and below is
a bounded sequence.

Example 235 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1.

@={3} 26—

n

SOLUTION

1. The terms of this sequence are always positive but are decreasing, so we

have 0 < a, < 2 for all n. Thus this sequence is bounded. Figure 8.4(a)
illustrates this.

. The terms of this sequence obviously grow without bound. However, it is

also true that these terms are all positive, meaning 0 < a,. Thus we can
say the sequence is unbounded, but also bounded below. Figure 8.4(b)

illustrates this.

The previous example produces some interesting concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that
the sequence is bounded, using the following logic. First, “most” terms are near
0, so we could find some sort of bound on these terms (using Definition 28, the
bound is ). That leaves a “few” terms that are not near O (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is

indee

d true, as stated by the following theorem.

Notes:



Theorem 58 Convergent Sequences are Bounded

Let {a,} be a convergent sequence. Then {a,} is bounded.

In Example 234 we saw the sequence {b,} = {(1 + l/n)"}, where it was
stated that lim b, = e. (Note that this is simply restating part of Theorem 5.)
n—o0o

Even though it may be difficult to intuitively grasp the behavior of this sequence,
we know immediately that it is bounded.

Another interesting concept to come out of Example 235 again involves the
sequence {1/n}. We stated, without proof, that the terms of the sequence were
decreasing. That is, that a,11 < a, for all n. (This is easy to show. Clearly
n < n+ 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the
same as a, > dp4+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

Definition 30 Monotonic Sequences
1. A sequence {a,} is monotonically increasing if a, < a,; for all
n,i.e.,
01 <0 <a3< -0y < Opyp--e
2. Asequence {a,} is monotonically decreasing if a, > a,; for all
n,i.e.,

01 >0 203> -0y = Ay

3. Asequence is monotonic if it is monotonically increasing or mono-
tonically decreasing.

Example 236 Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an}Z{nj;l} 3. {an}{nz_nzloni_%}

2. {ay} = {r::ll} 4 {ay) = {’;}

SOLUTION In each of the following, we will examine a,+; —ap. If ap4+1—
an, > 0, we conclude that a, < ap+1 and hence the sequence is increasing. If

Notes:

8.1 Sequences

Note: Keep in mind what Theorem 58
does not say. It does not say that
bounded sequences must converge, nor
does it say that if a sequence does not
converge, it is not bounded.

Note: It is sometimes useful to call
a monotonically increasing sequence
strictly increasing if a, < ap41 for all
n; i.e, we remove the possibility that
subsequent terms are equal.

A similar statement holds for strictly de-
creasing.
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(a)
y
10 +
[ ]
[ ]
[ ]
°
5 [ ]
°
[ ]
° n? +1
a, =
N [ ] n n+1
t t n
5 10
(b)
y
°
15 +
[ ]
n*—9
Oy = ————
10 | n? — 10n + 26
°
5 | [ ]
[ ]
[ ] [ ]
* o . 4 t t n
5 10

Figure 8.5: Plots of sequences in Example
236.
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On+1 — 0p < 0, we conclude that a, > a,41 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a scatter plot of each sequence. These are useful as they sug-
gest a pattern of monotonicity, but analytic work should be done to confirm a
graphical trend.

_n+2 n+1
“n+1  n
~(n+2)(n) —(n+1)?
B (n+1)n
-1

n(n+1)

<0 foralln.

1. Ont+1 — Op

Since ap+1—a, < Oforall n, we conclude that the sequence is decreasing.

(n+1)2+1 n?+1

2 Gri1 = Gn =777 n+1
C((n+12+1)(n+1)— (P +1)(n+2)
N (n+1)(n+2)
o’ +4n+1
(n+1)(n+2)
>0 foralln.

Since a,+1 — a, > 0 for all n, we conclude the sequence is increasing.

3. We can clearly see in Figure 8.5 (c), where the sequence is plotted, that
it is not monotonic. However, it does seem that after the first 4 terms
it is decreasing. To understand why, perform the same analysis as done

before:
o (n+1)>-9 . n*-9
Gt = = 712 —10(n+ 1) + 26 n? — 10n+ 26
n?+4+2n—8 n*—9

T n2—8n+17 n?—10n+ 26
(n* +2n — 8)(n* — 10n + 26) — (n* — 9)(n* — 8n + 17)
(n? — 8n + 17)(n?> — 10n + 26)
B —10n” + 60n — 55
~ (n? —8n+17)(n? — 10n +26)
We want to know when this is greater than, or less than, 0. The denomi-

nator is always positive, therefore we are only concerned with the numer-
ator. Using the quadratic formula, we can determine that —10n% + 60n —

Notes:
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55 = 0whenn = 1.13,4.87. So for n < 1.13, the sequence is decreas-
ing. Since we are only dealing with the natural numbers, this means that
ai; > ap.

Between 1.13 and 4.87, i.e., forn = 2, 3 and 4, we have that a,; >
a, and the sequence is increasing. (That is, when n = 2, 3 and 4, the
numerator —10n% + 60n + 55 from the fraction above is > 0.)

When n > 4.87, i.e, for n > 5, we have that —10n%? 4+ 60n + 55 < 0,
hence a,41 — a, < 0, so the sequence is decreasing.

In short, the sequence is simply not monotonic. However, it is useful to
note that for n > 5, the sequence is monotonically decreasing.

4. Again, the plot in Figure 8.6 shows that the sequence is not monotonic,
but it suggests that it is monotonically decreasing after the first term. We

perform the usual analysis to confirm this. 54 o
PP G o S
mtl ™ n = (n+1)! n 15 | . ,

_(n+ 12 —n’(n+1) "=

B (n+1)! e

P +2n+1 05 | °

(n+1)! .
When n = 1, the above expression is > 0; for n > 2, the above expres- —————————%% e oo
sion is < 0. Thus this sequence is not monotonic, but it is monotonically > 10
decreasing after the first term. Figure 8.6: A plot of {a,} = {n?/n!} in
Example 236.

Knowing that a sequence is monotonic can be useful. In particular, if we
know that a sequence is bounded and monotonic, we can conclude it converges!
Consider, for example, a sequence that is monotonically decreasing and is bounded
below. We know the sequence is always getting smaller, but that there is a
bound to how small it can become. This is enough to prove that the sequence
will converge, as stated in the following theorem.

Theorem 59 Bounded Monotonic Sequences are Convergent

1. Let {a,} be a bounded, monotonic sequence. Then {a,} con-
verges; i.e., lim a, exists.
n— oo

2. Let {a,} be a monotonically increasing sequence that is bounded
above. Then {a,} converges.

3. Let {a,} be a monotonically decreasing sequence that is bounded
below. Then {a,} converges.

Notes:
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408

Consider once again the sequence {a,} = {1/n}. Itis easy to show it is
monotonically decreasing and that it is always positive (i.e., bounded below by
0). Therefore we can conclude by Theorem 59 that the sequence converges. We
already knew this by other means, but in the following section this theorem will
become very useful.

Sequences are a great source of mathematical inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
qguences and their formulae. (As of this writing, there are 257,537 sequences
in the database.) Perusing this database quickly demonstrates that a single se-
guence can represent several different “real life” phenomena.

Interesting as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {a,}, we are very
interested in a; +a, +as + - - -. Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many times, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to investigate in the next section.

Notes:
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Exercises 8.1

Terms and Concepts
1. Use your own words to define a sequence.
2. The domain of a sequence is the numbers.

3. Use your own words to describe the range of a sequence.

4. Describe what it means for a sequence to be bounded.

Problems

In Exercises 5 — 8, give the first five terms of the given se-
quence.

() - ()

In Exercises 9 — 12, determine the n" term of the given se-
quence.

9. 4,7,10,13,16, ...

10. 3, — L=

3
8

N w
W

11. 10, 20, 40, 80, 160, ...

1 1

12.11, 12 5"
2’6’ 24’ 120

In Exercises 13 — 16, use the following information to deter-
mine the limit of the given sequences.

.{an}—{zn_zo}, nILngoanzl
. {bn}:{<1+%)n}; nILn;obn:ez
e {cn} = {sin(3/n)}; lim ¢, =0

13. {a,} = {2; fzfo}

14. {an} = {3br — an}

15. {a,} = {sin(3/n) (1 + %)}

16. {an} = {(1+ i)Zn}

In Exercises 17 — 28, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-

quence.
17. {an} = }

2 p—
18. {a,} = 4n° —n+5

3n2 41

4"
19. {an —
@ ={%}

20. {an} = }, n>2
21. {an} = {In(n)}

22.

)

{
-
U
{
{(+2))
{
S
{
&=

23.

)
Py }
1n1"}

25.

{an}
{an}
24. {a,}
{an}
{an} =

26.

27. {an} =

1

28. {ar} = {(—1>"zn"i1}

In Exercises 29 — 34, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

29. {a,} = {sinn}

30. {an} = {tann}

31, {a,} = {(—1)"3” - 1}

n

32. {a,} = {3"2,’* 1}

33. {a,} = {ncosn}
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34. {an} ={2" —n!}

In Exercises 35 — 38, determine whether the sequence is
monotonically increasing or decreasing. If itis not, determine
if there is an m such that it is monotonic for all n > m.

35. {a,} = {niz}
36. {an} = {"2_6%”

37. {a,} = {(_1)"

n3

J

}

38.

39.

40.

41.

w-(2)

Prove Theorem 56; that is, use the definition of the limit of a
sequence to show thatif lim |a,| = 0, then lim a, = 0.
n—oo n—oo

Let {a.} and {b,} be sequences such that lim a, = Land

n— oo
lim b, =K.
n—oo

(a) Show thatif a, < b, forall n, then L < K.

(b) Give an example where L = K.

Prove the Squeeze Theorem for sequences: Let {a,} and
{bn} be such that lim a, = Land lim b, = L, and let
n—o0

n—o0o

{cn} be such thata, < ¢, < b, forall n. Then lim ¢, =1L

n—o00



8.2 Infinite Series

Given the sequence {a,} = {1/2"} =1/2, 1/4, 1/8, ..., consider the follow-
ing sums:

ax = 1/2 = 1/2
a1+ a; = 1/2+1/4 = 3/4
a1+ a0, + 03 = 1/2+1/4+1/8 = 7/8
a1+a,+0s5+a, = 1/2+1/4+1/84+1/16 = 15/16
In general, we can show that
2" -1 1
ap+a+az+---+a, = o :1—5.

Let S, be the sum of the first n terms of the sequence {1/2"}. From the above,
we see that S; = 1/2, S, = 3/4, etc. Our formula at the end shows that S, =
1-1/2".

Now consider the following limit: lim S, = lim (1—1/2") = 1. This limit

n—o0o n—o0

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2"} is 1.

This example illustrates some interesting concepts that we explore in this
section. We begin this exploration with some definitions.

Definition 31 Infinite Series, n'" Partial Sums, Convergence, Divergence

Let {a,} be a sequence.

o0
1. The sum Z a, is an infinite series (or, simply series).

n=1

n
2. LetS, = Z a;; the sequence {S,} is the sequence of n'" partial sums of {a, }.

i=1

o0

3. If the sequence {S,} converges to L, we say the series Z a, converges to L,

n=1

oo
and we write Z a, = L.

n=1

oo
4. If the sequence {S,} diverges, the series Z a, diverges.

n=1

Notes:

8.2

Infinite Series
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o0

Using our new terminology, we can state that the series Z 1/2" converges,

n=1
o0
and » 1/2"=1.
n=1

We will explore a variety of series in this section. We start with two series
that diverge, showing how we might discern divergence.

Example 237 Showing series diverge

1. Let {a,} = {n?}. Show Z a, diverges.

n=1

2. Let {b,} = {(—1)"*1}. Show Z b, diverges.

n=1

SOLUTION

1. Consider S,, the nt" partial sum.

Sh=01+a+a3+-+a,

=124+224+3% .. +n?

By Theorem 37, this is

n(n+1)(2n+1)

6
o0
Since lim S, = oo, we conclude that the series an diverges. It is
n—oo 1
n=

o0
instructive to write Z n* = oo for this tells us how the series diverges: it
n=1
grows without bound.
A scatter plot of the sequences {a,} and {S,} is given in Figure 8.7(a).
The terms of {a,} are growing, so the terms of the partial sums {S,} are
growing even faster, illustrating that the series diverges.

2. The sequence {b,} starts with 1, —1, 1, —1, .... Consider some of the

Notes:
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partial sums S, of {b,}:

S$1=1

S;,=0 y

S3 = ¢
S4=0 300 +

1 nisodd
0 n iseven
lates, repeating 1, 0, 1, O, ..., we conclude that lim S, does not exist,

This pattern repeats; we find that S, = . As {S,} oscil- 200

n— o0 100 ° o
e’} ° °
hence » (—1)"** diverges. R : o * |
n=1 t } n
5 10
A scatter plot of the sequence {b,} and the partial sums {S,} is given in
Figure 8.7(b). When nis odd, b, = S, so the marks for b, are drawn s o5
oversized to show they coincide.
(a)
While it is important to recognize when a series diverges, we are generally v
more interested in the series that converge. In this section we will demonstrate 1 © © © o
a few general techniques for determining convergence; later sections will delve
deeper into this topic. 05 |
Geometric Series e o>
5 10
One important type of series is a geometric series. —0.5 ¢
-1 e o o o o
Definition 32 Geometric Series
e b, S,
A geometric series is a series of the form
€ (b)
dr=14r4rP 4P+
n=0 Figure 8.7: Scatter plots relating to Exam-
ple 237.

Note that the index startsatn = 0, notn = 1.

We started this section with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properties.

Notes:
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Theorem 60 Convergence of Geometric Series
o0

Consider the geometric series Z r.
n=0
1—rntt
1. The n'" partial sumis: S, = o
—r
2. The series converges if, and only if, [r| < 1. When |r| < 1,

1

nz:;rnzl—r'

According to Theorem 60, the series
oo 0 2
1 1 1 1
—_— -_— = 1 —_— _ ...
Sa=>(3) ceieie
n=0 n=0

1

o0
1
converges as r = 1/2, and Z o = 171/2 = 2. This concurs with our intro-
n=0

ductory example; while there we got a sum of 1, we skipped the first term of 1.

Example 238 Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.
o0 3 n o0 71 n o0
1. - 2. — 3. 3"
y >3 2x(3) X
n=2 n=0 n=0
2+ . ° SOLUTION
[ ]
. 1. Since r = 3/4 < 1, this series converges. By Theorem 60, we have that
[ ]
1+ ° > n
3 1
—_ = — = 4
. >(3) -
° o .\ n=0
; “‘ 6 ; * 1’0 n However, note the subscript of the summation in the given series: we are
to start with n = 2. Therefore we subtract off the first two terms, giving:

e d, oS,
> /3\" 3 9
Z ) =4-1-=2Z,
4 4 4

Figure 8.8: Scatter plots relating to the se- n=2

ries in Example 238. L -
This is illustrated in Figure 8.8.

Notes:
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2. Since |r| = 1/2 < 1, this series converges, and by Theorem 60,

>(5) -t

n=0

The partial sums of this series are plotted in Figure 8.9(a). Note how the
partial sums are not purely increasing as some of the terms of the se-
quence {(—1/2)"} are negative.

3. Sincer > 1, the series diverges. (This makes “common sense”; we expect

the sum
1+3+9+4+27+81+243+---

to diverge.) This is illustrated in Figure 8.9(b).
p-Series

Another important type of series is the p-series.

Definition 33 p-Series, General p-Series

1. A p-series is a series of the form

=1
Z— where p > 0.

ne’
n=1

2. A general p—series is a series of the form

o0
1
Z Wa where p > 0 and g, b are real numbers.
an

n=1

Like geometric series, one of the nice things about p—series is that they have
easy to determine convergence properties.

Theorem 61 Convergence of General p—Series

o0

1

A general p—series E —— will converge if, and only if, p > 1.
“— (an + b)?

Notes:

8.2 Infinite Series
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Figure 8.9: Scatter plots relating to the se-
ries in Example 238.

Note: Theorem 61 assumes thatan+b #
0 forall n. If an + b = 0 for some n, then
of course the series does not converge re-
gardless of p as not all of the terms of the
sequence are defined.
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Example 239 Determining convergence of series
Determine the convergence of the following series.

=1 =1 > 1
1 — 3. — 5. S B
2 2V 2 sy
oo oo o0
1 (—1)” 1
2> = 43— 6> o
n=1 n=1 n=1
SOLUTION

1. Thisis a p—series with p = 1. By Theorem 61, this series diverges.

This series is a famous series, called the Harmonic Series, so named be-
cause of its relationship to harmonics in the study of music and sound.

2. This is a p—series with p = 2. By Theorem 61, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected
result is that this series converges to 72 /6.

3. This is a p—series with p = 1/2; the theorem states that it diverges.

4. This is not a p—series; the definition does not allow for alternating signs.
Therefore we cannot apply Theorem 61. (Another famous result states
that this series, the Alternating Harmonic Series, converges to In 2.)

5. This is a general p—series with p = 3, therefore it converges.

6. This is not a p—series, but a geometric series with r = 1/2. It converges.

Later sections will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determining what
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 240 Telescoping series
= /1 1
Evaluate the sum Z ( — )
n n+1
n=1
Notes:



8.2 Infinite Series

SOLUTION It will help to write down some of the first few partial sums
of this series.

1 1 1
Sl = — — — =1—- — y
1 2 2 1]
1 1 1 1 1
S, = _— = _ — = =1—- — o o ©®
= (i72)+(3) ;
s (Lot (o) (il .1 ‘
T \1 2 2 3 34 ~Ta 05| o e
s, — 1 1 n 1 1 n 1 1 n 1 1 1 1
T\ 2 2 3 3 4 4 s s .
[ ]
—1 o+ % ® e o000 e,
Note how most of the terms in each partial sum are canceled out! In general, 2 4 6 8 10
1
we see that S, = 1 — ——. The sequence {S,} converges, as lim S, = edn oS,
n+1 n—o00
o0
. 1 1 1 . .
lim (1— = 1, and so we conclude that Z B = 1. Par- Figure 8.10: Scatter plots relating to the
n—eo n+1 ‘o \n n+1l series of Example 240.

tial sums of the series are plotted in Figure 8.10.

The series in Example 240 is an example of a telescoping series. Informally, a
telescoping series is one in which the partial sums reduce to just a finite number
of terms. The partial sum S,, did not contain n terms, but rather just two: 1 and
1/(n+1).

When possible, seek a way to write an explicit formula for the n* partial sum
Sp. This makes evaluating the limit nll)r'gc S, much more approachable. We do so

in the next example.

Example 241 Evaluating series
Evaluate each of the following infinite series.

oo o0
2 n+1
1. _ 2. In
Z n?+2n Z < n >
n=1 n=1
SOLUTION

1. We can decompose the fraction 2/(n? + 2n) as

2 1 1

n+2n n n+2

(See Section 6.5, Partial Fraction Decomposition, to recall how this is done,
if necessary.)

Notes:
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Expressing the terms of {S,} is now more instructive:
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[N
—
Il
N
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RN
[N,
Nk ok o»n
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Wik Wik Wik

+
TN
Wl
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EEE
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[ NN
—
+
N
[N
|
N
N———
Il
-
+
N
<))

1> . We again have a telescoping series. In each partial sum, most of the terms
o © 1 1 1
o ®° ¢ cancel and we obtain the formula 5, = 1 + 2 nr 1 ni2 Taking
[ ]
i ° limits allows us to determine the convergence of the series:
° 1 1 1 3 =1 3
0.5 | lim S, = lim (1+ - — —— — =—, so = —.
n—oo n—>oc( +2 n+1 n+2) 2 nz_;anan 2
. —
° ®® 060 0404,, This is illustrated in Figure 8.11(a).
2 4 6 8 10 ) o ] ] )
2. We begin by writing the first few partial sums of the series:
ed, oS,
(a) S1=1In(2)
S=In(2)+1 3
, >, =1In(2) +1In 5

al ngln(Z)—l—ln(;)—i—ln(:)
54:In(2)+ln<;)+In<:>+ln<z>

At first, this does not seem helpful, but recall the logarithmic identity:
Inx + Iny = In(xy). Applying this to S, gives:

p— n
| ® o o o o o oo oo 3 4 5 2 3 45
50 100 Sa=In(2)+In{ = In{ = n{-)]=In|--z-2-- =1In(5).
@i (3)n(3)n(5) =r(5338) =
e ap oS,
We can conclude that {S,} = {In(n + 1)}. This sequence does not con-
(b)

oo
n+1
verge, as lim S, = oo. Therefore E In ( + ) = oo; the series di-
n—o0 n

Figure 8.11: Scatter plots relating to the R n=1 .
series in Example 241. verges. Note in Figure 8.11(b) how the sequence of partial sums grows

Notes:
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slowly; after 100 termes, it is not yet over 5. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not.

We are learning about a new mathematical object, the series. As done be-
fore, we apply “old” mathematics to this new topic.

Theorem 62 Properties of Infinite Series

oo oo
Let Z a, =1, Zb,, = K, and let ¢ be a constant.

n=1 n=1

oo oo
1. Constant Multiple Rule: Zc -a, =CcC- Zan =c-L.

n=1 n=1

o0 (o) (o)
2. Sum/Difference Rule: Z @ 3=l — Z a, £ Zb,, =L+K.
n=1 n=1

n=1

Before using this theorem, we provide a few “famous” series.

Key Idea 31 Important Series
o0
L hat the ind ithn=20
1. Zm =e. (Note that the index starts with n = 0.)
n=0
0 2
1 s
22 7%
n=1
N [e’s} ( 1)2n+1 _ 7.(._2
‘~ n 12
oo
=1 n
© Y prics
2n+1 4
n=0
o0
1 . . , ,
5. Z - diverges. (This is called the Harmonic Series.)
n=1
o
6. Z I In2. (This is called the Alternating Harmonic Series.)
n=1
Notes:

8.2

Infinite Series
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Figure 8.12: Scatter plots relating to the
series in Example 242.
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Example 242 Evaluating series
Evaluate the given series.

[ee] 1(.,.2 [ee]
(=1)"*(n* —n) 1000 1,1 1 1
Ly ——————= 2 3.+t +
; n3 ; n! 16+25+36+49+
SOLUTION

1. We start by using algebra to break the series apart:

o0 (_1)n+1 (nz _ n) 0 (_1)n+1n2 (_1)n+1n
Z n3 Z ( n3 - n3 )

n=1 n=1
> (71)n+1 e (71)n+1
-y By B
n=1 n=1

71_2
=1In(2) — — ~ —0.1293.
12

This is illustrated in Figure 8.12(a).

2. This looks very similar to the series that involves e in Key Idea 31. Note,
however, that the series given in this example starts with n = 1 and not
n = 0. The first term of the series in the Key Idea is 1/0! = 1, so we will
subtract this from our result below:

o0 oo
1000 1
D T =003
n=1 n=1
000 - (e — 1) ~ 1718.28.

This is illustrated in Figure 8.12(b). The graph shows how this particular
series converges very rapidly.

o0
3. The denominators in each term are perfect squares; we are adding Z —
n

n=4
(note we start with n = 4, not n = 1). This series will converge. Using the

Notes:



formula from Key Idea 31, we have the following:

> 1 1 &1
P DD
n=1 n=1 n=4
1 1 X1
D=
n=1 n=1 n=4

72 1 1 1 =1
6_(1+4+9>:§nz
2 49 <1
R

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
section, yet it still may “take some getting used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach o0 or it may oscillate), and:
(a) The series will still diverge if the first term is removed.
(b) The series will still diverge if the first 10 terms are removed.
(c) The series will still diverge if the first 1, 000, 000 terms are removed.
(d) The series will still diverge if any finite number of terms from any-

where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.

Notes:

8.2

Infinite Series
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Theorem 63 nth—Term Test for Convergence/Divergence
o0
Consider the series Z a,.
n=1
(oo}
1. IfZa,, converges, then lim a, = 0.
=1 n— o0

oo
2. If lim a, # 0, then Zan diverges.
n—oo

n=1

Note that the two statements in Theorem 63 are really the same. In order
to converge, the limit of the terms of the sequence must approach 0; if they do
not, the series will not converge.

Looking back, we can apply this theorem to the series in Example 237. In
that example, the n™" terms of both sequences do not converge to 0, therefore

we can quickly conclude that each series diverges.
o0

Important! This theorem does not state that if lim a, = 0 then ZG”
n—oo

n=1
converges. The standard example of this is the Harmonic Series, as given in Key

Idea 31. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic Series,
o0

Z 1/n, diverges.

n=1

Theorem 64 Infinite Nature of Series

The convergence or divergence remains unchanged by the addition or
subtraction of any finite number of terms. That is:

1. A divergent series will remain divergent with the addition or sub-
traction of any finite number of terms.

2. A convergent series will remain convergent with the addition or
subtraction of any finite number of terms. (Of course, the sum will
likely change.)

oo
1
Consider once more the Harmonic Series Z - which diverges; that is, the

n=1

Notes:



sequence of partial sums {S,} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of the
first 10 million terms of the Harmonic Series is about 16.7. Removing the first 10
million terms from the Harmonic Series changes the nt partial sums, effectively
subtracting 16.7 from the sum. However, a sequence that is growing without
bound will still grow without bound when 16.7 is subtracted from it.

The equations below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equation shows us subtracting these first 10 mil-
lion terms from both sides. The final equation employs a bit of “psuedo—math”:
subtracting 16.7 from “infinity” still leaves one with “infinity.”

oo 10,000,000 0

P -
n Z n n

n=1 n=1 n=10,000,001
10,000,000 oo

o0 y 5 1 1

Z a Z P n

n=1 n n=1 n n=10,000,001

oo — 16.7 = 00.

This section introduced us to series and defined a few special types of series
whose convergence properties are well known: we know when a p-series or
a geometric series converges or diverges. Most series that we encounter are
not one of these types, but we are still interested in knowing whether or not
they converge. The next three sections introduce tests that help us determine
whether or not a given series converges.

Notes:

8.2

Infinite Series
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Exercises 8.2

Terms and Concepts

1. Use your own words to describe how sequences and series
are related.

2. Use your own words to define a partial sum.
o0
3. Given a series Z an, describe the two sequences related

n=1

to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F:1f {a,} is convergent, then Z a, is also convergent.

n=1
Problems
In Exercises 6 — 13, a series Z ap is given.
n=1

(a) Give the first 5 partial sums of the series.

(b) Give a graph of the first 5 terms of a, and S, on the
same axes.

=1
11. Zy
o0 9 n
12. Z‘: <_E)

oo
13. Z

In Exercises 14 — 19, use Theorem 63 to show the given series
diverges.

= 3n?
14. —
; n(n+2)

15. Y 5

16. i 1';!"

5" —n°
17. > e
n=1

oo

2"+ 1
18. ) St

n=1

19. i <1+ %)"

n=1

In Exercises 20 — 29, state whether the given series converges
or diverges.

20. inls

21. Zsin

2.y =

23. > n*

24. Y \/n

5. 320

26. i (% + %)
27.

=1
28.25



In Exercises 30 — 44, a series is given.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

(a) Find a formula for S,, the n'" partial sum of the series.

(b) Determine whether the series converges or diverges.
If it converges, state what it converges to.

=1
>
n=0

P+2°+33 44+

41.

42.

43.

46.

. Break the Harmonic Series into the sum of the odd and even

terms:

1 = 1 1
;E_;anl—’_n:l%'
The goal is to show that each of the series on the right di-
verge.

oo

1 1
2n—1 2n’
n=1

(a) Show why Z
n=1

(Compare each ™ partial sum.)

=1 =1
(b) Show why > <14y =
pat 2n—1 et 2n

(c) Explain why (a) and (b) demonstrate that the series
of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both
converge or both diverge.)

(d) Explain why knowing the Harmonic Series is diver-
gent determines that the even and odd series are also
divergent.

Show the series Z ( n diverges.
n=1

2n—1)(2n 4+ 1)
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Note: Theorem 65 does not state that
the integral and the summation have the
same value.

(b)

Figure 8.13: lllustrating the truth of the
Integral Test.

426

8.3 Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Section 8.6. Theorems 60 and 61 give criteria for
when Geometric and p-series converge, and Theorem 63 gives a quick test to
determine if a series diverges. There are many important series whose conver-
gence cannot be determined by these theorems, though, so we introduce a set
of tests that allow us to handle a broad range of series. We start with the Inte-
gral Test.

Integral Test

We stated in Section 8.1 that a sequence {a,} is a function a(n) whose do-
main is N, the set of natural numbers. If we can extend a(n) to R, the real num-
bers, and it is both positive and decreasing on [1, c0), then the convergence of

x oo
Z a, is the same as / a(x) dx.
1

n=1

Theorem 65 Integral Test

Let a sequence {a,} be defined by a, = a(n), where a(n) is continuous,
o0
positive and decreasing on [1, 00). Then Z a, converges, if, and only if,

n=1

/ a(x) dx converges.
1

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 8.13(a), the height of each rectangle is a(n) = a, forn = 1,2,...,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that

/OO a(x) dx < Z an. (8.1)
1 n=1

In Figure 8.13(b), we draw rectangles under y = a(x) with the Right-Hand rule,

starting with n = 2. This time, the area of the rectangles is less than the area
o0 00

under y = a(x), so Za,, < / a(x) dx. Note how this summation starts
- 1

n=
with n = 2; adding a; to both sides lets us rewrite the summation starting with

Notes:



8.3 Integral and Comparison Tests

n=1
0 [e%s}
> an<a +/ a(x) dx. (8.2)
n=1 1
Combining Equations (8.1) and (8.2), we have
o) o) 00
Z a, < a;+ / a(x)dx < a; + Z ap. (8.3)
n=1 1 n=1
From Equation (8.3) we can make the following two statements:
e’} oo e’}
1. Ifz a, diverges, so does/ a(x) dx (becausez an < 01+/ a(x) dx)

n=1 1 n=1
oo o) o0 oo

2. Ifz a, converges, so does / a(x) dx (because/ a(x)dx < Z an.)
n=1 ! 1 n=1

Therefore the series and integral either both converge or both diverge. Theo-

rem 64 allows us to extend this theorem to series where a(n) is positive and v
decreasing on [b, co) for some b > 1. 0s }
e0®°® L

Example 243 Using the Integral Test 0.6 | o o°

oo °
Determine the convergence of Z Inizn (The terms of the sequence {a,} = o

Pt n 0.4 + °
{Inn/n?} and the n'" partial sums are given in Figure 8.14.) . ¢

N [ ]
[ ]

SOLUTION Figure 8.14 implies that a(n) = (Inn)/n? is positive and de- B "-...” .
creasing on [2,00). We can determine this analytically, too. We know a(n) is 5 4 6 8 10 12 14 16 18 20
positive as both Inn and n? are positive on [2,00). To determine that a(n) is
decreasing, consider a’(n) = (1 — 21Inn)/n3, which is negative for n > 2. Since s o5
a’(n) is negative, a(n) is decreasing.

% |n x Figure 8.14: Plotting the sequence and

Applying the Integral Test, we test the convergence of / Z dx. Integrat- series in Example 243.

1
ing this improper integral requires the use of Integration by Parts, with u = In x
and dv = 1/x* dx.

“Inx
/ n—dx— lim /
1 b—o0

= lim —— Inx
b— o0

/—dx

Notes:
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. 1 1
= lim ——Inx— —
b—oco X X1
= lim 1— — — —. Apply U'Hopital’s Rule:
b— o0 b

o
. * Inx Inn
Since — dx converges, so does E —
1 X n=1 n

Theorem 61 was given without justification, stating that the general p-series
oo

1
Z m converges if, and only if, p > 1. In the following example, we
n=1

prove this to be true by applying the Integral Test.

Example 244 Using the Integral Test to establish Theorem 61.
oo

1
Use the Integral Test to prove that Z m convergesif,and onlyif, p > 1.
n=1

oo
1
SOLUTION Consider the integral —— dx; assumin 1,
g /1 (ax+ b gp #

o0 c
/ _ dx = lim / _r dx
1 (ax+b)P c>oo J; (ax+ b)P

1
= lim ———(ax+ b)lf”‘

c

c—oo a(l —p) 1
. 1 1—p 1-p
:Clngom((ac+b) —(a+b)'7P).

This limit converges if, and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 21.)

o]
1
Therefore E ——— converges if, and only if, p > 1.
“— (an + b)?

We consider two more convergence tests in this section, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

Notes:



Direct Comparison Test

Theorem 66 Direct Comparison Test

Let {a,} and {b,} be positive sequences where a, < b, foralln > N,
for some N > 1.

oo oo
1. If Z b, converges, then Z a, converges.

n=1 n=1

oo o0
2. If Z a, diverges, then Z b, diverges.

n=1 n=1

Example 245 Applying the Direct Comparison Test
o0
. 1
Determine the convergence of E I,
n=1
SOLUTION This series is neither a geometric or p-series, but seems re-

lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)
1

Since3" < 3" 4+n? — > ——
+ 3n 3n+n2

o0
1
foralln > 1. The series Z > is a

n=1
o0

convergent geometric series; by Theorem 66, E W converges.
n
n=1

Example 246 Applying the Direct Comparison Test
oo
1
Determine the convergence of E _
n—inn
n=1
o0
. . 1 . .
SOLUTION We know the Harmonic Series E - diverges, and it seems
n=1

that the given series is closely related to it, hence we predict it will diverge.

1 1
Sincen>n—Innforalln>1, — < —foralln > 1.
n~—n—Inn
oo

1
The Harmonic Series diverges, so we conclude that E —inn diverges as
n—iInn
n=1

well.

Notes:

8.3 Integral and Comparison Tests

Note: A sequence {a,} is a positive
sequence if a, > 0 for all n.

Because of Theorem 64, any theorem that
relies on a positive sequence still holds
true when a, > 0 for all but a finite num-
ber of values of n.
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The concept of direct comparison is powerful and often relatively easy to
apply. Practice helps one develop the necessary intuition to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

o0
1
Consider E i It is very similar to the divergent series given in Ex-
n+lnn
n=1

1 1

ample 246. We suspect that it also diverges, as — ~ i for large n. How-
n n+lnn

ever, the inequality that we naturally want to use “goes the wrong way”: since

1
n<n+lInnforalln > 1, — > —— foralln > 1. The given series has terms
n—n+lnn

less than the terms of a divergent series, and we cannot conclude anything from
this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

Theorem 67 Limit Comparison Test

Let {a,} and {b,} be positive sequences.

o0
a
1. If lim =2 =L, where Lisa positive real number, then Z a, and
n—-o00 n 1
. =
Z b, either both converge or both diverge.

n=1

o0 oo
a
2. If lim = =0, then if Zb,, converges, then so does Z a,.
"m0 Bn n=1 n=1

o0 oo
. an . .
3. If lim — = then if b, diverges, then so does a,.
=6 . OOI ; n g ’ ; n

Theorem 67 is most useful when the convergence of the series from {b,} is
known and we are trying to determine the convergence of the series from {a,}.
We use the Limit Comparison Test in the next example to examine the series

oo
1
E ——— which motivated this new test.
n+lInn

n=1

Notes:



8.3
Example 247 Applying the Limit Comparison Test
o0
1
Determine the convergence of Z ———— using the Limit Comparison Test.
c=n +Inn
o0
SOLUTION We compare the terms of Z to the terms of the
=n +Inn
=1
Harmonic Se —:
guence Z p
n=1
1/(n+1Inn n
n—o00 1/n n—oon+Inn
=1 (after applying L'Hbpital’s Rule).
o0
Since the Harmonic Series diverges, we conclude that Z diverges as
=+ Inn
well.
Example 248 Applying the Limit Comparison Test
(o]
. 1
Determine the convergence of Z Frp
n=1
SOLUTION This series is similar to the one in Example 245, but now we

are considering “3" — n?” instead of “3" + n?” This difference makes applying
the Direct Comparison Test difficult.

(oo}
Instead, we use the Limit Comparison Test and compare with the series Z §:
n=1
1/(3" — n? 3"
lim M = lim
n—o00 1/3” n—oo 3" — n2

=1 (after applying L'Hopital’s Rule twice).

o0 oo
1. . .
We know E 3 is a convergent geometric series, hence E Frp-? converges
—n

n=1 n=1
as well.

As mentioned before, practice helps one develop the intuition to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {a,}. It is also helpful
to note that factorials dominate exponentials, which dominate algebraic func-
tions (e.g., polynomials), which dominate logarithms. In the previous example,

Notes:

Integral and Comparison Tests
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1 =1
the dominant term of ———— was 3", so we compared the series to E —. Itis
3n nZ 3n

n=1
hard to apply the Limit Comparison Test to series containing factorials, though,

as we have not learned how to apply L'Hopital’s Rule to n!.

Example 249 Applying the Limit Comparison Test
Determine the convergence of Z R
=Xt =X +1
SOLUTION We naively attempt to apply the rule of thumb given above

and note that the dominant term in the expression of the series is 1/x?. Knowing

(o]
1
that E — converges, we attempt to apply the Limit Comparison Test:
n

n=1

(WX +3)/( —x+1) X (Vx+3)

lim = lim ————=

n—o0 l/X2 n—oo X2 —x4+1

= oo (Apply UHbpital’s Rule).
oo
Theorem 67 part (3) only applies when Z b, diverges; in our case, it con-

n=1

verges. Ultimately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
functions, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is x'/2 and the dominant term of the

denominator is x>. Thus we should compare the terms of the given series to
X2 ) =1/x3/%

(WX +3)/(¢—x+1) . x3/2(ﬁ+3)

lim = lim ———~
n—o00 1/)(3/2 n—oo X2 —x+1

=1 (Apply U'Hopital’s Rule).
o0 oo
1 Vx+3
Since the p-series —— converges, we conclude that ——— con-

P ; x3/2 & ; x2—x+1

verges as well.

We mentioned earlier that the Integral Test did not work well with series
containing factorial terms. The next section introduces the Ratio Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.

Notes:



Exercises 8.3

Terms and Concepts

1. In order to apply the Integral Test to a sequence {a,}, the
function a(n) = a, must be , and

2. T/F: The Integral Test can be used to determine the sum of
a convergent series.

3. What test(s) in this section do not work well with factori-
als?

oo

4. Suppose Zan is convergent, and there are sequences
n=0
{bn} and {cn} such that b, < a, < c, for all n. What

oo oo
can be said about the series Z b, and Z Cn?
n=0 n=0
Problems

In Exercises 5—12, use the Integral Test to determine the con-
vergence of the given series.

> n
11. Z?
12.

In Exercises 13 — 22, use the Direct Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

oo l
130y

n=1

15. 3 Inn
n=1 n
=1

16. ) T
n=1
o0

1

A PR
o vn?—1
=1

18. >
pre vn—2
o0 2

n+n+1

19. Z n—5
n=1
oo 2”

20. Z 5" +10
n=1
> n

21 ) PR
n=2
=1

22. ; n?inn

In Exercises 23 — 32, use the Limit Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

> 1
23. _
;n2—3n—|—5

=1
24. Zﬂ

25.

> 1
% 3L
n=1 n2+n
=1
27. E——
Z n++/n
n—10
28. _—
; n? 4+ 10n + 10

29. isin (1/n)
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n? 417

31. i v+ 3
n=1

= 1
2.
“—~ \/n + 100

In Exercises 33 — 40, determine the convergence of the given
series. State the test used; more than one test may be appro-

priate.

=, n!
35, Z o

= Inn
36. Z?

1
37. Zan+n

38.

39.

40.

o cos(1/n)
2

n=

o0
. Given that Z a, converges, state which of the following

n=1
series converges, may converge, or does not converge.

oo an
(a) ;;

(b) > annys
n=1

)



8.4 Ratio and Root Tests

8.4 Ratio and Root Tests

oo
The nt"—Term Test of Theorem 63 states that in order for a series Z a, to con-

n=1
verge, lim a, = 0. Thatis, the terms of {a, } must get very small. Not only must
n—oo

the terms approach 0, they must approach 0 “fast enough”: while lim 1/n =0,
n—oo

o0
1
the Harmonic Series Z - diverges as the terms of {1/n} do not approach 0
n=1
“fast enough.”

The comparison tests of the previous section determine convergence by com-
paring terms of a series to terms of another series whose convergence is known.
This section introduces the Ratio and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

Ratio Test

Theorem 68 Ratio Test

a
Let {a,} be a positive sequence where lim —+% =,
n—o0o an
oo
1. IfL < 1, then Z a, converges.
n=1

Note: Theorem 64 allows us to apply the
Ratio Test to series where {a,} is positive

oo
2. IfL>1orL = oo, then Z a, diverges. for all but a finite number of terms.

n=1

3. If L = 1, the Ratio Test is inconclusive.

a
The principle of the Ratio Test is this: if lim oo < 1, then for large n,

n—oo dp
each term of {a,} is significantly smaller than its previous term which is enough
to ensure convergence.

Example 250 Applying the Ratio Test
Use the Ratio Test to determine the convergence of the following series:

oo oo

2" >, 3" 1
1.25 z.z;F 3.Zn2+1.
n=

n=1 n=1

Notes:
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SOLUTION
o0
2n
n=1
2"/ (n+41)! . 2" +1p!
im —— = lm ——
n—00 27 /n! n—o0 2"(n + 1)!
= lim
n—oon—+1
=0.
X 4n
. L . 2
Since the limit is 0 < 1, by the Ratio Test Z — converges.
“— n!
o0
3n
n=1
) 3n+1/(n + 1)3 ) 3n+1n3
im ———— = lim ———
n—o0 3"/n3 n—o0 3"(n + 1)3
im 3n3
= ] —_—
n—oo (n+1)3
=3.
. . . — 3" .
Since the limit is 3 > 1, by the Ratio Test Z — diverges.
n
n=1
o0
1
3. —_
Z n?+1
n=1
1/((n+1)>+1) _ n?+1
li =i
n—oo  1/(n?+1) n—oo (n+1)2+1
=1

Since the limit is 1, the Ratio Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

o0
1
comparing to the series E =
n

n=1

Notes:
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The Ratio Test is not effective when the terms of a series only contain al-
gebraic functions (e.g., polynomials). It is most effective when the terms con-
tain some factorials or exponentials. The previous example also reinforces our
developing intuition: factorials dominate exponentials, which dominate alge-
braic functions, which dominate logarithmic functions. In Part 1 of the example,
the factorial in the denominator dominated the exponential in the numerator,
causing the series to converge. In Part 2, the exponential in the numerator dom-
inated the algebraic function in the denominator, causing the series to diverge.

While we have used factorials in previous sections, we have not explored
them closely and one is likely to not yet have a strong intuitive sense for how
they behave. The following example gives more practice with factorials.

Example 251 Applying the Ratio Test
o0
n'n!
Determine the convergence of —_—
g > (2n)!
n=1
SOLUTION Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the formeris 8! =8-7-...-2-1 = 40,320,

whereas the latteris2(4 -3 -2 - 1) = 48.
Applying the Ratio Test:
LD+ DY@ D) (D)0 +1)!(20)
n— o0 n'n'/(Zn)' T oo n!n!(2n + 2)'

Noting that (2n 4+ 2)! = (2n+2) - (2n 4+ 1) - (2n)!, we have

o (141
= ant )t 1)
1/4.

> plp!
Since the limit is 1/4 < 1, by the Ratio Test we conclude Z

n=1

(2n)!

converges.

Root Test

The final test we introduce is the Root Test, which works particularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Notes:

Ratio and Root Tests
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Note: Theorem 64 allows us to apply the
Root Test to series where {a,} is positive
for all but a finite number of terms.
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Theorem 69 Root Test
Let {a,} be a positive sequence, and let lim (a,)Y/" = L.
n—o0

o

1. If L < 1, then Z a, converges.

n=1

oo
2. IfL >1orlL = oo, then Z a, diverges.

n=1

3. If L = 1, the Root Test is inconclusive.

Example 252 Applying the Root Test
Determine the convergence of the following series using the Root Test:

> /3n+1\" = n > 2"
1 Z <5n—2> 2. Z (Inn)n 3 ;ﬁ

n=1 n=1

SOLUTION

L oim (1)) 3013
" n—oo 5n —2 nsoe5n—2 5

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the Ratio Test to this series.

' AN ' (nl/n)4
2. lim = lim ———.
n—oo \ (Inn)” n—oo Inn
As n grows, the numerator approaches 1 (apply L'Hopital’s Rule) and the
denominator grows to infinity. Thus
(n*/")"

lim ——— =0
n—oo |nn

Since the limit is less than 1, we conclude the series converges.

n 1/n 2
n—oo \ n n—oo (nl/n)

Since this is greater than 1, we conclude the series diverges.

Each of the tests we have encountered so far has required that we analyze
series from positive sequences. The next section relaxes this restriction by con-
sidering alternating series, where the underlying sequence has terms that alter-
nate between being positive and negative.

Notes:



Exercises 8.4

Terms and Concepts

1. The Ratio Test is not effective when the terms of a sequence
only contain functions.

2. The Ratio Test is most effective when the terms of a se-
guence contains and/or functions.

3. What three convergence tests do not work well with terms
containing factorials?

4. The Root Test works particularly well on series where each
term is toa

Problems

In Exercises 5 — 14, determine the convergence of the given
series using the Ratio Test. If the Ratio Test is inconclusive,
state so and determine convergence with another test.

1
103 57

>, 10-5"
11. Z7n_3

n=1

oo
12. Zn-

oo
2-4-6-8---2
13.23—"

oo
n!
14. -
Zs-10-15--~(5n)

In Exercises 15 — 24, determine the convergence of the given
series using the Root Test. If the Root Test is inconclusive,
state so and determine convergence with another test.

=/ 2n+5)"
15. —_—
> (355)
n=1
oo 2 n
9n“—n-—-3
16. _—

o0
2"n?
17.

1
18. > o
3!7
19. ) oo,

20.

oS} 2 n
n-—n
21 ) <n2+n>

[eS) n
Z 1 1

23. i T ln)n

24 i (I:n)"

In Exercises 25 — 34, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

oo

2
n®+4n —2
25. —_—
Zn3—|—4n2—3n—|—7

n=1

26. > ";‘;n
27. Y ;ﬁ
n=1

28. —

29. _—
Z vVn?+4n+1
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8.5 Alternating Series and Absolute Convergence

8.5 Alternating Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {a,} be a positive sequence. (We can relax this with Theorem 64 and
state that there must be an N > 0 such that a, > Oforall n > N; thatis, {a,} is
positive for all but a finite number of values of n.)

In this section we explore series whose summation includes negative terms.
We start with a very specific form of series, where the terms of the summation
alternate between being positive and negative.

Definition 34 Alternating Series
Let {a,} be a positive sequence. An alternating series is a series of either

the form
oo o0

Z(—l)”an or Z(—l)”“a,,.

n=1 n=1

Recall the terms of Harmonic Series come from the Harmonic Sequence {a,} =
{1/n}. An important alternating series is the Alternating Harmonic Series:

o0

1 1 1 1 1 1
S Y e s
;( ) n 2+3 4+5 6+

Geometric Series can also be alternating series when r < 0. For instance, if
r = —1/2, the geometric series is

DY) SR S S B
Z\2) 7 2 4 8 16 32

Theorem 60 states that geometric series converge when |r| < 1 and gives

o0
1
the sum: Zr” =1 When r = —1/2 as above, we find
n=0

g(_zl)nﬂ(ll/z):;z:;

A powerful convergence theorem exists for other alternating series that meet
a few conditions.

Notes:
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0.5 + ° ° ° °

Figure 8.15: lllustrating convergence with
the Alternating Series Test.

442

Theorem 70 Alternating Series Test

Let {a,} be a positive, decreasing sequence where lim a, = 0. Then
n—00

converge.

The basic idea behind Theorem 70 is illustrated in Figure 8.15. A positive,
decreasing sequence {a,} is shown along with the partial sums

n
Sn = Z(—l)i+1ai =a—ay+03—as+--+(=1)""a,.
i=1

Because {a, } is decreasing, the amount by which S, bounces up/down decreases.
Moreover, the odd terms of S, form a decreasing, bounded sequence, while the
even terms of S, form an increasing, bounded sequence. Since bounded, mono-
tonic sequences converge (see Theorem 59) and the terms of {a,} approach 0,
one can show the odd and even terms of S, converge to the same common limit
L, the sum of the series.

Example 253 Applying the Alternating Series Test
Determine if the Alternating Series Test applies to each of the following series.

d pi1l d alnn > nt1lsinn|
1. Z(—l) + -2 Z(—l) - s Z(—l) + A

n=1 n=1 n=1
SOLUTION

1. Thisis the Alternating Harmonic Series as seen previously. The underlying
sequenceis {a,} = {1/n}, which is positive, decreasing, and approaches
0 as n — oo. Therefore we can apply the Alternating Series Test and
conclude this series converges.

While the test does not state what the series converges to, we will see

- 1
later that E (-1)"= =In2.
n
n=1

2. The underlying sequence is {a,} = {Inn/n}. This is positive and ap-
proaches 0 as n — oo (use L'Hopital’s Rule). However, the sequence is not
decreasing for all n. It is straightforward to compute a; = 0, a, ~ 0.347,

Notes:



8.5 Alternating Series and Absolute Convergence

a3 ~ 0.366, and a4 ~ 0.347: the sequence is increasing for at least the
first 3 terms.

We do not immediately conclude that we cannot apply the Alternating
Series Test. Rather, consider the long—term behavior of {a,}. Treating
a, = a(n) as a continuous function of n defined on [1, c0), we can take

its derivative:
1—Inn
() —
a'(n) = poaa
The derivative is negative for all n > 3 (actually, for all n > e), mean-
ing a(n) = a, is decreasing on [3,00). We can apply the Alternating
Sgories Test to the series when we start with n = 3 and conclude that

Inn

Z(—l)”— converges; adding the terms withn = 1 and n = 2 do not
n

n=3
change the convergence (i.e., we apply Theorem 64).
The important lesson here is that as before, if a series fails to meet the
criteria of the Alternating Series Test on only a finite number of terms, we
can still apply the test.

3. The underlying sequence is {a,} = |sinn|/n. This sequence is positive
and approaches 0 as n — co. However, it is not a decreasing sequence;
the value of |sin n| oscillates between 0 and 1 as n — oco. We cannot
remove a finite number of terms to make {a,} decreasing, therefore we
cannot apply the Alternating Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 70.

Key Idea 31 gives the sum of some important series. Two of these are

oo oo

1 2 (=)t g2

— = — ~1.64493 and — = — =~ 0.82247.
nz:; n? 6 ; n? 12

These two series converge to their sums at different rates. To be accurate to
two places after the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternating structure of an alternating series gives us a powerful tool when
approximating the sum of a convergent series.

Notes:
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Theorem 71 The Alternating Series Approximation Theorem

Let {a,} be a sequence that satisfies the hypotheses of the Alternating
Series Test, and let S, and L be the n'" partial sums and sum, respectively,
o0

of either Z(—l)"a,, or Z(—l)"*lan. Then
n=1 n=1

1. |S, — L| < @41, and

2. Lis between S, and S, ;.

Part 1 of Theorem 71 states that the n™ partial sum of a convergent alter-
nating series will be within a,4; of its total sum. Consider the alternating se-

e (_1)n+1
ries we looked at before the statement of the theorem, Z -t

n=1
a14 = 1/14% ~ 0.0051, we know that S13 is within 0.0051 of the total sum.
Moreover, Part 2 of the theorem states that since S13 ~ 0.8252 and S14 ~
0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
the knowledge that S14 is accurate to two places after the decimal.
Some aIternating series converge slowly. In Example 253 we determined the

. Since
nZ

series Z "+1 converged With n = 1001, we find Inn/n =~ 0.0069,

meanlng that 51000 =~ 0.1633 is accurate to one, maybe two, places after the
decimal. Since S199; =~ 0.1564, we know the sum Lis 0.1564 < L < 0.1633.

Example 254 Approximating the sum of convergent alternating series
Approximate the sum of the following series, accurate to within 0.001.

S n+1 1 S n+1|nn
LY (O™ 2y ()T
n=1 n=1

SOLUTION

1. Using Theorem 71, we want to find n where 1/n* < 0.001:

1 1
— <0.001=——
n3 1000
n® > 1000

n > +v/1000

n > 10.

Notes:
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Let L be the sum of this series. By Part 1 of the theorem, |Sq — L| < a1 =
1/1000. We can compute Sg = 0.902116, which our theorem states is
within 0.001 of the total sum.

We can use Part 2 of the theorem to obtain an even more accurate result.
As we know the 10'" term of the series is —1/1000, we can easily compute
S10 = 0.901116. Part 2 of the theorem states that L is between Sg and Sy,
s00.901116 < L < 0.902116.

2. We want to find n where In(n)/n < 0.001. We start by solving In(n)/n =
0.001 for n. This cannot be solved algebraically, so we will use Newton'’s
Method to approximate a solution.

Let f(x) = In(x)/x — 0.001; we want to know where f(x) = 0. We make a
guess that x must be “large,” so our initial guess will be x; = 1000. Recall
how Newton’s Method works: given an approximate solution x,,, our next
approximation x, 1 is given by

f(xn)
f'(xa) .

We find f/(x) = (1 — In(x)) /. This gives

Xn4+1 = Xn —

In(1000) /1000 — 0.001
(1 —In(1000)) /10002

X, = 1000 —
= 2000.

Using a computer, we find that Newton’s Method seems to converge to a
solution x = 9118.01 after 8 iterations. Taking the next integer higher, we
have n = 9119, where In(9119)/9119 = 0.000999903 < 0.001.

Again using a computer, we find Sq115 = —0.160369. Part 1 of the theo-
rem states that this is within 0.001 of the actual sum L. Already knowing

the 9,119 term, we can compute Sg119 = —0.159369, meaning —0.159369 <
L < —0.160369.

Notice how the first series converged quite quickly, where we needed only 10
terms to reach the desired accuracy, whereas the second series took over 9,000
terms.

oo

One of the famous results of mathematics is that the Harmonic Series, Z —
n

n=1

oo
1
diverges, yet the Alternating Harmonic Series, Z(—l)"“;, converges. The

n=1

Notes:
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o0

Note: In Definition 35, Za,, is not nec-
n=1

essarily an alternating series; it just may

have some negative terms.

446

notion that alternating the signs of the terms in a series can make a series con-
verge leads us to the following definitions.

Definition 35 Absolute and Conditional Convergence

(oo}
1. Aseries E a, converges absolutely if E |a,| converges.
n=1 n=1

o0
2. A series Zan converges conditionally if Zan converges but

n=1 n=1
o0

Z |a,| diverges.

n=1

Thus we say the Alternating Harmonic Series converges conditionally.

Example 255 Determining absolute and conditional convergence.
Determine if the following series converge absolutely, conditionally, or diverge.

o0 o0 (o]
n+3 n+2n+5 3n—3
1. B 2. _ 3. —1)—
;( )n2+2n+5 Z nz:;( )5n—10

n=1

SOLUTION

1. We can show the series
o
n=1

diverges using the Limit Comparison Test, comparing with 1/n.

n+3 ‘ i n+3

(-1)"5——=
n?+2n+5 n2+2n+5

n=1

The series Z ”m converges using the Alternating Series

Test; we conclude it converges conditionally.

2. We can show the series
o0
n=1

converges using the Ratio Test.

n+2n+5 °°n+2n+5
(TR - S

n=1

Notes:
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o0

Therefore we conclude Z(—l)”
n=1

n?>+2n+5

7 converges absolutely.

3. The series
oo
n=3

diverges using the n™" Term Test, so it does not converge absolutely.

3n—3 > 3n—3
n —
(=) 5,,_’—2
n

10 et 5n — 10

The series Z falls the conditions of the Alternating Series
5n — 10

Test as (3n - 3)/(5n - 10) does not approach 0 as n — oco. We can state
further that this series diverges; asn — oo, the series effectively adds and
subtracts 3/5 over and over. This causes the sequence of partial sums to
oscillate and not converge.

3n—-3
Therefore the series Z(—l)"ﬂ diverges.
n=1

Knowing that a series converges absolutely allows us to make two impor-
tant statements, given in the following theorem. The first is that absolute con-

oo

vergence is “stronger” than regular convergence. That is, just because Zan

n=1
oo
converges, we cannot conclude that Z |an| will converge, but knowing a series
n=1

converges absolutely tells us that Z a, will converge.
n=1

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be positive. By taking the absolute value of the
terms of a series where not all terms are positive, we are often able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+ 1+ 2.) One may be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecting
the sum.

Notes:
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Theorem 72 Absolute Convergence Theorem
(oo}

Let Z an be a series that converges absolutely.

n=1

o0
1. E a, converges.

n=1

2. Let {b,} be any rearrangement of the sequence {a,}. Then

[e'S) (o)
> b= an
n=1 n=1

In Example 255, we determined the series in part 2 converges absolutely.
Theorem 72 tells us the series converges (which we could also determine using
the Alternating Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condition-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named after Bernhard Riemann)
states that any conditionally convergent series can have its terms rearranged so
that the sum is any desired value, including oo!

As an example, consider the Alternating Harmonic Series once more. We
have stated that

1 11 1 1 1 1
E . 1 2y s Iy 2 1. =n2
(=1) n 2+3 4+5 6+7 ’

(see Key Idea 31 or Example 253).

Consider the rearrangement where every positive term is followed by two
negative terms:

(Convince yourself that these are exactly the same numbers as appear in the
Alternating Harmonic Series, just in a different order.) Now group some terms

Notes:
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and simplify:

1 1 1+1 1 1+ 1 1+
2 4 3 6 8 5 10 12
1

1 1 1 1 1

2 0 12+

476 8 1
1/, 1,1t 1.1 1
2 2'3 45 6

1
—1In2.
2

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the Alternating Harmonic Series does not actually
converge to In 2, because rearranging the terms of the series shouldn’t change
the sum. However, the Alternating Series Test proves this series converges to
L, for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the Alternating Series Approximation Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The back cover
of this text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ultimate goal
within calculus is the study of Power Series, which we will consider in the next
section. We will use power series to create functions where the output is the
result of an infinite summation.

Notes:
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Exercises 8.5

Terms and Concepts

oo
1. Whyis Z sin n not an alternating series?

n=1

2. Aseries Z(—l)”a,, converges when {a,} is ,
n=1

and lim a, =
n—oo

oo

3. Give an example of a series where Zan converges but
n=0
oo
Z |an| does not.
n=0

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

oo
In Exercises 5 — 20, an alternating series Z an is given.
n=i
(a) Determine if the series converges or diverges.
o0
(b) Determine if Z |an| converges or diverges.
n=0
oo
(c) If Z a, converges, determine if the convergence is

n=0

conditional or absolute.

;S

n—+5
7 _ n
nio( ) 3n—-5
oo 2,,
n
8. 21(71) =
-
= 3n+5
9. —)ytt ==
g( ) n?—-3n+1
— (=1)"
10.
; Inn+1

oo
n
n
1. ) (-1) i
n=2

0 n+1
2.3 =)
C 143454+ (2n-1)

o0
13. Z cos (7n)
n=1

" i sin ((n+1/2)7)

p ninn
o0 n
2
15. -z
> (-3)
n=0
o0
16. Y (—e)™"
n=0
D i
’ po n!
18. > (~1)27"
n=0
o (—1)"
19. )
n=1 \/E
>, (—1000)"
20.
; n!

Let S, be the n'" partial sum of a series. In Exercises 21-24, a
convergent alternating series is given and a value of n. Com-
pute S, and S,11 and use these values to find bounds on the
sum of the series.

oo 1 n
24, -Z), n=9
> (-3)

In Exercises 25 — 28, a convergent alternating series is given
along with its sum and a value of . Use Theorem 71 to find
n such that the n*" partial sum of the series is within ¢ of the
sum of the series.

n+1 77T4

o0
25. E ) _ 7 € = 0.001
i nt 720’



— (-1)" _

2. ) - =2, &=00001
n=0
— (1)

27. — T c—o0.001
; m+1 c
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8.6 Power Series

So far, our study of series has examined the question of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspective: as a function. Given a value of x, we evaluate f(x)
by finding the sum of a particular series that depends on x (assuming the series
converges). We start this new approach to series with a definition.

Definition 36 Power Series

Let {a,} be a sequence, let x be a variable, and let ¢ be a real number.

1. The power series in x is the series

E apX" = ag 4+ a1x + ax° +asx + ...
n=0

2. The power series in x centered at c is the series

o0
D an(x—c)"=ap+ai(x—c) + a(x—c)® +as(x—c)* +...
n=0

Example 256 Examples of power series

Write out the first five terms of the following power series:

1 ixn 2. i )t x+1) 3. Z n+1777
. n=0 n=1 Zn)! .

SOLUTION

1. One of the conventions we adopt is that xX° = 1 regardless of the value of
x. Therefore

o0
Zx”:1+x+x2+x3+x4+...
n=0

This is a geometric series in x.

2. This series is centered at c = —1. Note how this series starts with n = 1.
We could rewrite this series starting at n = 0 with the understanding that

Notes:
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ado = 0, and hence the first term is 0.

o0

Z(—l)”*li(xtll)n = (x+1)— L 1>2+<X 1 1)4+(X+ 1 .

2 3 4 5

n=1

3. This series is centered at ¢ = 7. Recall that 0! = 1.

(2n)! 2 24 6! 8!

et PN o ) N Lt et

We introduced power series as a type of function, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For
oo

instance, in part 1 of Example 256, we recognized the series Z x" as a geometric
n=0
series in x. Theorem 60 states that this series converges only when |x| < 1.
This raises the question: “For what values of x will a given power series con-
verge?,” which leads us to a theorem and definition.

Theorem 73 Convergence of Power Series
oo

Let a power series Z an(x — ¢)" be given. Then one of the following is
n=0

true:

1. The series converges only at x = c.

2. Thereisan R > 0 such that the series converges for all x in
(¢ —R,c+ R) and diverges forall x < ¢ — Rand x > c + R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definition. Also, note that part 2 of Theorem 73
makes a statement about the interval (¢ — R, ¢ + R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Notes:
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Definition 37 Radius and Interval of Convergence

1. The number R given in Theorem 73 is the radius of convergence of
a given series. When a series converges for only x = ¢, we say the
radius of convergence is 0, i.e., R = 0. When a series converges
for all x, we say the series has an infinite radius of convergence,
i.e., R = oo.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, we will use the con-
vergence tests we studied previously (especially the Ratio Test). However, the
tests all required that the terms of a series be positive. The following theorem
gives us a work—around to this problem.

Theorem 74 The Radius of Convergence of a Series and Absolute
Convergence

oo oo
The series » _a,(x — ¢)” and Y _ |a,(x — c)"| have the same radius of

n=0 n=0
convergence R.

Theorem 74 allows us to find the radius of convergence R of a series by ap-
plying the Ratio Test (or any applicable test) to the absolute value of the terms
of the series. We practice this in the following example.

Example 257 Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

(oo} x” (oo} x” oo oo
— _\n+12 niy _ 2\n 1y
1Yy o2 > (-1 -3 > 2"(x—3) 4. " nlx
n=0 n=1 n=0 n=0
SOLUTION
Notes:
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0 n
X
1. We apply the Ratio Test to the series Z —:
n!
n=0
Y (n )| et !
lim ——————— = lim —
n—00 |Xn/n!| n—oo | X" (n+1)!
= lim ‘
n—oo|n—+1
= 0 for all x.

The Ratio Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = oo, and the interval of
convergence is (—00, 00).

0 n 0 n
X X
2. Wea i i 1| = Z
pply the Ratio Test to the series E (-1) p E p
n=1 n=1
A G Y I P e
lim ————— = lim .
n—oo |x”/n| n—oo | XN n+1
n
= lim |x|

n—oo n-+1

X

The Ratio Test states a series converges if the limit of |ap+1/a,| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (—1,1). Thus the radius of convergence is
R=1.

To determine the interval of convergence, we need to check the endpoints
of (—1,1). When x = —1, we have the opposite of the Harmonic Series:

o0 oo

n 1(71)", _ -1
;(71) ' n - n=1 T

The series diverges when x = —1.

oo
1 n
When x = 1, we have the series Z(—l)"“g, which is the Alternating
n
n=1
Harmonic Series, which converges. Therefore the interval of convergence

is (—1,1].

Notes:
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oo
3. We apply the Ratio Test to the series Z |2"(x — 3)"|:

n=0
|2”“(x _ 3)n+1| on+1 (x _ 3)n+1
lim —————— = |lim e
n— o0 |2” (X — 3)”| n—oo | 2N (X — 3)”
= lim |2(x — 3)].

According to the Ratio Test, the series converges when |2(x—3)] <1l =
|x — 3| < 1/2. The series is centered at 3, and x must be within 1/2 of 3
in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3—1/2,34+1/2)=(2.5,3.5).

We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

532%15—3V::§32%—10V
= Z(_l)na

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

(oo}
4. We apply the Ratio Test to Z |n!x"|:
n=0
1yn+1
nmlgiﬂﬁ—i:|m|m+1w
n—o0 |n!x"| n—o00
= oo for all x, except x = 0.

The Ratio Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0.

We can use a power series to define a function:
oo
f(X) = Z aan
n=0
where the domain of fis a subset of the interval of convergence of the power

series. One can apply calculus techniques to such functions; in particular, we
can find derivatives and antiderivatives.

Notes:



Theorem 75 Derivatives and Indefinite Integrals of Power Series

Functions
o0
Let f(x) = Z an(x — ¢)" be a function defined by a power series, with
n=0

radius of convergence R.

1. f(x) is continuous and differentiable on (c — R, c + R).
o0

2. fl(x) = Z a, - n - (x — )", with radius of convergence R.
n=1

2, (x—c)"tt
3. /f(x) dx=C+ Z O with radius of convergence R.
n=0

A few notes about Theorem 75:

1. The theorem states that differentiation and integration do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. Notice how the summation for f’(x) starts with n = 1. This is because the
constant term ag of f(x) goes to 0.

3. Differentiation and integration are simply calculated term—by—term using
the Power Rules.

Example 258 Derivatives and indefinite integrals of power series
oo
Let f(x) = Zx”. Find f'(x) and F(x) = /f(x) dx, along with their respective
n=0
intervals of convergence.

SOLUTION We find the derivative and indefinite integral of f(x), follow-
ing Theorem 75.

o0
L f/(x):Zan71=1+2X+3x2+4x3_|_....
n=1

oo
In Example 256, we recognized that Zx" is a geometric series in x. We
n=0
know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (—1, 1).

Notes:

8.6 Power Series
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To determine the interval of convergence of f'(x), we consider the end-
points of (—1,1):

f'(-1)=1-2+3—4+---, which diverges.
ff(1)=1+2+3+4+---, whichdiverges.

Therefore, the interval of convergence of f/(x) is (—1,1).

Xn+1 2 3

G x5 X
.F(x):/f(x)dx:C—&-ZrH-lzc+x+?+§+...
n=0

To find the interval of convergence of F(x), we again consider the end-
points of (—1,1):

F(-1)=C—1+1/2—1/3+1/4+---

The value of C is irrelevant; notice that the rest of the series is an Alter-
nating Series that whose terms converge to 0. By the Alternating Series
Test, this series converges. (In fact, we can recognize that the terms of the
series after C are the opposite of the Alternating Harmonic Series. We can
thus say that F(—1) = C—1In2.)

F1)=C+1+1/24+1/3+1/4+---

Notice that this summation is C + the Harmonic Series, which diverges.
Since F converges for x = —1 and diverges for x = 1, the interval of
convergence of F(x) is [—1,1).

The previous example showed how to take the derivative and indefinite in-
tegral of a power series without motivation for why we care about such opera-

tions.

We may care for the sheer mathematical enjoyment “that we can”, which

is motivation enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking derivatives and indefinite integrals.

o

Recall that f(x) = Zx” in Example 258 is a geometric series. According to

n=0

Theorem 60, this series converges to 1/(1 — x) when |x| < 1. Thus we can say

= 1
f(X) = nz:;)xn = 1 —X, on (_171)'

Integrating the power series, (as done in Example 258,) we find

o0 n+1
X
F(x)=C1 + E

— 8.4
2pit (8.4)

Notes:



while integrating the function f(x) = 1/(1 — x) gives
F(x) =—=In|1—x| + C,. (8.5)
Equating Equations (8.4) and (8.5), we have

oo Xn+1
F(X):C1+Zn+1 =—In|1—x +G.
n=0

Letting x = 0, we have F(0) = C; = C,. This implies that we can drop the
constants and conclude

& xn+1
Z =—In|1—x|.
n+1
n=0
We established in Example 258 that the series on the left converges at x = —1;
substituting x = —1 on both sides of the above equality gives
1+ . + L1 +--=—1In2
2 3 4 5 N '

On the left we have the opposite of the Alternating Harmonic Series; on the
right, we have — In 2. We conclude that

1 1 1 1 In2

2 + 372 +---=1In2.
Important: We stated in Key Idea 31 (in Section 8.2) that the Alternating Har-
monic Series converges to In 2, and referred to this fact again in Example 253 of
Section 8.5. However, we never gave an argument for why this was the case.
The work above finally shows how we conclude that the Alternating Harmonic
Series converges to In 2.
We use this type of analysis in the next example.

Example 259 Analyzing power series functions
X wn
X
Let f(x) = Z L Find f’(x) and /f(x) dx, and use these to analyze the behav-
n=0 "
ior of f(x).
SOLUTION We start by making two notes: first, in Example 257, we

found the interval of convergence of this power series is (—o0, 00). Second,
we will find it useful later to have a few terms of the series written out:

2 X3 4

iﬁf1+x+x—+—+x—+m (8.6)
< n! 2 6 24 ’

Notes:

8.6 Power Series
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We now find the derivative:

n!

n=1
> xn—1 X2
n=1

Since the series starts at n = 1 and each term refers to (n — 1), we can re-index
the series starting with n = 0:

o0
> r
n!

o

Il
-

(x

~—

We found the derivative of f(x) is f(x). The only functions for which this is true
are of the form y = ce* for some constant c. As f(0) = 1 (see Equation (8.6)), ¢
must be 1. Therefore we conclude that

for all x.
We can also find /f(x) dx:

o Xn+1

x)dx =C+ _

/f( ) ; nl(n+1)
—c+t X, xrt

—~ (n+1)!
We write out a few terms of this last series:
=, X"l X x3  X
C - =C+x — — — .
+;(n+1)! Ty tetaT

The integral of f(x) differs from f(x) only by a constant, again indicating that
flx) = e.

Example 259 and the work following Example 258 established relationships
between a power series function and “regular” functions that we have dealt
with in the past. In general, given a power series function, it is difficult (if not

Notes:



impossible) to express the function in terms of elementary functions. We chose
examples where things worked out nicely.

In this section’s last example, we show how to solve a simple differential
equation with a power series.

Example 260 Solving a differential equation with a power series.
Give the first 4 terms of the power series solution to y’ = 2y, where y(0) = 1.

SOLUTION The differential equation y’ = 2y describes a function y =
f(x) where the derivative of y is twice y and y(0) = 1. This is a rather simple
differential equation; with a bit of thought one should realize that if y = Ce?*,
then y’ = 2Ce?, and hence y’ = 2y. By letting C = 1 we satisfy the initial
condition of y(0) = 1.

Let’s ignore the fact that we already know the solution and find a power
series function that satisfies the equation. The solution we seek will have the
form

oo
flx) = Zanx” =g+ aix+ax® +a +---
n=0

for unknown coefficients a,. We can find f'(x) using Theorem 75:

o0
f'(x) = Zan cn X" =gy + 2a,x + 3a3x% + dag - - - .

n=1
Since f'(x) = 2f(x), we have
a1 + 2a,x + 303 + 4asx® - = 2(a0 + a1x + @ + a3 + )
= 200 + 201X + 2a,x* + 203 + - -
The coefficients of like powers of x must be equal, so we find that
ay = 209, 20, =201, 3a3=2a,, 4a, =203, etc.
The initial condition y(0) = f(0) = 1 indicates that gy = 1; with this, we can
find the values of the other coefficients:
ao=1landa; =209 = a; = 2;
a1 =2and2a; =201 = 0, =4/2 =2;
a; =2and3a3 =20, = a3 =8/(2-3) =4/3;
a3 =4/3and4a, =205 = a0, =16/(2-3-4) =2/3.
Thus the first 5 terms of the power series solution to the differential equation
y' =2yis
2 45,2,
f(x) =1+ 2x+ 2x +§x +§x +e

Notes:

8.6 Power Series
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In Section 8.8, as we study Taylor Series, we will learn how to recognize this se-
ries as describing y = e?*.

Our last example illustrates that it can be difficult to recognize an elementary
function by its power series expansion. It is far easier to start with a known func-
tion, expressed in terms of elementary functions, and represent it as a power
series function. One may wonder why we would bother doing so, as the latter
function probably seems more complicated. In the next two sections, we show
both how to do this and why such a process can be beneficial.

Notes:
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Exercises 8.6

Terms and Concepts

1

. We adopt the convenction that x° = , regardless of
the value of x.

What is the difference between the radius of convergence
and the interval of convergence?

[e'e]

If the radius of convergence of Z a,x" is 5, what is the ra-

n=0
oo

. —1
dius of convergence of E n-ax"?

n=1

oo

If the radius of convergence of Z a,x" is 5, what is the ra-

n=0

(oo}
dius of convergence of Z(—l)"anx"?

n=0

Problems

In Exercises 5 — 8, write out the sum of the first 5 terms of the
given power series.

[e o)
E 2"X"
n=0

=1
pBI=24

=1

3

- —-1)" 2n
; ((Zn))! X

In Exercises 9 — 24, a power series is given.

10.

11.

12.

(a) Find the radius of convergence.

(b) Find the interval of convergence.

= (_1)n+1xn

n
n=1
o~ (x+4)
>
n=0

13. Z;—n

1o, 30 V-5

n=0 107
o0
15. ) 5" (x—1)"
n=0
o0
16. Y (=2)'
n=0
17. Zﬁx“
n=0
o n o,
18. 237"
n=0

19. 3 P sy

20. 3 (~1)'nl(x — 10
22. im

23, in! (%)"

oo n
2. 3 (Xj“)

In Exercises 25 — 30, a function f(x) = Z anxX” is given.
n=0

(a) Give a power series for f'(x) and its interval of conver-
gence.

(b) Give a power series for [ f(x) dx and its interval of con-
vergence.
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28. i(—m”

el —1)" 2n
5 5 (ZL)™"

— (2n)!
— (1)

30. ZT
n=0

In Exercises 31 — 36, give the first 5 terms of the series that is
a solution to the given differential equation.

31.

32.

33.

34,

35.

36.

y'=y+1,
y" =—y,
y" =2y,

y(0) =1
y(0)=0,y'(0)=1
y(0)=1y'(0)=1



8.7 Taylor Polynomials

Consider a function y = f(x) and a point (c, f(c)). The derivative, f'(c), gives
the instantaneous rate of change of f at x = c. Of all lines that pass through the
point (c,f(c)), the line that best approximates f at this point is the tangent line;
that is, the line whose slope (rate of change) is f'(c).

In Figure 8.16, we see a function y = f(x) graphed. The table below the
graph shows that f(0) = 2 and f/(0) = 1; therefore, the tangent line to f at
x =0isp;(x) = 1(x—0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ~ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approximation is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p,(x), that does match the concavity without much difficulty, though.
The table in Figure 8.16 gives the following information:

fo =2 fO)=1 f'0)=2

Therefore, we want our polynomial p,(x) to have these same properties. That
is, we need

p2(0)=2  py(0)=1  py(0)=2.

This is simply an initial-value problem. We can solve this using the tech-
niques first described in Section 5.1. To keep p,(x) as simple as possible, we’ll
assume that not only pJ'(0) = 2, but that p; (x) = 2. That is, the second deriva-
tive of p, is constant.

If p5j(x) = 2, then p5(x) = 2x + C for some constant C. Since we have
determined that p5(0) = 1, we find that C = 1 and so p5(x) = 2x + 1. Finally,
we can compute p, (x) = x? +x+ C. Using our initial values, we know p,(0) = 2
so C = 2. We conclude that p,(x) = x* + x + 2. This function is plotted with fin
Figure 8.17.

We can repeat this approximation process by creating polynomials of higher
degree that match more of the derivatives of fat x = 0. In general, a polynomial
of degree n can be created to match the first n derivatives of f. Figure 8.17 also
shows pg(x) = —x*/2—x*/6+x*+x+2, whose first four derivatives at 0 match
those of f. (Using the table in Figure 8.16, start with p£4) (x) = —12 and solve

the related initial-value problem.)

As we use more and more derivatives, our polynomial approximation to f
gets better and better. In this example, the interval on which the approximation
is “good” gets bigger and bigger. Figure 8.18 shows p13(x); we can visually affirm
that this polynomial approximates f very well on [—2, 3]. (The polynomial p;3(x)
is not particularly “nice”. It is

16901x™ 13x%2 13203 779x%  359%° X 139 11 19 K X xt2)
— — — —_— —— = — —— X" +x+2.
6227020800 1209600 39916800 1814400 362880 240 5040 360 120 2 6

Notes:

8.7 Taylor Polynomials

Figure 8.16: Plotting y = f(x) and a table
of derivatives of f evaluated at 0.

y = pa(x)

t t \ \ > X
—4 -2 4
y = pa(x)

Figure 8.17: Plotting f, p, and pj.

e

Figure 8.18: Plotting f and p13.
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f(x) =¢" = fl0)=1
fflg=e = f(0)=1
f”(X) & = f//(o) -1

f=e = fU0)=1

Figure 8.19: The derivatives of f(x) = e

evaluated at x = 0.

466

The polynomials we have created are examples of Taylor polynomials, named
after the British mathematician Brook Taylor who made important discoveries
about such functions. While we created the above Taylor polynomials by solving
initial-value problemes, it can be shown that Taylor polynomials follow a general
pattern that make their formation much more direct. This is described in the
following definition.

Definition 38 Taylor Polynomial, Maclaurin Polynomial

Let f be a function whose first n derivatives exist at x = c.

1. The Taylor polynomial of degree n of fat x = cis

o) = HV 4 (x-S (e L

2. Aspecial case of the Taylor polynomial is the Maclaurin polynomial, where ¢ =
0. That is, the Maclaurin polynomial of degree n of f is

" " (n)
fz('O)Xerf 3('0)X3+___+f n'<o>x,,.

pn(x) = f(0) + f'(0)x +

We will practice creating Taylor and Maclaurin polynomials in the following
examples.

Example 261 Finding and using Maclaurin polynomials

1. Find the n'" Maclaurin polynomial for f(x) = €*.

2. Use ps(x) to approximate the value of e.

X
SOLUTION
1. We start with creating a table of the derivatives of e* evaluated at x = 0.

In this particular case, this is relatively simple, as shown in Figure 8.19. By
the definition of the Maclaurin series, we have

Notes:



£1(0) 5 £10) . L £0)

2! 3! n! d

pn(x) = f(0) +f'(0)x +

L xh SR 28
= X+ =X+ =X+ =X+ -+ =X
2”6 24 n!

2. Using our answer from part 1, we have

—1+x+1x2+1x3+ 1x4+ ! X
Ps = 2 6 24 120"

To approximate the value of e, note that e = e! = f(1) ~ ps(1). Itis very
straightforward to evaluate ps(1):

M=1414s4+24 202 188 5667
Psit) = 27624 120 60 ° :

A plot of f(x) = e* and ps(x) is given in Figure 8.20.

Example 262 Finding and using Taylor polynomials

1. Find the n'" Taylor polynomial of y = Inx at x = 1.
2. Use pg(x) to approximate the value of In 1.5.

3. Use pg(x) to approximate the value of In 2.

SOLUTION

1. We begin by creating a table of derivatives of Inx evaluated at x = 1.
While this is not as straightforward as it was in the previous example, a
pattern does emerge, as shown in Figure 8.21.

Using Definition 38, we have

pa(x) = f() + £ (€)(x— ©) + f”z(f) (x— )’ + fgf) (x—cf oot L n,,(f)
:0+(X_1)_%(X—l)z-f—%(X—1)3—%(X—1)4+.._+ (_1,1)"-»—1

Note how the coefficients of the (x — 1) terms turn out to be “nice.”

2. We can compute pg(x) using our work above:

pe(x) = (x—l)f%(xfl)“r%(xf1)3f%(x—1)4+%(x71)5—%(x71)6.

Notes:

8.7 Taylor Polynomials

10 +

-2 2
y = ps(x)

Figure 8.20: A plot of f(x) = e* and its 5"
degree Maclaurin polynomial ps(x).

f(x) =Inx = f(1)=0
f10) =1/x = fl(1)=1
') =-1/x = f'(1)=-1
f(x)=2/x = f"(1)=2
FO00 =6/ = fO)=—s
FO0) = = 0=
(=)™ (n —1)!

= (=1)"*(n — 1)!

Figure 8.21: Derivatives of In x evaluated
atx = 1.
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/ y = ps(x)

Figure 8.22: A plot of y = Inx and its 6"
degree Taylor polynomial at x = 1.

y=Inx

y = pao(x)

—4

Figure 8.23: A plot of y = Inx and its 20"
degree Taylor polynomial at x = 1.
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Since pe(x) approximates In x well near x = 1, we approximate In 1.5 =~
pe(1.5):

1 1 1
mﬂB%:GB—D—5ﬁ5—1f+§ﬂ5—1f—zﬂﬁ—lf+~~
1 1
S+ Z(15-1)P° - Z(15-1)°
+; ) 6( )

_ 259

640

~ 0.404688.

This is a good approximation as a calculator shows that In 1.5 ~ 0.4055.
Figure 8.22 plots y = Inx with y = pg(x). We can see that In1.5 =~

. We approximate In 2 with pg(2):

1 1 1
pe(2) = (2-1)~ J2 -1 +32-1° - 2~ +
1 1
ek Z(2-12-2(2-1)°
+52-1° - 221
PR S S SN S
N 2 3 4 5 6
37
60
~ 0.616667.

This approximationis not terribly impressive: a hand held calculator shows
that In 2 ~ 0.693147. The graph in Figure 8.22 shows that ps(x) provides
less accurate approximations of In x as x gets close to 0 or 2.

Surprisingly enough, even the 20 degree Taylor polynomial fails to ap-
proximate Inx for x > 2, as shown in Figure 8.23. We’ll soon discuss why
this is.

Taylor polynomials are used to approximate functions f(x) in mainly two sit-
uations:

1.

When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cosx as either the ratio of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of computing cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonable method of computing
such values using only operations usually hard—wired into a computer (+,
—, X and ).

Notes:



2. When f(x) is not known, but information about its derivatives is known.
This occurs more often than one might think, especially in the study of
differential equations.

In both situations, a critical piece of information to have is “How good is my
approximation?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approximation is?

We had the same problem when studying Numerical Integration. Theorem
43 provided bounds on the error when using, say, Simpson’s Rule to approximate
a definite integral. These bounds allowed us to determine that, for instance,
using 10 subintervals provided an approximation within .01 of the exact value.
The following theorem gives similar bounds for Taylor (and hence Maclaurin)
polynomials.

Theorem 76 Taylor’s Theorem

8.7 Taylor Polynomials

Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric functions, in practice they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.

1. Let fbe a function whose n + 1% derivative exists on an interval / and let c be in /.

Then, for each x in /, there exists z, between x and ¢ such that

f(c) f™(c)

f) = fle) +F/(©)x =€) + 57 (x =€) + o+ == (x = )" + Ra (%),

f(n+1)(2x) (x — C)(n+1).

where R,(x) = CE

max |f n+1

| (n+1)
(n+1)! | =N ‘

2. |Ra(x)| <

The first part of Taylor’s Theorem states that f(x) = pn(x) + Ra(x), where
pn(x) is the n'" order Taylor polynomial and R, (x) is the remainder, or error, in
the Taylor approximation. The second part gives bounds on how big that error
can be. If the (n + 1)™ derivative is large, the error may be large; if x is far from
¢, the error may also be large. However, the (n + 1)! term in the denominator
tends to ensure that the error gets smaller as n increases.

The following example computes error estimates for the approximations of
In1.5 and In 2 made in Example 262.

Example 263 Finding error bounds of a Taylor polynomial

Use Theorem 76 to find error bounds when approximating In 1.5 and In 2 with
ps(x), the Taylor polynomial of degree 6 of f(x) = Inx at x = 1, as calculated in
Example 262.

Notes:
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SOLUTION

1.

We start with the approximation of In 1.5 with pg(1.5). The theorem ref-
erences an open interval / that contains both x and c. The smaller the
interval we use the better; it will give us a more accurate (and smaller!)
approximation of the error. We let | = (0.9, 1.6), as this interval contains
bothc =1and x = 1.5.

The theorem references max ]f("“) (z)| In our situation, this is asking
“How big can the 7" derivative of y = In x be on the interval (0.9, 1.6)?”
The seventh derivative is y = —6!/x”. The largest value it attains on / is
about 1506. Thus we can bound the error as:
™)
max z
< MKLS _ 1)7|
7!
1506 1
<= . _
~ 5040 27
~ 0.0023.

|Rs(1.5)|

We computed pg(1.5) = 0.404688; using a calculator, we find In1.5 =~
0.405465, so the actual error is about 0.000778, which is less than our
bound of 0.0023. This affirms Taylor’s Theorem; the theorem states that
our approximation would be within about 2 thousandths of the actual
value, whereas the approximation was actually closer.

. We again find an interval | that contains both ¢ = 1 and x = 2; we choose

I = (0.9, 2.1). The maximum value of the seventh derivative of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus

max |f ) (2)|
7!

1506 17

5040

~ 0.30.

[Re(2)] < (2= 1)7]

<

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
ps(2) ~ 0.61667, our error estimate guarantees that the actual value of
In 2 is somewhere between 0.31667 and 0.91667. These bounds are not
particularly useful.

In reality, our approximation was only off by about 0.07. However, we
are approximating ostensibly because we do not know the real answer. In
order to be assured that we have a good approximation, we would have
to resort to using a polynomial of higher degree.

Notes:



We practice again. This time, we use Taylor’s theorem to find n that guaran-
tees our approximation is within a certain amount.

Example 264 Finding sufficiently accurate Taylor polynomials
Find n such that the n'" Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is p,(2)?

SOLUTION Following Taylor’s theorem, we need bounds on the size of
the derivatives of f(x) = cosx. In the case of this trigonometric function, this is
easy. All derivatives of cosine are =+ sin x or &= cos x. In all cases, these functions
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequalities:

max |f ("1 (
|f @) |(2-0)"™)| < 0.001
(n+1)!
1
—— .20 < 0,001
(n+1)!
We find an n that satisfies this last inequality with trial-and—error. When n = 8,
8+1 9+1
we have ———— = 0.0014; when n = 9, we have ———— = 0.000282 <
(8+1)! (9+1)!

0.001. Thus we want to approximate cos 2 with pg(2).

We now set out to compute po(x). We again need a table of the derivatives
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 8.24.
Notice how the derivatives, evaluated at x = 0, follow a certain pattern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need py(x), our work shows that this will
be the same as pg(x).

Since we are forming our polynomial at x = 0, we are creating a Maclaurin
polynomial, and:

" " (8)
PS(X):f(O)—Ff’(O)x—kf2(!0)x2_|_f37(!@)(3+ +ng|X
1 1 1

:1_5)(2_’_5 4_aX6+QX8

We finally approximate cos 2:

131
cos2 = pg(2) = 318 —0.41587.

Our error bound guarantee that this approximation is within 0.001 of the correct
answer. Technology shows us that our approximation is actually within about
0.0003 of the correct answer.

Figure 8.25 shows a graph of y = pg(x) and y = cosx. Note how well the
two functions agree on about (—m, ).

Notes:

8.7 Taylor Polynomials

f(x) = cosx = fl0)=1
f'(x) = —sinx = f'(0)=0
f'(x)=—cosx = f"(0)=-1
" (x) = sinx = f"(0)=0
F@(x) = cosx = fP0) =1
fOX) =—sinx = f&0)=0
£©x) cosx = fO0)=-1
FP(x) = sinx = fP0) =0
®)(x) = cosx = f®0)=1
fOX) =—sinx = f90) =0

Figure 8.24: A table of the derivatives of
f(x) = cosx evaluated at x = 0.

— f(x) = cosx

Figure 8.25: A graph of f(x) = cosx and
its degree 8 Maclaurin polynomial.
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) = Vi = fa)=2
Foo=gz = Fe=
0= = =5
0= oy = ) = 5
FOW = = Y@=

Figure 8.26: A table of the derivatives of

Example 265 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) = /x at x = 4.
2. Use p4(x) to approximate /3.

3. Find bounds on the error when approximating v/3 with p,(3).

SOLUTION

1. We begin by evaluating the derivatives of f at x = 4. This is done in Figure

8.26. These values allow us to form the Taylor polynomial p4(x):

~1/32

—15/2048
/2 15/2088

41

pa(x) = 2+%(x—4)+ 3/32$(x—4)3+

(x—4)*.

f(x) = /x evaluated at x = 4.

Figure 8.27: A graph of f(x) = v/x and its
degree 4 Taylor polynomial at x = 4.
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. As ps(x) = /X near x = 4, we approximate /3 with ps(3) = 1.73212.

. Tofind a bound on the error, we need an open interval that contains x = 3

and x = 4. We set | = (2.9,4.1). The largest value the fifth derivative of

f(x) = \/x takes on this interval is near x = 2.9, at about 0.0273. Thus

‘R4(3)’ < 0.0273

<~ 13 -4)°[ ~0.00023.

This shows our approximation is accurate to at least the first 2 places after
the decimal. (It turns out that our approximation is actually accurate to
4 places after the decimal.) A graph of f(x) = +/x and p4(x) is given in
Figure 8.27. Note how the two functions are nearly indistinguishable on
(2,7).

Our final example gives a brief introduction to using Taylor polynomials to
solve differential equations.

Example 266

Approximating an unknown function

A function y = f(x) is unknown save for the following two facts.

1. y(0) =f(0) =1, and

2.y =y

(This second fact says that amazingly, the derivative of the function is actually
the function squared!)
Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).

Notes:



SOLUTION One might initially think that not enough information is given
to find p3(x). However, note how the second fact above actually lets us know
what y’(0) is:

y' =y =y'(0) = y*(0).
Since y(0) = 1, we conclude that y’(0) = 1.

Now we find information about y”’. Starting with y’ = y?, take derivatives of

both sides, with respect to x. That means we must use implicit differentiation.

y/:yZ
4= 9
dX(y)_dX(y)

y'=2y-y".

Now evaluate both sides at x = O:
y//(o) —
y//(O) —

We repeat this once more to find y”’(0). We again use implicit differentiation;
this time the Product Rule is also required.

d . . _i /
07 =2 )

y/// — 2y/ . yl _|_ zy . y//.
Now evaluate both sides at x = O:

"(0) = 2y’(0)2 +2y(0)y”(0)

y
y"(0)=2+4=6

In summary, we have:

y0)=1 y'(0=1 y"0)=2 y"(0)=6.

We can now form p3(x):

2, 63
pg(x)—l—&—x—i-ix +§x

=1+x+x*+x.
It turns out that the differential equation we started with, y’ = y?, where
1
y(0) = 1, can be solved without too much difficulty: y = ———. Figure 8.28

1—x
shows this function plotted with p3(x). Note how similar they are near x = 0.

Notes:

8.7 Taylor Polynomials

-1 —0.5 0.5 1

Figure 8.28: Agraphofy = —1/(x — 1)
and y = ps(x) from Example 266.
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It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate solutions to differential equations. This topic is
often broached in introductory Differential Equations courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximation is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
section has taken a step back from this study, focusing instead on finite summa-
tion of terms. In the next section, we explore Taylor Series, where we represent
a function with an infinite series.

Notes:
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Exercises 8.7

Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Maclaurin polynomial?

2. T/F: In general, pn(x) approximates f(x) better and better
as n gets larger.

3. For some function f(x), the Maclaurin polynomial of degree
4is pa(x) = 6 + 3x — &% + 5x* — 7x*. What is p,(x)?

4. Forsome function f(x), the Maclaurin polynomial of degree

4is pa(x) = 6 4 3x — 4x* + 5x* — 7x*. What is f"/(0)?

Problems

In Exercises 5 — 12, find the Maclaurin polynomial of degree
n for the given function.

5 f(x)=e™, n=3

6. f(x) =sinx, n=38

7. fx)=x-€, n=5

8. f(x) =tanx, n=6

9. f(x) =e*, n=4

10 f0) = -, n=4
1

W f)=1 5 n=4
1

12. f(x) = T x n=7

In Exercises 13 — 20, find the Taylor polynomial of degree n,
at x = ¢, for the given function.

13. fx) =+vx, n=4, c=1
14. f{x) =In(x+1), n=4, c=1
15. f(x) =cosx, n=6, c=m7/4
16. f(x) =sinx, n=5, c=7/6
1
17. fx) ==, n=5, c¢c=2
X
f— 1 p— j—
18. f(x)—x—27 n=8, c=1
19. f(x) = ! n=3 c¢c=-1
Y e T T

20. f(x) =x"cosx, n=2, c=n=

In Exercises 21 — 24, approximate the function value with the

indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate /10 with the Taylor polynomial of degree 2
centered at x = 9.

24. Approximate In 1.5 with the Taylor polynomial of degree 3
centered at x = 1.

Exercises 25 — 28 ask for an n to be found such that p,(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = € approximates e within 0.0001 of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =
/X, centered at x = 4, approximates +/3 within 0.0001 of
the actual value.

27. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos /3 within 0.0001 of the ac-
tual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos 7 within 0.0001 of the actual
value.

In Exercises 29 — 33, find the n'" term of the indicated Taylor
polynomial.

29. Find a formula for the n'' term of the Maclaurin polynomial
for f(x) = €*.

30. Find a formula for the n™ term of the Maclaurin polynomial
for f(x) = cosx.

31. Find aformula for the n' term of the Maclaurin polynomial

for f(x) = I ix'

32. Find aformula for the " term of the Maclaurin polynomial

for f(x) = I ix'

33. Find a formula for the n term of the Taylor polynomial for

f(x) =Inx.
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In Exercises 34 — 36, approximate the solution to the given
differential equation with a degree 4 Maclaurin polynomial.

34. y =y, y(0) =1

476

35.

36.

y/



8.8 Taylor Series

8.8 Taylor Series

In Section 8.6, we showed how certain functions can be represented by a power
series function. In 8.7, we showed how we can approximate functions with poly-
nomials, given that enough derivative information is available. In this section we
combine these concepts: if a function f(x) is infinitely differentiable, we show
how to represent it with a power series function.

Definition 39 Taylor and Maclaurin Series

Let f(x) have derivatives of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

> £(n)
Zf (C) (X— C)n.

n!
n=0

2. Setting ¢ = 0 gives the Maclaurin Series of f(x):

s f(n)(o)
Z% - X"

The difference between a Taylor polynomial and a Taylor series is the former
is a polynomial, containing only a finite number of terms, whereas the latter is
a series, a summation of an infinite set of terms. When creating the Taylor poly-
nomial of degree n for a function f(x) at x = ¢, we needed to evaluate f, and the
first n derivatives of f, at x = c. When creating the Taylor series of f, it helps to
find a pattern that describes the n" derivative of f at x = c. We demonstrate

this in the next two examples. f(x) = cosx = f(0)=1
f'(x) = —sinx = f'(0)=0

Example 267 The Maclaurin series of f(x) = cosx ;,,,((X)?)::;r:isx z ;//,((00))_:_01
Find the Maclaurin series of f(x) = cos x. F®(x) = cosx ~ F@0)=1
h ) fOx) =—sinx = fO0) =0

SOLUTION In Example 264 we found the 8™ degree Maclaurin polyno- FOX) = —cosx = fO0)=-1
mial of cos x. In doing so, we created the table shown in Figure 8.29. Notice how FO(x) = sinx = fD0)=0
fm (0) = Owhennis odd,f(”)(O) = 1whennis divisible by 4, andf(”)(O) =-1 ® (x) = cosx = f®0)=1
when n is even but not divisible by 4. Thus the Maclaurin series of cos x is FO () = —sinx = f(9>(0) —0

2 Xt X X8 . _
11—+ 42 .. Figure 8.29: A table of the derivatives of

f(x) = cosx evaluated at x = 0.

Notes:
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f(x) =Inx = f(1)=0
flx)=1/x = f'1)=1
' =-1/x = f'(1)=-1
f(x)=2/x = f"(1)=2
fO0)=-6/x" = fO1)=-6
fOX) =24/ = fO1)=2
FO ) = = ")
CUT0=0 Ly

Figure 8.30: Derivatives of In x evaluated
atx = 1.
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We can go further and write this as a summation. Since we only need the terms
where the power of x is even, we write the power series in terms of x*”

Example 268 The Taylor series of f(x) = Inxatx =1
Find the Taylor series of f(x) = Inx centered at x = 1.

SOLUTION Figure 8.30 shows the n' derivative of In x evaluated at x =
1forn=0,...,5, along with an expression for the n term:

M) = (1) (n—1)! forn>1.

Remember that this is what distinguishes Taylor series from Taylor polynomials;
we are very interested in finding a pattern for the nt" term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = In1 = 0, we skip the
first term and start the summation with n = 1, giving the Taylor series for In x,
centered atx = 1, as

o o

Z(—l)n+1(n — 1)!;:" (x—1)" = Z(—l)""‘lu.

! n
n=1 n=1

It is important to note that Definition 39 defines a Taylor series given a func-
tion f(x); however, we cannot yet state that f(x) is equal to its Taylor series. We
will find that “most of the time” they are equal, but we need to consider the
conditions that allow us to conclude this.

Theorem 76 states that the error between a function f(x) and its n"—degree
Taylor polynomial p,(x) is R,(x), where

max |nf+"J;1 | ’ c)(n+1)|_

[R ()] <

If R,(x) goes to O for each x in an interval I as n approaches infinity, we con-
clude that the function is equal to its Taylor series expansion.

Notes:



Theorem 77 Function and Taylor Series Equality

Let f(x) have derivatives of all orders at x = ¢, let R,(x) be as stated in
Theorem 76, and let / be an interval on which the Taylor series of f(x)
converges. If lim R,(x) = 0forall xin/, then

n—oo

> £(n)
flx) = Zf ©) (¢~ " on .

n!
n=0
We demonstrate the use of this theorem in an example.
Example 269 Establishing equality of a function and its Taylor series

Show that f(x) = cos x is equal to its Maclaurin series, as found in Example 267,
for all x.

SOLUTION Given a value x, the magnitude of the error term R,(x) is
bounded by
max | £+ (2)
] < O
(n+1)!

Since all derivatives of cos x are + sin x or & cos x, whose magnitudes are bounded

by 1, we can state
1

R,(x)| < ———|x"*1
[Ra)] = (n+1)!’ |
which implies
|Xn+1‘ |Xn+1|
—— < R(x) L ———. 8.7
(n+1)! — "()_(n—i—l)! (8.7)
Xn+1
Forany x, lim ———— = 0. Applying the Squeeze Theorem to Equation (8.7),
n— oo (n + 1)!

we conclude that lim R,(x) = 0 for all x, and hence
n—o0

e 2n

COS X = Z(—l)n ()Z(n)' for all x.

n=0

It is natural to assume that a function is equal to its Taylor series on the
series’ interval of convergence, but this is not the case. In order to properly
establish equality, one must use Theorem 77. This is a bit disappointing, as we
developed beautiful techniques for determining the interval of convergence of
a power series, and proving that R,(x) — 0 can be cumbersome as it deals with
high order derivatives of the function.

Notes:

8.8 Taylor Series
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There is good news. A function f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analytic function, and most, if
not all, functions that we encounter within this course are analytic functions.
Generally speaking, any function that one creates with elementary functions
(polynomials, exponentials, trigonometric functions, etc.) that is not piecewise
defined is probably analytic. For most functions, we assume the function is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
77 when we suspect something may not work as expected.

We develop the Taylor series for one more important function, then give a
table of the Taylor series for a number of common functions.

Example 270 The Binomial Series
Find the Maclaurin series of f(x) = (1 + x), k # 0.

SOLUTION When k is a positive integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f)=(14+x)*"=1+4x+6x"+ 4 +x*.

The coefficients of x when k is a positive integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) = v/1 + x. Knowing a series representation of
this function would give a useful way of approximating v/1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)¥ for any value of k # 0,
we consider the derivatives of f evaluated at x = 0O:

f) = (14 %) £0) =1
flx) = k(@ +x)* F/(0) =k
F(x) = k(k—1)(1+x)? f(0) = k(k—1)
£ (x) = k(k = 1) (k — 2)(1 +x)* > (0) = k(k — 1) (k- 2)
FO) =k(k—1)-- (k—(n—1)) (1 +x"" F70) = k(k—1)--- (k— (n—1))

Thus the Maclaurin series for f(x) = (1 + x) is

k(k—1)+k(k—1)(k—2)+ +k(k71)~--(k—(n71))+

14+ k+ o 3] p

It is important to determine the interval of convergence of this series. With

k(k—1)---(k—(n—1))
n!

ap = X"

3

Notes:
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we apply the Ratio Test:

lim M: lim k(k—l)”-(k—n)xnﬂ k(k—]_)...(k_(n_l))xn
n—oo |a,,| n— o0 (n_|_1)! ol
. ‘kn
= lim %
n—oo n

= |xl.

The series converges absolutely when the limit of the Ratio Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [—1,1]. When
—1 < k < 0, the interval of convergence is [—1,1). If k < —1, the interval of
convergence is (—1, 1).

We learned that Taylor polynomials offer a way of approximating a “difficult
to compute” function with a polynomial. Taylor series offer a way of exactly
representing a function with a series. One probably can see the use of a good
approximation; is there any use of representing a function exactly as a series?

While we should not overlook the mathematical beauty of Taylor series (which
is reason enough to study them), there are practical uses as well. They provide
a valuable tool for solving a variety of problems, including problems relating to
integration and differential equations.

In Key Idea 32 (on the following page) we give a table of the Taylor series
of a number of common functions. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new functions. This allows us to find the Taylor series of functions like
f(x) = €* cos x by knowing the Taylor series of e and cos x.

Before we investigate combining functions, consider the Taylor series for the
arctangent function (see Key Idea 32). Knowing that tan~!(1) = 7 /4, we can
use this series to approximate the value of 7:

E:tanfl(l):l—1+}—1+1—

4 3 5 7 9

RICHE
3 5 7 9

Unfortunately, this particular expansion of 7 converges very slowly. The first
100 terms approximate 7 as 3.13159, which is not particularly good.

Notes:
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Key Idea 32 Important Taylor Series Expansions
Function and Series First Few Terms ISl
Convergence
o0
X" 3
X = —_— —_— —_— DRI p—
e_;n! Ttx+ o+ 5+ (—00, 00)
9 2n+1 3 5 7
inx=S (L1 XX XL _
SInx= HZ:;( V' o ity oot (=00, 00)
> 2n 2 6
_ , X x> x* X
COSX—Z(_l) (2n)! I-Sita et (—00,00)
n=0
nx=3 (- GV (-1 &V 1P (0,2]
N pr n 2 3 ’
1 o]
1_X:Zx" T+x+24+x3+--- (-1,1)
n=0
2 k(k—1)--- (k—(n—1)) k(k —1)
k 2 _ a
(1+x) _nz:% o X' 1+kx+ X+ (-1,1)
o 2n+1 3 X5 7
X X X
tan"lx = —il)f — e Ao ~1.1
aanZ::o()ZnJrl X—3tg o7t =511

“Convergence at x = 41 depends on the value of k.

Theorem 78 Algebra of Power Series

o0 o0
Let f(x) = Z apx" and g(x) = Z bnx" converge absolutely for |x| < R, and let h(x) be continuous.
n=0 n=0

1. f(x) £g(x) = i(an £ by)x"  for x| <R.

n=0

2. f(x)g(x) = <i a,,x”> (i b,,x"> = i (aobn + G1bp—1 + . .. apbo)X" for |x| < R.

n=0 n=0 n=0

3. f(h(x)) = > _an(h(x))" for|h(x)| <R.

n=0

Notes:



8.8 Taylor Series

Example 271 Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = €* cos x using Key Idea
32 and Theorem 78.

SOLUTION Key Idea 32 informs us that

x_q x* X g _ X2 Xt
e’ = +x+i+§+-~- and cosx = —5—1—5—1—---.

Applying Theorem 78, we find that

X — (1 x? X3 1 x2 x*
€" CosX = +x+i+§+-.- _E+E+... .

Distribute the right hand expression across the left:

_1x2x4 1xzx4 lexzx4
— _54_54_... X _i+a+... +E _54_54_...

x3 1 X2 Xt x* . X2 X
_'_7 _E+E+.'. +E _i+ﬂ+'.' _|_...

Distribute again and collect like terms.

1 2 ¥ X X
T3 T T3 e T
While this process is a bit tedious, it is much faster than evaluating all the nec-
essary derivatives of € cos x and computing the Taylor series directly.
Because the series for e and cos x both converge on (—oc, ), so does the
series expansion for e* cos x.

Example 272 Creating new Taylor series
Use Theorem 78 to create series for y = sin(x?) and y = In(y/x).

SOLUTION Given that

o]
X2 n+1 X3 XS X7

H — _ n — _ - e
sinx = _(~1) P A T TR

n=0 :

we simply substitute x? for x in the series, giving

e 2)2n+1 6 10 14
Ly n (X) o, x5 x X
o) = 2 oy = s e
n=0

Notes:
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Note: In Example 272, one could create
a series for In(y/x) by simply recogniz-
ing that In(v/x) = In(x/?) = 1/2Inx,
and hence multiplying the Taylor series
for Inx by 1/2. This example was cho-
sen to demonstrate other aspects of se-
ries, such as the fact that the interval of
convergence changes.
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Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x?).

The Taylor expansion for In x given in Key Idea 32 is centered at x = 1, so we
will center the series for In(y/x) at x = 1 as well. With

oo

|nXZZ(_1)n+1@ — (X—l)— (X_zl)z + (X_31)3 e

n=1

we substitute /x for x to obtain

'W®=§}®M@§§X:WLM_Wﬁﬂﬂgﬁ;m

n=1

While this is not strictly a power series, it is a series that allows us to study the
function In(y/x). Since the interval of convergence of In xis (0, 2], and the range
of v/x on (0, 4] is (0, 2], the interval of convergence of this series expansion of

In(v/x) is (0, 4].

Example 273 Using Taylor series to evaluate definite integrals
1

Use the Taylor series of e to evaluate / e dx.
0

SOLUTION We learned, when studying Numerical Integration, that e
does not have an antiderivative expressible in terms of elementary functions.
This means any definite integral of this function must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e using the Taylor series of
e
> . n 2 3
x N~ XX
e _Zﬁ_1+x+2! +3 T
n=0
and so
> 2\n
—x (7X )
e =D
n=0
o0
-yt
n!
n=0
, XX
S TR T
Notes:



We use Theorem 75 to integrate:

E_XZdX—C—I—X—ﬁ—F x° _ X’ +...+(_1)"L+
N 3 5.20 7-3! (2n + 1)n!

This is the antiderivative of e"‘z; while we can write it out as a series, we can-
not write it out in terms of elementary functions. We can evaluate the definite

1
integral / e dx using this antiderivative; substituting 1 and 0 for x and sub-
0

tracting gives

/1 g 1 1+ 1 1 N 1
e IXx =1 — — —
0 3 5.21 7-31 9.4

Summing the 5 terms shown above give the approximation of 0.74749. Since
this is an alternating series, we can use the Alternating Series Approximation
Theorem, (Theorem 71), to determine how accurate this approximation is. The
next term of the seriesis 1/(11-5!) & 0.00075758. Thus we know our approxi-
mation is within 0.00075758 of the actual value of the integral. This is arguably
much less work than using Simpson’s Rule to approximate the value of the inte-
gral.

Example 274 Using Taylor series to solve differential equations

Solve the differential equation y’ = 2y in terms of a power series, and use the
theory of Taylor series to recognize the solution in terms of an elementary func-
tion.

SOLUTION We found the first 5 terms of the power series solution to
this differential equation in Example 260 in Section 8.6. These are:
1 5 4 5 8 4 16 2
dg = a, = a, = — = 3 == —— —= — g = = —.
0 9 1 ) 2 2 ) 3 2.3 37 4 2.3.4 3

We include the “unsimplified” expressions for the coefficients found in Example
260 as we are looking for a pattern. It can be shown that a, = 2" /n!. Thus the
solution, written as a power series, is

[e.9] n

‘ N

= (2x)"
o=y 2

n=0 " n=0

S

Using Key Idea 32 and Theorem 78, we recognize f(x) = e

o0 n o0 n
X 2x
ex _ § : er — 2 : ( )
n! n!
n=0 n=0

Notes:

8.8 Taylor Series
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Finding a pattern in the coefficients that match the series expansion of a
known function, such as those shown in Key Idea 32, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we still recover the function y = e??

Suppose that all we know is that

00:17 01:2, 02:27 as = as =

2
3’ 3
Definition 39 states that each term of the Taylor expansion of a function includes
an n!. This allows us to say that
b, 4 by 2 b

g3=-=—, and a;=—

=2 == _
@ 20 3 30 37 4l

for some values b,, b3 and by. Solving for these values, we see that b, = 4,
bz = 8 and by = 16. That is, we are recovering the pattern we had previously
seen, allowing us to write

oo oo b
) =D an =3 2
n=0 n=0
149 4, 85 16,
= +x+5x +§x +Ex 4

From here it is easier to recognize that the series is describing an exponential
function.

There are simpler, more direct ways of solving the differential equation y’ =
2y. We applied power series techniques to this equation to demonstrate its util-
ity, and went on to show how sometimes we are able to recover the solution in
terms of elementary functions using the theory of Taylor series. Most differen-
tial equations faced in real scientific and engineering situations are much more
complicated than this one, but power series can offer a valuable tool in finding,
or at least approximating, the solution.

This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
functions based on series. Such “series—defined functions” are a valuable tool
in solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using functions of the form y = f(x). Curves created by these new
methods can be beautiful, useful, and important.

Notes:



Exercises 8.8

Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Taylor series?

2. What theorem must we use to show that a function is equal
to its Taylor series?

Problems

Key Idea 32 gives the n term of the Taylor series of common
functions. In Exercises 3 — 6, verify the formula given in the
Key Idea by finding the first few terms of the Taylor series of
the given function and identifying a pattern.

3. fx) =€ c=0

4. f(x) =sinx; c=0

5. f(x) =1/(1—x); ¢=0
6. fx) =tan"'x; ¢c=0

In Exercises 7 — 12, find a formula for the n'" term of the Taylor
series of f(x), centered at c, by finding the coefficients of the
first few powers of x and looking for a pattern. (The formu-
las for several of these are found in Key Idea 32; show work
verifying these formula.)

7. f(x) = cosx; ¢=1/2
8 fx)=1/x; c=1

9. fx) =e™ c=0

10. f(x) =In(1+x); c¢=0
11. f(x) =x/(x+1); c=1
12. f(x) =sinx;, c=7/4

In Exercises 13 — 16, show that the Taylor series for f(x), as
given in Key Idea 32, is equal to f(x) by applying Theorem 77;
thatis, show lim R,(x) = 0.

n— oo

13. f(x) =€*

14. f(x) = sinx

15. f(x) =Inx
16. f(x) = 1/(1 — x) (show equality only on (—1,0))

In Exercises 17 — 20, use the Taylor series given in Key Idea 32
to verify the given identity.

17. cos(—x) = cosx
18. sin(—x) = —sinx
19. Z(sinx) = cosx

20. & (cosx) = —sinx

In Exercises 21 — 24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k=1/2
22. k=-1/2
23. k=1/3
2. k=4

In Exercises 25 — 30, use the Taylor series given in Key Idea 32
to create the Taylor series of the given functions.

25. f(x) = cos (x°)
26. f(x) =e™*
27. f(x) =sin (2x+3)
28. f(x) =tan"" (x/2)
29. f(x) = e*sinx (only find the first 4 terms)
30. f(x) = (1 +x)"?cosx (only find the first 4 terms)

In Exercises 31 — 32, approximate the value of the given def-

inite integral by using the first 4 nonzero terms of the inte-
grand’s Taylor series.

N
31. / sin (xz) dx
0

2

/4
32. / cos (v/x) dx
0
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A: SOLUTIONS TO SELECTED PROBLEMS

Chapter 5

Section 5.1

O N U W e

13.
15.
17.
19.
21.
23.
25.
27.

29.
31.
33.
35.
37.

39.

. Answers will vary.
. Answers will vary.
. Answers will vary.
. velocity

L 1/9° +C

11.

t+C
-1/(3t)+C
2Vx+C
—cosf+C
sef + ¢
e
/6 +t*/4 -3t +C
e"x+C
(a) x>0
(b) 1/x
(c) x<O
(d) 1/x
(e) In|x| + C. Explanations will vary.
5¢¥+5
tanx + 4
5/2x* +7x + 3
5e* — 2x

2¢* 12 (2) 4+ 24+x1n 2) (In 32—1) +1n? (2) cos(x) —1—In?(2)

In2(2)

No answer provided.

Section 5.2

1.
3.
5.

Answers will vary.

0
(a)
(b)
(c)
(d)
(e) —4
(f)
(@)
(b)
(c)
(d)
(e)
(f)
(a) =
(b)

o W M~ w

N B N BN MO

11.

13.

15.

17.

19.
21.
23.
25.
27.
29.

(c) 27
(d) 107
(a) 4/m
(b) —4/m
(c) O
(d) 2/m
(a) 40/3
(b) 26/3
(c) 8/3
(d) 38/3
(a) 3ft/s
(b) 9.5ft
(c) 9.5ft
(a) 96ft/s
(b
(c) 6seconds
(d) Never; the maximum height is 208ft.
5

6 seconds

Answers can vary; one solutionisa = —2,b =7
-7

Answers can vary; one solutionisa = —11, b = 18
—cosx —sinx+tanx+ C

In|x| + csex + C

Section 5.3

1.

11.
13.
15.
17.
19.
21.
23.
25.
27.
29.
31.
33.

35.

37.

limits
Rectangles.
22432 +42=29
0-1+0+1+0=0
-14+2-34+4-5+6=3
1+14+14+14+14+1=6
Answers may vary; S°5_ (% — 1)
Answers may vary; S0 (—1)'e!
1045
—8525
5050
155
24
19
/3 4+ 7/(2v/3) =~ 1.954
0.388584

(a) Exact expressions will vary; (12;2)2.
(b) 121/400, 10201/40000, 1002001 /4000000
(c) 1/4
(a) 8.
(b) 8,8,8
(c) 8

(a

Exact expressions will vary; 100 — 200/n.



(b) 80,98, 499/5 11 (a) 9/2(1 + /3) =~ 12.294

(c) 100 (b) 3 +6v3~13.392
39. F(x) =5tanx+4 (c) 97/2 ~ 14.137
41. G(t) =4/6t° —5/4t* +- 8t +9 13. Trapezoidal Rule: 3.0241

Simpson’s Rule: 2.9315
15. Trapezoidal Rule: 3.0695

43. G(t) =sint —cost — 78

Section 5.4 Simpson’s Rule: 3.14295
1. Answers will vary. 17. Trapezoidal Rule: 2.52971
3T Simpson’s Rule: 2.5447
5 20 19. Trapezoidal Rule: 3.5472

' Simpson’s Rule: 3.6133
7. 0

21, (a) n =150 (using max (f"(x)) )

9.1

11. (5-1/5)/In5
23, (a) n=5591 (using max (f"'(x)) = 300)

=1
(b) n = 18 (using max (f(4) (x)) =7)
) =
=24)

13. —4
15, 16/3 (b) n = 46 (using max (f(4) (x)
17' a5/4 25.  (a) Areais 25.0667 cm?

’ (b) Area is 250,667 yd?
19. 1/2
2 172 Chapter 6
23. 1/4 Section 6.1
25. 8

1. Chain Rule.

27. 0

3. 1@ —5)®+cC
29. Explanations will vary. A sketch will help. 8( S+

1 (42 9
31, c=+2/V3 5. 55 (P +1)"+C
33. c=64/9~7.1 7. 3nj2x+7|+C
35. 2/pi 9. 2(x+3)*2 —6(x+3)/2+C=2(x—6)\Vx+3+C
37. 16/3 11. 2eV¥ 4 C
39. 1/(e—1) 13-4 -14c
41. 400ft 1s. sin® (x) +c
43. —1ft >

17. —tan(4—x) +C

45. —64ft/s -

tan® (x
47. 2ft/s 19. == +C
49. 27/2 21. tan(x) —x+C
51. 9/2 23. The key is to multiply csc x by 1 in the form

’ (escx + cotx)/(cscx + cotx).
! — 2 1

53. F/(x) = (3x* + 1)X3+X 2

25. & 4+C
55. F/(x) = (3 + 2) — (x + 2) 3
27. x—e ¥4 C

Section 5.5 27
29. 37 +C
1LF 31, 2In%(x) +C
3. They are superseded by the Trapezoidal Rule; it takes an equal 33. % In2 ()g) +c
amount of work and is generally more accurate. R

5. (a) 250 35. 5 +3x+Injx +C

(b) 250 37 2 — % 4t x—2hnx+1]+C

(c) 250 39. 32 —8x+15h|x+1|+C

7. (@ 2+v2++v3=x5.15

e
(b) 2/3(3 +v/2+2v3) ~5.25 41 V7tan <ﬁ>+c

I~ in—1 X
(c) 16/3 ~5.33 43. 14sin <ﬁ)+c
9. (a) 0.2207 85, 3 sec(w]/4) + C
b) 0.2005
( ) tanfl(g)
(c) 1/5 47, — V12 4 ¢

V7



49.

51.

53.

55.

57.

59.

61.
63. tan
65.

67.

69.
71.
73.
75.
77.
79.
81.
83.

3sin™ (TA)
3(x3+3) +c

—V1-x+4¢C

7% cos3 x)+cC

Zin3x+2/+cC

In|x>+7x+3|+cC

2 4o —Tx+ 1| +7x+C

“(2x)+C

Lt (3) 4 €

2nt (32)

2 S| +9|+c¢

Ycos(x)) + €

In | secx + tan x| + C (integrand simplifies to sec x)

VYT —6x+84C

352/15

1/5

/2

/6

—In|x* +12x+ 61| 4+ C

—tan™

Section 6.2

11.
13.
15.
17.

19.

21.

23.

25.
27.
29.
31.
33.
35.

37.
39.
41.
43.
45.

47.

. Determining which functions in the integrand to set equal to

. =X

T

and which to set equal to “av”.

—e X —xeT*¥+C

3 cosx + 3x? sinx + 6xcosx — 6sinx + C
x3e — 3x%e* + 6xe¥ — 6e* + C

1/2€*(sinx — cosx) + C

1/13e?(2sin(3x) — 3cos(3x)) + C
—1/2cos’x+ C

xtan~}(2x) — FInjax? +1] + ¢
V1—xZ fxsin"ix+C

f% + 2x2In|x| 4+ 2x — 2xIn |x| + C

%xz In (x?) — % +C

2x+ x(In |x])? — 2xIn|x| + C
xtan(x) + In| cos(x)| + C

2

g(x )5/2 ( 2)3/2 +C
secx+C

—xcscx — In|cscx + cotx| + C
2sin (v/x) — 2y/xcos (v/x) + C
2/xeVx — 2eVX 4 C

7T

0

1/2

3 _ 5
4e2 4

1/5(e" +e™")

Section 6.3

1. F

3. F

5. Zsin*(x)+C

7. tcos®x— costx+C

9. 7; sin (x) + 35|n (x) 35in5(x) n sinas(x) LTc
11. % ( % s(8x) — 3 cos(2x)) +C

13. 1 (sin(4x) — 55 sin(10x)) 4 C

15. 1 (sin x) + Lsin(3x)) +C

17. tan® (x) +c
tan® (x) tan® (x)
19, B0 g Bl e

sec® (x)
21. — =

sec;(x) +cC

23. ttan®x —tanx+x+4C

25. % (secxtanx — In|secx + tanx|) + C
2

27. 5

29. 32/315

31. 2/3
33. 16/15
Section 6.4

1. backwards
3. (a) tan?0+ 1 =sec?d
(b) 9sec? .

5.1 (X\/XZ +1+In|vx2+1 +x\) +C
7. 3 (sin*1x+xx/1 —xz) +C
9. %x\/xz —1-— % Injx+vx2 —1]+C

11 x/x2+1/4+ 2In[2\/x® +1/4+ 2| + C=
IxVax2 + 1+ 2In|Vaxd +1+2x + C

13. 4 (%x\/xz 1716 — L Injax 445 — 1/16\) fc=

1xv/16x2 —1— Zin|ax+ V16x2 — 1| + C
1 X . .
15. 3sin (ﬁ) + C (Trig. Subst. is not needed)
17. Vx% — 11 — v/11sec™(x/v/11) 4 C

19. v/x%2 — 3 + C(Trig. Subst. is not needed)
21. + C (Trig. Subst. is not needed)

2+9
1 x+2 1 —1(x+2
23. 18 x2+4x+13 + 54 tan ( 2 )+C

25 1 (— X sin*l(x/\/g)) +c
27. ©/2
29. 2v/2 4 2In(1++/2)

31. 9sin~1(1/3) + /8 Note: the new lower bound is

6 = sin—1(—1/3) and the new upper bound is § = sin~

The final answer comes with recognizing that

sin~1(—1/3) = —sin—%(1/3) and that
cos (sin=1(1/3)) = cos (sin~1(—1/3)) = V8/3.

Section 6.5

1(1/3).

A3



1. rational 11. 2sinh2x

A B 13. coth

3. 5+ x
A s 15. xcoshx

5. x7ﬁ+x+\ﬁ 17. 3
Vox2 41

7. 3In|x—2|+4In|x+5|+C 1
19, ———>
1—(x45)2
9. L(infx+2|—Injx—2))+C (x+5)

21. secx

4
13. —In|2x — 3|+ 5In|x — 1|+ 2In|x+ 3|+ C 25 y=x

27. 1/2In(cosh(2x)) + C
29. 1/2sinh?x + Cor1/2cosh?x + C

15. x+Injx—1] —In|x+2|+C

17. 2x+C
31. xcosh(x) — sinh(x) + C

tan —1 (22
19. —3In|x® +4ax+ 1o}+x+an7(¢5)+c 33. cosh™*(x?/2) + C=In(x** + Vx* —4) + C

V6
35, Ltan 1(x/2)+ Injx—2|+ L In|x+2|+C
21. 2In|x — 3|+ 2In|x® +6x + 10| — 4tan—(x+3) + C 16 (/2) 4 3 In [+ 3 0n] |
37. tan~ () +C
23. 1 (3In|x +2x+ 17| —4In|x— 7| + tan ~1 (XE1)) +C
39. xtanh=Ix+1/2In|x®2 — 1|+ C
25. In|x + 10x+ 27| + 5Infx + 2| - 6v2tan 7t (2) +- ¢ 41. 0
43. 2
27. 5In(9/4) — 11n(17/2) ~ 3.3413
Section 6.7
29. 1/8
. _ 0 q00 0
Section 6.6 1. 0/0,00/00,0 - 00,00 — 00,0°%,1%°,
3. F
1. Because cosh x is always positive. 5. derivatives; limits
e —x\ 2 2 2 7. Answers will vary.
3. cothzxfcschzx:( te ) 7< ) v
eX —ex ex —e~x 9. —5/3
_ (e +2+e )~ (4) 1. —v2)2
- 2 _ 9 —2x
) e 13. 0
_eX—2+e ¥
T e _2 + e~ 15. a/b
-1 17. 1/2
o p e\ 19. 0
e
5. cosh? x = (f) 21. 0o
_ e2x+2+872x 23. 0
- 4 25. —2
_ 1(62x+e—2x)+2 27. 0
2 2
1 /¥ 4 =2 29. 0
=3 (72 + 1) 31 oo
__cosh2x+1 33. ©
2 35. 0
d d 2
7. P [sechx] = o [ﬁ} 37.1
Ix X +e 39. 1
—2(e¥—e™)
= - 41. 1
(ex + e—x)2
2er — e 43. 1
- (ex+e—x)(ex+e—x) 45. 1
B 2 e —ex 47. 2
T e fe X eX4e 49, —00
= —sechxtanhx 51. 0
sinh x :
9. /tanhxdx:/ dx Section 6.8
cosh_x
Let u = coshx; du = (smhx)d’{ 1. The interval of integration is finite, and the integrand is
= / —du continuous on that interval.
u
=Injul+C

= In(cosh x) + C.



37.
39.
41.
43.

3. converges; could also state < 10.
5.p>1

7.
9

e°/2

. 1/3
11.
13.
15.
17.
19.
21.
23.
25.
27.
29.
31.
33,
35.

1/1In2

diverges

1

diverges

diverges

diverges

1

0

—1/4

-1

diverges

1/2

converges; Limit Comparison Test with 1/x3/2,
converges; Direct Comparison Test with xe .
converges; Direct Comparison Test with xe .

diverges; Direct Comparison Test with x/(x? + cos x).

converges; Limit Comparison Test with 1/e*.

Chapter 7

Section 7.1

9.
11.
13.
15.
17.

19.
21.
23.
25.
27.

T

. Answers will vary.

. 16/3

™

2v2
4.5
2—1m/2
1/6

On regions such as [r/6, 57/6], the area is 31/3/2. On regions
such as [~ /2, 7/6], the area is 3/3/4.

5/3
9/4

1

4

219,000 ft2

Section 7.2

T

. Recall that “dx” does not just “sit there;” it is multiplied by A(x)

and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

. 1757/3 units®
. /6 units®

. 357/3 units?

15.

17.

19.

21.

. 2m/15 units®
13.

(a) 5127/15
(b) 2567/5
(c) 8327/15
(d) 1287/3
(a) 1047/15
(b) 647/15
(c) 327/5
(a) 87

(b) 8

(c) 167/3
(d) 8m/3

The cross—sections of this cone are the same as the cone in
Exercise 18. Thus they have the same volume of 2507 /3 units3.

Orient the solid so that the x-axis is parallel to long side of the
base. All cross—sections are trapezoids (at the far left, the
trapezoid is a square; at the far right, the trapezoid has a top
length of 0, making it a triangle). The area of the trapezoid at x is
A(x) = 1/2(=1/2x 4 5+ 5)(5) = —5/4x + 25. The volume is
187.5 units®.

Section 7.3

15.

17.

97/2 units’
% — 27 units?

48m+/3/5 units?

. 72 /4 units?

(a) 47/5

(b) 87/15

(c) m/2

(d) 57/6

(a) 47/3

(b) /3

(c) 4m/3

(d) 27/3

(a) 2m(v2—1)

(b) 27(1 — v/2 4 sinh~1(1))

Section 7.4

13.

15.

17.

19.

21.

LU N U W

T
V2
4/3
109/2
12/5

. —In(2 —/3) ~ 1.31696

fol V1 + 4x2 dx
f011/1+idx

fil 14 2 dx

1—x2

flz,/ler%dx

1.4790
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23.

25.
27.
29.

31.

33.

Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x?; why?

Simpson’s Rule fails.

1.4058

27 [} 2x/5 dx = 21/5

21 [} 3V/1+ 9% dx = 1/27(10v/10 — 1)
21 [ V1= x2\/T+x/(1 = x?) dx = 4

Section 7.5

1.

11.
13.
15.
17.
19.
21.

23.

25.

In Sl units, it is one joule, i.e., one Newton—meter, or kg-m/sz-m.
In Imperial Units, it is ft—Ib.

Smaller.
(a) 2450j
(b) 1568 ]
735j
11,100 ft-Ib
125 ft-lb
12.5 ft-lb
0.2625=21/80]
45 ft-lb
953,284 ]

192,767 ft—Ib. Note that the tank is oriented horizontally. Let the
origin be the center of one of the circular ends of the tank. Since
the radius is 3.75 ft, the fluid is being pumped to y = 4.75; thus
the distance the gas travels is h(y) = 4.75 — y. A differential
element of water is a rectangle, with length 20 and width
24/3.752 — y2. Thus the force required to move that slab of gas is

F(y) = 40 - 45.93 - 1/3.752 — y2dy. Total work is

373,40 -45.93 - (4.75 — y)+/3.752 — y2 dy. This can be
evaluated without actual integration; split the integral into

3. 3.
2725404593 - (4.75)/3.752 — y2 dy + [*]°.40-45.93 -

(—y)+\/3.75%2 — y2 dy. The first integral can be evaluated as
measuring half the area of a circle; the latter integral can be

shown to be 0 without much difficulty. (Use substitution and
realize the bounds are both 0.)

(a) approx. 577,000 j
(b) approx. 399,000 j

(c) approx 110,000 j (By volume, half of the water is between
the base of the cone and a height of 3.9685 m. If one
rounds this to 4 m, the work is approx 104,000 j.)

617,400 j

Section 7.6

11.
13.

15.

A.6

o N W oe

Answers will vary.
499.2 Ib
6739.21b
3920.7 Ib
2496 |b
602.59 Ib
(a) 23401b
(b) 5625 Ib
(a) 1597.44 b
(b) 38401b

17.  (a) 56.421b
(b) 135.62 b
19. 5.1ft

Chapter 8
Section 8.1

1. Answers will vary.

3. Answers will vary.

8 8 32 64

5. 2’373’15’45
1 81 512 15625
732,55, 770

9. ap=3n+1
11. @, =10-2""1
13. 1/7
15. 0
17. diverges
19. converges to 0
21. diverges
23. convergestoe
25. convergesto 0
27. convergesto 2
29. bounded
31. bounded
33. neither bounded above or below
35. monotonically increasing
37. never monotonic

39. Let {an} be given such that lim |a,| = 0. By the definition of
n—o0o

the limit of a sequence, given any € > 0, there is a m such that for

alln > m, | |an| — 0| < €. Since | |as| — O] = |a, — 0|, this

directly implies that for all n > m, |a, — 0| < &, meaning that
lim a, = 0.

n— oo

41. Left to reader
Section 8.2

1. Answers will vary.

3. One sequence is the sequence of terms {a}. The other is the
sequence of ' partial sums, {S,} = {>°1_, a;}.

5. F
5 49 205 5269
7. (@ 1,2, 36 144 3600

(b) Plot omitted
9. (a) 1,3,6,10,15
(b) Plot omitted

1 4 13 40 121
11 (@) 35,5537 810 283

(b) Plot omitted
13.  (a) 0.1,0.11,0.111,0.1111,0.11111
(b) Plot omitted

15. lim ap, = oo; by Theorem 63 the series diverges.
n— oo

17. lim ap = 1; by Theorem 63 the series diverges.
n—oo

19. lim ap, = e; by Theorem 63 the series diverges.
n— oo

21. Converges

23. Converges



25. Converges
27. Converges
29. Diverges
2
3L (@) 5= (2
(b) Diverges
_e1-1/2"
33. (@) S, =5 /2
(b) Converges to 10.
_ 1-(=1/3)"
35. (@) Sn = a3
(b) Convergesto3/4.
. : . _3(1 1
37. (a) With partial fractions, an = 3 (; — m) Thus
s —3(3_ 1 _ 1
n=2\2" nf1 " nt2 )
(b) Converges to 9/4
39.  (a) Sa=In(1/(n+1))
(b) Diverges (to —oo).
41.  (a) ap = m; using partial fractions, the resulting
telescoping sum reduces to
_ 1 1,1 1 1 1
Sn—§(1+§+§—m—m—m)
(b) Convergesto 11/18.
. . . _1(.a 1
43, (a) With partial fractions, a, = 5 <ﬁ — m) Thus
_1 1 1
Sn=3 (3/2*;*nT1)~
(b) Converges to 3/4.
45, (a) The nt" partial sum of the odd series is
1+ % + % 4+ an_l. The nt partial sum of the even
series is % + % + é + -+ Tln Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nt partial sum of the odd series is
1+ % + % + -+ ﬁ The nt" partial sum of 1 plus the
even seriesis 1 + % + % + 4 Z(nil—l) Each term of the
even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nt
partial sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.

Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

Section 8.3

1. continuous, positive and decreasing

3. The Integral Test (we do not have a continuous definition of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its derivative).

5. Converges

7. Diverges

9. Converges

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.
35.

37.

39.

41.

Converges

oo
1
Converges; compare to E —,as1/(n® 4+3n —5) < 1/n” for
n
n=1

alln > 1.

oo
1
Diverges; compare to E —,as1/n <Inn/nforalln > 2.
n

n=1
=1
Diverges; compare to Z ~.Sincen = Vn?2 > +v/n? —1,
n
n=1
1/n < 1/v/n?2 —1foralln > 2.

=1
Diverges; compare to Z =
=1
mP4+n+1 n+4+n+1
<
n3—5

1 n?

n n n3
foralln > 1.

)

) =1
Diverges; compare to E —. Note that
n

n=1

nZ
— > 1, foralln > 2.

as
oo
Converges; compare to E =

n=1

oo
. Inn
Diverges; compare to E —

n=1

21

Diverges; compare to Z -.
n
n=1
oo .
i 1 . sinn

Diverges; compare to Z —.Justas lim — =1,
n

n—0 n
n=1
in(1
fim SN/ _
n— o0 1/n

oo
1
Converges; compare to —_—.
ges; compareto } _ —
n=1
Converges; Integral Test

Diverges; the nt" Term Test and Direct Comparison Test can be
used.

Converges; the Direct Comparison Test can be used with sequence
1/3".
Diverges; the nt" Term Test can be used, along with the Integral
Test.

(a) Converges; use Direct Comparison Test as %” <n.

(b) Converges; since original series converges, we know
limp— 00 @n = 0. Thus for large n, apan+1 < an.

(c) Converges; similar logic to part (b) so (an)? < an.

(d) May converge; certainly na, > ap, but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nt" Term Test.

Section 8.4

N W oe

algebraic, or polynomial.
Integral Test, Limit Comparison Test, and Root Test
Converges

Converges
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11.

13.

15.
17.
19.
21.

23.
25.
27.
29.
31.
33.

The Ratio Test is inconclusive; the p-Series Test states it diverges.
Converges

2"n!

Converges; note the summation can be rewritten as E Il
n!

n=1
from which the Ratio Test can be applied.

Converges
Converges
Diverges

Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach e?, not
0,asn — o<.)

Converges

Diverges; Limit Comparison Test

Converges; Ratio Test or Limit Comparison Test with 1/3".
Diverges; nth-Term Test or Limit Comparison Test with 1.
Diverges; Direct Comparison Test with 1/n

Converges; Root Test

Section 8.5

11.

13.

15.

17.

19.

21.

A.8

The signs of the terms do not alternate; in the given series, some
terms are negative and the others positive, but they do not
necessarily alternate.

Many examples exist; one common example is a, = (—1)"/n.
(a) converges
(b) converges (p-Series)
(c) absolute
(a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
(a) converges
(b) diverges (Limit Comparison Test with 1/n)
(c) conditional
(a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
(a) diverges (terms oscillate between £1)
(b) diverges
(c) n/a; diverges
(a) converges
(b) converges (Geometric Series with r = 2/3)
(c) absolute
(a) converges
(b) converges (Ratio Test)
(c) absolute
(a) converges
(b) diverges (p-Series Test with p = 1/2)
(c) conditional

S5 = —1.1906; Sg =

o~ (=1
~1.1906 <> ————
= In(n+1)

—0.6767;

< —0.6767

23.

25.
27.

S¢ = 0. 3681' 57 = 0.3679;

0.3681 < Z < 0.3679
n=>5
Using the theorem, we find n = 499 guarantees the sum is within

0.001 of /4. (Convergence is actually faster, as the sum is within
¢ of /24 when n > 249.)

Section 8.6
1. 1
3.5
5. 1+ 2x + 4x% + 8x3 + 16x*
7ol4x+ S+ 240
9. (a) R=o0

(b) (—O0,00)
11. (@) R=1

(b) (2,4]
13. (a) R=2

(b) (=2,2)
15. (a) R=1/5

(b) (4/5,6/5)
17. (@) R=1

(b) (=1,1)
19. (a) R=oc

(b) (—o0,00)
2. (@) R=1

(b) [-1,1]
23. (@ R=0

(b) x=0
25, (@) f/(x) = an " (-1,1)

_ o~ N i, —

(b) /f(x)dx_C+,§n+1X" ;o (-L1)

7. (@) =) %Xn_l; (=2,2)
n=1
_ o # n+1. —
(b) /f(x) dx_c+nz:; CEE TR [-2,2)
fy e (CDMTE SN (cnymhent

2. (@ f (X)—;m —QW'

31.

33.
35.

(~o0,00)

1)n 2n+1

(b) /f(x)dx-CJrZ D

1+43x+ 2x + 23 4+ 2t

;0 (—o00,00)

1+x+x2+3+x4
0+x+0x2—%x3+0x4

Section 8.7

. The Maclaurin polynomial is a special case of Taylor polynomials.

Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

. p2(x) = 6+ 3x — 4x%.

() =1—x+ 33— 3



_ 2,1 1,4, 1.5

7. pe(x) =x+x2 4+ 33 + 2xF + 5x

9. pal) = 2 + 4 122 4 2x+ 1

11 pa(x) =x* =3 4+ x> —x+1

13. pa(x) = 142 (=140 — 2 (—14+%)*+ 3= (—14x)3 — 325 (—1+x)*
O S Gl ) G o ) I o ) A

15 Psl) = 75 V2 i T ez a2

(50 (i’
120v/2 720V/2
17. ps(x) = =52+ 3(x—2)2— = (x—2)3+ 5 (x—2)* = & (x—2)°
19. ps(x) = 1 + % + %(1+x)
3

21. p3(x) = x — %; p3(0.1) = 0.09983. Error is bounded by
42 - 0.1% &~ £0.000004167.

23. pa(x) =3+ 2(—=9+x) — 51-(—9 +x)?; p2(10) = 3.16204.
The third derivative of f(x) = /x is bounded on (8, 11) by 0.003.
Error is bounded by :I:% .13 = 40.0005.

25. The nt" derivative of f(x) = e*is bounded by 3 on intervals
containing 0 and 1. Thus |Rp(1)] < (n+1) 1(+1) Whenn =7,
this is less than 0.0001.

27. The nt" derivative of f(x) = cos x is bounded by 1 on intervals
containing 0 and 7/3. Thus |Rp(7/3)| < (n+11)! (7/3)(+1),
When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
usen = 6.

29. The n'" term is %x”.

31. The n'" term is x".

33. The n™ term is (71)"@.

35 341504 B2y 50 W85,

. X+ —x° + —x° + ——x
2 6 24
Section 8.8
1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summation of an infinite
number of terms.
3. All derivatives of &* are e which evaluate to 1 at x = 0.
The Taylor series starts 1 + x + %xz + $x3 + %x“ R
the Taylor series is Z —
n=, 0
5. The nth derivative of 1/(1 — x) is f (" (x) = (n)!/(1 — x)"t1,
which evaluates to n! at x = 0.
The Taylor series starts 1 4+ x + x% +x3 + - - -;
oo
the Taylor series is Z X"
n=0
7. The Taylor series starts
0— (x—m/2) +0x% + 2(x — m/2)3 + Ox* — %5 (x — 7/2)*;
0 2041
X—m/2
the Taylor series is Z(—l)"'*‘l%
— (2n+1)!
n=0
9. fM(x) = (—1)"e~*; atx = 0, (" (0) = —1 when niis odd and

(M (0) = 1 when nis even.

The Taylor series starts 1 — x + lx2 — %x3 +

the Taylor series is Z 1)"
n=0

11. fM(x) =

13.

15.

17.

19.

(—1)H i ate = 1, £ (1) = (—1)" 2
The Taonr series starts

THix—1)— (x—l)2 =x—1)3- -

-1y

n+1
the Taylor series is Z( 1) il

n=0
Given a value x, the magnitude of the error term R (x) is bounded
by
max |f

Z)| (n+1)
1)' |X |’

[Ra ()| <
where z is between 0 and x.
If x > 0,thenz < xand f (") (z) = & < €. If x < 0, then
x < z<0andf("t1)(z) = €% < 1. So given a fixed x value, let
M = max{e*, 1}; (" (z) < M. This allows us to state

M
|Rn ()] < 7|x(”+1)|.
(n+1
—— |x("*D| = 0. Thus by the Squeeze
(n +1)! | = y a
Theorem, we conclude that lim Rn(x) = 0 for all x, and hence
n—o0o

[e o) Xn
eX:E — forallx.
n!
n=0

Given a value x, the magnitude of the error term R (x) is bounded
by

For any x, I|m

max | £ ("1 (2)
[Rn ()] < %I( V],
where z is between 1 and x
Note that |f ("+1) (x)| = .

We consider the cases when x > 1 and when x < 1 separately.
Ifx > 1,then1 < z < xand f("t1 () = n’il < nl. Thus

_ 1)n+1
Rn(x x— 1)) G=y™
[Ra] < +QJ( = n+1
For a fixed x,
_ n+1
lim 7()( ) =
n—o0 n—+ 1
If0 < x<1thenx<z< landf("D(z) = z"+1 < x"+1
Thus
n! /x" PURE
R ( —_ xfl("+:l> —17)("*1.
] < 2= | = E )

Since 0 < x < 1, x"'*‘1 < land (1 —x)"t! < 1. We can then
extend the inequality from above to state
)< ——.

n+1
Asn — 00,1/(n+ 1) — 0. Thus by the Squeeze Theorem, we
conclude that ”ILmoo Rn(x) = 0 for all x, and hence

_ = n (X - 1)"
Inx = Z(fl) HT
Given cosx = Z(

Xn+1
[Fa0) < o -

forall0 < x < 2.

2n)'
( X) o0 x2n
cos(—x) = » (—1)" =) (-1)" = cosx, as all
g (2n)! nzzo (2n)!
powers in the series are even.
o 2041
X
Given sinx = ) [ —
Z( ) (2n 4+ 1)!

n=0
[eS)
K2n+1

d d

— (sinx) = — ()" ——or | =
dx dx <HZO (2n + 1)!

oo oo

(2n + 1)x*" X"

> o = =Y G

n=0 : n=0 )

summation still starts at n = 0 as there was no constant term in
the expansion of sin x).

= cosx. (The
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2

X X x> 5x* (2x + 3)20+1
M 14— 2 _qn X

2 8 16 128 27. Z Voo

x x> 5¢  10x* B8
23 14— =4 —=——-— 29. x+x+fff

3 9 81 243 30

VT N 6 10 14
o an 31. / sin (%) dx = / (xz - % + % — 5);40> dx =
25. 1 = —1)" 0 0
Z( (Zn)' HX::( 2 (Zn) 0.8877

A.10



Index

1,397

Absolute Convergence Theorem, 448

absolute maximum, 123
absolute minimum, 123
Absolute Value Theorem, 401
acceleration, 73, 642

Alternating Harmonic Series, 419, 446, 459

Alternating Series Test

for series, 442
an, 660, 670
analytic function, 480
angle of elevation, 647
antiderivative, 189
arc length, 370, 519, 545, 639, 664
arc length parameter, 664, 666
asymptote

horizontal, 49

vertical, 47
ar, 660, 670
average rate of change, 627
average value of a function, 769
average value of function, 236

Binomial Series, 480
Bisection Method, 42
boundary point, 682
bounded sequence, 404
convergence, 405
bounded set, 682

center of mass, 783-785, 787, 814

Chain Rule, 97
multivariable, 713, 716
notation, 103

circle of curvature, 669

closed, 682

closed disk, 682

concave down, 144

concave up, 144

concavity, 144, 516
inflection point, 145
test for, 145

conic sections, 490
degenerate, 490
ellipse, 493
hyperbola, 496
parabola, 490

Constant Multiple Rule
of derivatives, 80
of integration, 193
of series, 419

constrained optimization, 745
continuous function, 37, 688
properties, 40, 689
vector—valued, 630
contour lines, 676
convergence
absolute, 446, 448
Alternating Series Test, 442
conditional, 446
Direct Comparison Test, 429
for integration, 339
Integral Test, 426
interval of, 454
Limit Comparison Test, 430
for integration, 341
nth—term test, 422
of geometric series, 414
of improper int., 334, 339, 341
of monotonic sequences, 407
of p-series, 415
of power series, 453
of sequence, 400, 405
of series, 411
radius of, 454
Ratio Comparison Test, 435
Root Comparison Test, 438
critical number, 125
critical point, 125, 740-742
cross product
and derivatives, 635
applications, 597
area of parallelogram, 598
torque, 600
volume of parallelepiped, 599
definition, 593
properties, 595, 596
curvature, 666
and motion, 670
equations for, 668
of circle, 668, 669
radius of, 669
curve
parametrically defined, 503
rectangular equation, 503
smooth, 509
curve sketching, 152
cusp, 509
cycloid, 625
cylinder, 555

decreasing function, 136



finding intervals, 137 divergence

strictly, 136 Alternating Series Test, 442
definite integral, 201 Direct Comparison Test, 429

and substitution, 270 for integration, 339

properties, 203 Integral Test, 426
derivative Limit Comparison Test, 430

acceleration, 74 for integration, 341

as a function, 64 nth—term test, 422

at a point, 60 of geometric series, 414

basic rules, 78 of improper int., 334, 339, 341

Chain Rule, 97, 103, 713, 716 of p-series, 415

Constant Multiple Rule, 80 of sequence, 400

Constant Rule, 78 of series, 411

differential, 181 Ratio Comparison Test, 435

directional, 720, 722, 723, 726, 727 Root Comparison Test, 438

exponential functions, 103 dot product

First Deriv. Test, 139 and derivatives, 635

Generalized Power Rule, 98 definition, 580

higher order, 81 properties, 581, 582

interpretation, 82 double integral, 762, 763
hyperbolic funct., 316 in polar, 773
implicit, 106, 718 properties, 766

interpretation, 71

inverse function, 117
inverse hyper., 319
inverse trig., 120

Mean Value Theorem, 132
mixed partial, 696

eccentricity, 495, 499
elementary function, 240
ellipse
definition, 493
eccentricity, 495
parametric equations, 509

motion, 74 .

multivariable differentiability, 705, 710 reflective property, 496

normal line, 61 standard equation, 494
’ extrema

notation, 64, 81
parametric equations, 513
partial, 692, 700
Power Rule, 78,91, 111
power series, 457
Product Rule, 85
Quotient Rule, 88
Second Deriv. Test, 148
Sum/Difference Rule, 80
tangent line, 60
trigonometric functions, 90
vector—valued functions, 631, 632, 635
velocity, 74
differentiable, 60, 705, 710
differential, 181
notation, 181
Direct Comparison Test
for integration, 339
for series, 429

absolute, 123, 740

and First Deriv. Test, 139

and Second Deriv. Test, 148

finding, 126

relative, 124, 740, 741
Extreme Value Theorem, 124, 745
extreme values, 123

factorial, 397
First Derivative Test, 139
floor function, 38
fluid pressure/force, 388, 390
focus, 490, 493, 496
Fubini’s Theorem, 763
function
of three variables, 679
of two variables, 675
vector—valued, 623
Fundamental Theorem of Calculus, 228, 229

directional derivative, 720, 722, 723, 726, 727 and Chain Rule, 232

directrix, 490, 555

Disk Method, 355 Gabriel’s Horn, 376

displacement, 230, 626, 639 Generalized Power Rule, 98

distance geometric series, 413, 414
between lines, 611 gradient, 722, 723, 726, 727, 737
between point and line, 611 and level curves, 723
between point and plane, 620 and level surfaces, 737

between points in space, 552
traveled, 650 Harmonic Series, 419



Head To Tail Rule, 570 of trig. functions, 263

Hooke’s Law, 381 of trig. powers, 286, 291
hyperbola of vector—valued functions, 637
definition, 496 partial fraction decomp., 306
eccentricity, 499 Power Rule, 194
parametric equations, 509 Sum/Difference Rule, 194
reflective property, 499 surface area, 374, 521, 546
standard equation, 497 trig. subst., 297
hyperbolic function triple, 800, 811, 813
definition, 313 volume
derivatives, 316 cross-sectional area, 353
identities, 316 Disk Method, 355
integrals, 316 Shell Method, 362, 366
inverse, 317 Washer Method, 357, 366
derivative, 319 work, 378
integration, 319 interior point, 682
logarithmic def., 318 Intermediate Value Theorem, 42
interval of convergence, 454
implicit differentiation, 106, 718 iterated integration, 753, 762, 763, 800, 811, 813
improper integration, 334, 337 changing order, 757
increasing function, 136 properties, 766, 807
finding intervals, 137
strictly, 136 L'Hopital’s Rule, 324, 326
indefinite integral, 189 lamina, 779
indeterminate form, 2, 48, 327, 328 Left Hand Rule, 210, 215, 240
inflection point, 145 Left/Right Hand Rule, 247
initial point, 566 level curves, 676, 723
initial value problem, 194 level surface, 680, 737
Integral Test, 426 limit
integration Absolute Value Theorem, 401
arc length, 370 at infinity, 49
area, 201, 754, 755 definition, 10
area between curves, 233, 346 difference quotient, 6
average value, 236 does not exist, 4, 32
by parts, 275 indeterminate form, 2, 48, 327, 328
by substitution, 257 L'Hopital’s Rule, 324, 326
definite, 201 left handed, 30
and substitution, 270 of infinity, 46
properties, 203 of multivariable function, 683, 684, 690
Riemann Sums, 224 of sequence, 400
displacement, 230 of vector—valued functions, 629
distance traveled, 650 one sided, 30
double, 762 properties, 18, 684
fluid force, 388, 390 pseudo-definition, 2
Fun. Thm. of Calc., 228, 229 right handed, 30
general application technique, 345 Squeeze Theorem, 22
hyperbolic funct., 316 Limit Comparison Test
improper, 334, 337, 339, 341 for integration, 341
indefinite, 189 for series, 430
inverse hyper., 319 lines, 604
iterated, 753 distances between, 611
Mean Value Theorem, 235 equations for, 606
multiple, 753 intersecting, 607
notation, 190, 201, 229, 753 parallel, 607
numerical, 240 skew, 607
Left/Right Hand Rule, 240, 247 logarithmic differentiation, 113
Simpson’s Rule, 245, 247, 248
Trapezoidal Rule, 243, 247, 248 Maclaurin Polynomial, see Taylor Polynomial
of multivariable functions, 751 definition, 466

of power series, 457 Maclaurin Series, see Taylor Series



definition, 477
magnitude of vector, 566
mass, 779, 780, 814
center of, 783
maximum
absolute, 123, 740
and First Deriv. Test, 139
and Second Deriv. Test, 148
relative/local, 124, 740, 743
Mean Value Theorem
of differentiation, 132
of integration, 235
Midpoint Rule, 210, 215
minimum
absolute, 123, 740
and First Deriv. Test, 139, 148
relative/local, 124, 740, 743
moment, 785, 787, 814
monotonic sequence, 405
multiple integration, see iterated integration
multivariable function, 675, 679
continuity, 688-690, 706, 711
differentiability, 705, 706, 710, 711
domain, 675, 679
level curves, 676
level surface, 680
limit, 683, 684, 690
range, 675, 679

Newton’s Method, 160
norm, 566
normal line, 61, 513, 733
normal vector, 615
nth—term test, 422
numerical integration, 240
Left/Right Hand Rule, 240, 247
Simpson’s Rule, 245, 247
error bounds, 248
Trapezoidal Rule, 243, 247
error bounds, 248

open, 682
open ball, 690
open disk, 682
optimization, 173
constrained, 745
orthogonal, 584, 733
decomposition, 588
orthogonal decomposition of vectors, 588
orthogonal projection, 586
osculating circle, 669

p-series, 415
parabola

definition, 490

general equation, 491

reflective property, 493
parallel vectors, 574
Parallelogram Law, 570
parametric equations

arc length, 519

concavity, 516
deﬁnitior;, 503
finding %, 517
finding %, 513
normal line, 513
surface area, 521
tangent line, 513
partial derivative, 692, 700
high order, 700
meaning, 694
mixed, 696
second derivative, 696
total differential, 704, 710
perpendicular, see orthogonal
planes
coordinate plane, 554
distance between point and plane, 620
equations of, 616
introduction, 554
normal vector, 615
tangent, 736
point of inflection, 145
polar
coordinates, 525
function
arc length, 545
gallery of graphs, 532
surface area, 546
functions, 528
area, 541
area between curves, 543
finding %, 538
graphing, 528
polar coordinates, 525
plotting points, 525
Power Rule
differentiation, 78, 85, 91, 111
integration, 194
power series, 452
algebra of, 482
convergence, 453
derivatives and integrals, 457
projectile motion, 647, 648, 661

quadric surface
definition, 558
ellipsoid, 560
elliptic cone, 559
elliptic paraboloid, 559
gallery, 559-561
hyperbolic paraboloid, 561
hyperboloid of one sheet, 560
hyperboloid of two sheets, 561
sphere, 560
trace, 558

Quotient Rule, 88

R, 566
radius of convergence, 454
radius of curvature, 669



Ratio Comparison Test

for series, 435
rearrangements of series, 447, 448
related rates, 166
Riemann Sum, 210, 214, 217

and definite integral, 224
Right Hand Rule, 210, 215, 240
right hand rule

of Cartesian coordinates, 552
Rolle’s Theorem, 132
Root Comparison Test

for series, 438

saddle point, 742, 743
Second Derivative Test, 148, 743
sensitivity analysis, 709
sequence
Absolute Value Theorem, 401
positive, 429
sequences
boundedness, 404
convergent, 400, 405, 407
definition, 397
divergent, 400
limit, 400
limit properties, 403
monotonic, 405
series
absolute convergence, 446

Absolute Convergence Theorem, 448

alternating, 441
Approximation Theorem, 444
Alternating Series Test, 442
Binomial, 480
conditional convergence, 446
convergent, 411
definition, 411
Direct Comparison Test, 429
divergent, 411
geometric, 413,414
Integral Test, 426
interval of convergence, 454
Limit Comparison Test, 430
Maclaurin, 477
nth—term test, 422
p-series, 415
partial sums, 411
power, 452, 453
derivatives and integrals, 457
properties, 419
radius of convergence, 454
Ratio Comparison Test, 435
rearrangements, 447, 448
Root Comparison Test, 438
Taylor, 477
telescoping, 416, 417
Shell Method, 362, 366
signed area, 201
signed volume, 762, 763
Simpson’s Rule, 245, 247

error bounds, 248
smooth, 634
smooth curve, 509
speed, 642
sphere, 553
Squeeze Theorem, 22
Sum/Difference Rule
of derivatives, 80
of integration, 194
of series, 419
summation
notation, 211
properties, 213
surface area, 792

solid of revolution, 374, 521, 546

surface of revolution, 556, 557

tangent line, 60, 513, 538, 633
directional, 730
tangent plane, 736
Taylor Polynomial
definition, 466
Taylor’s Theorem, 469
Taylor Series
common series, 482
definition, 477

equality with generating function, 479

Taylor’s Theorem, 469

telescoping series, 416, 417

terminal point, 566

total differential, 704, 710
sensitivity analysis, 709

total signed area, 201

trace, 558

Trapezoidal Rule, 243, 247
error bounds, 248

triple integral, 800, 811, 813
properties, 807

unbounded sequence, 404
unbounded set, 682
unit normal vector
ayn, 660
and acceleration, 659, 660
and curvature, 670
definition, 657
in R?, 659
unit tangent vector
and acceleration, 659, 660
and curvature, 666, 670
ar, 660
definition, 655
in R?, 659
unit vector, 572
properties, 574
standard unit vector, 576
unit normal vector, 657
unit tangent vector, 655

vector—valued function
algebra of, 624



arc length, 639
average rate of change, 627
continuity, 630
definition, 623
derivatives, 631, 632, 635
describing motion, 642
displacement, 626
distance traveled, 650
graphing, 623
integration, 637
limits, 629
of constant length, 637, 646, 647, 656
projectile motion, 647, 648
smooth, 634
tangent line, 633

vectors, 566
algebra of, 569
algebraic properties, 572
component form, 567
cross product, 593, 595, 596
definition, 566
dot product, 580-582
Head To Tail Rule, 570
magnitude, 566
norm, 566
normal vector, 615
orthogonal, 584
orthogonal decomposition, 588
orthogonal projection, 586
parallel, 574
Parallelogram Law, 570
resultant, 570
standard unit vector, 576
unit vector, 572, 574
zero vector, 570

velocity, 73, 642

volume, 762, 763, 798

Washer Method, 357, 366
work, 378, 590



Differentiation Rules

d d d 1 d
1. —(ex)=c 10. — (@*) =Ina-d* 19. — (sin7lx) = —— 28. — (sechx) = —sechxtanhx
dx( ) dx( ) dx( ) V1—x2 dx( )
d d 1 d -1 d
2. —(utv)=du £V 11. — (Inx) = = 20. — (cos™ix) = —— 29. — (cschx) = — csch x coth x
dx dx X dx V1—x2 dx
d d 1 1 d -1 d
3. —(w-v)=uw' +dv 12 — (log,x) = — - = 21, — (escix) = 30. — (cothx) = — csch? x
dx( ) + dx( €aX) Ina x dx( ) x|vx* —1 dx( )
r— d d 1 d 1
4, g fuy_w-ow 45 9 (sinx) = cosx 22, — (sec™lx) = ——— 31, — (cosh™lx) = ———
dx \v v2 dx dx [x|[vx? — 1 dx x2—1
d o d _ d, 1 d 1
. — = 14. — (cosx) = —sinx 23, — (tan” "x) = —— 32. — (sinh™ " x) = ——
5. = (ulv) = (v)v = (cosx) o () = g () = e
d d d, -1 d . -1
. — = 15. — (cscx) = — cscxcotx 24, — (cot” " x) = —— 33. — (sech™ " x) = —
6 dx (©=0 dx ( ) dx ( ) 1+ x2 dx ( ) xV1 — x2
d d d _ d ., —1
e =1 16. — (secx) = secxtanx 25. — (coshx) = sinhx 34, — (csch™ " x) = ———
72w = (secx) = (cosh) o (ST = s
d d d 1
8. % (™) =mx"1 17. o (tanx) = sec? x 26. o (sinh x) = coshx 35. o (tanhflx) =12
d . d 5 d 5 d _ 1
L= = 18. — (cotx) = —csc 27. — (tanhx) = sech 36. — (coth =
9 dx () =e dx (cotx) X dx ( %) x dx ( X) 1—x2
Integration Rules
1 X
1. c-f(x dx:c/ X) dx 11. tanxdx = —In|cosx| + C 22. /7dx:sin’1 (7) Cc
[ e £ | cosx| —— )t
1 1 (v
2. /f(x +g(x)dx = 12. secxdx =In|secx 4 tanx| + C 23. /701 = Zsec (& c
) £g(x) | =t 1)+
/f(X) dX:l:/g(X) dx 13. CSCXdX=7|n|CSCX+C0tX| +C 24. /coshxdx:sinhx+c

3. /OdX:C
14.

/cotxdx:lnlsinx|+c 25. /sinhxdx:coshx+C
4. /1dX:X+C )
15. /sec xdx =tanx +C 26. /tanhxdx:ln(coshx)+C
1
5. /x"dx:—x"“—&-c,n;é—l 5
n+1 16. /csc xdx=—cotx+C 27. /cothxdx:ln\sinhx|+c
n# -1
1
6. /e"dx:e"+c 17. /secxtanxdx:secx-ﬁ-c 28. /7dx:|n x4+ —a?|+cC
— e+ v |
1 1
Xdx = — - d* 18. cscx cotx dx = — csc C —_— _dx = 2 2
7. /a dx —dtC / x cot x dx X+ 29. /mdx Injx+vVx2+a?| +C
1 1 1
3. /7dx:ln|x|+C 19. /coszxdx:fx-q—fsln(Zx)—i—C 30. /;dx:lln atx +c
X 2 4 a? — x? 2 |a—x
2 4 xvVa? — x? a a+ Va2 —x?
. 1 1. —1(* 1 1 X
10. sinxdx = —cosx + C 21 - dx=—tan - +C 32. /7dxzfln — ___|l+c
X +a a a XV + a? a la+Vx+ad




The Unit Circle

Common Trigonometric Identities

Pythagorean Identities
sinx+cos’x =1
tan?x 4+ 1 = sec’x

1+ cot? x = csc? x

Sum to Product Formulas

X
sinx+siny25in< ty

. . . X
sinx —siny = 25|n(

X+
COSX +cosy = 2cos(

Cofunction Identities

LT

sin{ — —x) = cosx
2
™ .

cos | = —x) =sinx
2

T
tan (— —x) = cotx
2

X—Yy
2
X+y
2
)eos (57
cos

2

-y

. X+y\ . X
cosx—cosy:—25|n( 5 )sm( 5

Product to Sum Formulas

1
sinxsiny = E(cos(x —y) — cos(x + y))

COSXCOosy =

NP -

sinxcosy =

(cos(x —y) + cos(x +y))

(sin(x+y) +sin(x — y))

Definitions of the Trigonometric Functions

Unit Circle Definition

Double Angle Formulas

T
csc (5 —x) = secx sin2x = 2sinxcos x
T cos 2x = cos? x — sin® x
sec (— —x) = cscx
2 =2cos’x—1
Vs
cot(z—x):tanx —=1—2sin?x
2tanx
tan2x = ————
1—tan“x
Power—Reducing Formulas Even/Odd Identities
sin? x — 1 —cos2x sin(—x) = —sinx
2 cos(—x) = cosx
2. 14cos2x
cos x = 7 tan(—x) = —tanx
tanx — L €08 2X csc(—x) = —cscx
1+ cos2x sec(—x) = secx
cot(—x) = —cotx

Angle Sum/Difference Formulas
sin(x £ y) = sinxcosy & cosxsiny

cos(x +y) = cosxcosy F sinxsiny
tanx £ tany

tan(xty) = ——
( 2 1 Ftanxtany

y
A
V2 X, .
Tz) () sinf =y cosf = x
|
§7 %) v, 0 1
| \ cscld ==  secl =
< ‘ > X y
X
tand =7 coth=7%
X y
(1,0) — x
Y
Right Triangle Definition
. 0] H
s sinf = q csch = —
(#:-3) g ©
©
o A H
%) 2. cosf = — sec = —
o H A
0} A
Adjacent tand = — cotf = —
A (6}



Areas and Volumes

Triangles
h=asin0
Area = %bh

Law of Cosines:

¢ =a*+b?>—2abcosh

Parallelograms
Area = bh

Trapezoids

Area = 2(a+ b)h

Circles

Area = 7r?

Circumference = 27rr

Sectors of Circles

6 in radians
Area = 161
s=rf

i
>

____

o
o
Q

-
o
(%)

Right Circular Cone
Volume = 27r?h

Surface Area =

V2 + h? + wr?

Right Circular Cylinder

Volume = 7r?h

Surface Area =
2xrh + 27r?

Sphere
Volume = $7r°

Surface Area =472

General Cone
Area of Base = A

Volume = 1Ah

General Right Cylinder

Area of Base = A
Volume = Ah

>




Algebra

Factors and Zeros of Polynomials
Let p(x) = apX" + ap_1X""1 + - - - + a1x + ag be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x — a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real

polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax* + bx + ¢, and 0 < b? — 4ac, then the real zeros of p are x = (—b + /b? — 4ac)/2a

Special Factors

X —a®>=(x—a)(x+a) X —a>=(x—a)(®+ax+a*)
X +a®= (x+a)(x* — ax + a?) X —a* = (® —a*) (¥ + a?)
(X+ y)n =x" + nxn—1y+ ”("le)Xn—ZyZ 4o+ ann—l +y

(X _ y)n — X" — nx"_ly—i— "("le)Xn—ZyZ — et ann—l Fy
Binomial Theorem

(x+y)* =X+ 2y +y? (x—y)? = x> — 2xy + y?
(x+y)>P=x+3C%y+3xy> + )3 (x—y)P =x -3y +3x2 -3

(X+ y)4 — X4 +4X3y+ 6X2y2 +4Xy3 +y4 (X _ y)4 — X4 _ 4X3y+ 6X2y2 _ 4Xy3 + y4

Rational Zero Theorem
If p(x) = apx" + a,—1X""1 4 - -+ + a1x + ag has integer coefficients, then every rational zero of p is of the form x = r/s,
where ris a factor of ag and s is a factor of a,,.

Factoring by Grouping
acx® + adx? + bex + bd = ax?(¢s + d) + b(cx + d) = (ax® + b)(cx + d)

Arithmetic Operations

ad + bc a+b a b

ab+ac=a(b+c)

(Z)_(a)<d>zzg @:1 _a_ _a

(E) \b/ \¢ c bc b b
d c
g b\ _ab a—b b-a ab+ac_b+c
c)] ¢ c—d d-c N
Exponents and Radicals
=1 a#0 (ab)*=cb" =0V Ja=a'l? % =7 Va=a'/"

X X 1 n
(E) _T am = gm/n a X = o vab = y/av/b (@) = a¥ \"/g = \H/E



Additional Formulas

Summation Formulas:
n

iz"lz n(n+1)(2n+1) 0 5 [(n(n+1)\?

Trapezoidal Rule:

b
/ f(x) dx ~ % [fx1) + 2f(x2) + 2f(x3) + ... + 2f(xn) + f(Xn11)]

B maxf0)]

with Error <

Simpson’s Rule:

b
/ f(x) dx =~ % [f(x1) + 4f(x2) + 2f(x3) + 4f(Xa) + ... + 2f(Xp—1) + 4f(Xn) + f(Xn11)]

(b—a)®

with Error < 8o [ max | (x)]]

Arc Length: Surface of Revolution:
b b
L:/ JIEF O dx 5:27r/ FOVITF O

(where f(x) > 0)

b
S:27r/ x/ 14+ f'(x)? dx

(wherea, b > 0)

Work Done by a Variable Force: Force Exerted by a Fluid:

b b
W:/ F(x) dx F:/ wd(y) ¢(y) dy

Taylor Series Expansion for f(x):

£(c)
2!

(x —¢)? +]¥(x—c)3+... +

pn(x) = flc) + f'(e)(x =€) +

Maclaurin Series Expansion for f(x), where ¢ = 0:

” n (n)
pn(x>=f<0)+f/(0)x+f2<?) , 1O 5 fP0),

] X +TX + ... n!



Summary of Tests for Series:

Test Series Condition(s) of Con'dltlon(s) of Comment
Convergence Divergence
o0
This test cannot be used to
h-Ti li
nth-Term Z; Gn i 9 70 show convergence.
n=
> 1
Geometric Series r rl<1 rl>1 Sum = ——
> i e o
oo a
Telescoping Series Z (bp — bnta) lim b, =1L Sum = <Z b,,) —L
n=1 e n=1
= 1
-Series —_— >1 <1
P Z (an +b)P P p=
n=1
50 (oo} oo
a(n)dn =
Integral Test Zan /1 a(n) dn /1 (n) a, = a(n) must be
. L continuous
n=0 is convergent is divergent
o0 o0
o > b > bn
Direct Comparison Z an n=0 n=0
=0 converges and diverges and
0<a, <bh, 0<b,<a,
o0 o0
b b
0 Z " Z " Also diverges if
Limit Comparison Z an n=0 n=0 .
converges and diverges and lim a,/b, = o0
n=0 n—o0
lim a,/b, >0 lim a,/b, >0
n— 00 n—oo
- {an} must be positive
a a . .
Ratio Test Z an lim L <1 lim = > 1 Also diverges if
n—oo  dp n—oo  dp, .
n=0 lim apy1/a, = 00
n—o0o
{an} must be positive
o0
Root Test Zan lim (an)l/n <1 lim (an)l/n >1 Also diverges if
n—o0 n—-00 . 1/’7
n=0 lim (a,)”" = o0
n—o0o
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