
completely

UPDATED

 &

EX
TE

NDED

STILL FOR F
RE

E

Don’t Panic
Mobile Developer’s Guide
to the Galaxy

8th Edition June 2011
This Developer Guide is licensed under the

Creative Commons Some Rights Reserved License.

Enough Software GmbH + Co. KG
Sögestrasse 70
28195 Bremen

Germany
www.enough.de

Please send your feedback, questions or sponsorship requests to:
developers@enough.de

Services and Tools for All Mobile Platforms

published by:

﻿

1	 Introduction

4	 An Overview Of Application Platforms
4	 Native Applications
7	 Java ME (J2ME)
7	 Flash
8	 BREW
8	 Widgets
10	 Websites
10	 SMS Text Messaging

11	 Programming Android Apps
12	 Prerequisites
13	 Implementation
15	 Testing
15	 Signing
16	 Distribution

17	 Programming bada Apps
18	 Getting Started
19	 Implementation
20	 Testing
21	 Distribution
21	 What Comes Next?

22	 Programming Native BlackBerry Apps
22	 Prerequisites
24	 Coding Your Application

Mobile Developer’s Guide
Table of Contents

﻿

24	 Services
25	 Testing
26	 Porting
27	 Signing
27	 Distribution

28	 Programming Flash Apps
29	 Prerequisites
30	 Tips And Tricks
32	 Testing
33	 Packaging And Distribution

34	 Programming iOS Apps
35	 Prerequisites
38	 Implementation
38	 Testing
40	 Distribution
41	 Books
42	 Community

44	 Programming J2ME / Java ME Apps
45	 Prerequisites
46	 Implementation
49	 Testing
50	 Porting
53	 Signing
54	 Distribution

56	 Programming MeeGo Apps
57	 Prerequisites
57	 Implementation
58	 Testing
59	 Distribution
59	 Learn More

﻿

60	 Programming Qt Apps
62	 Prerequisites
62	 Creating Your Application
64	 Testing
65	 Packaging
66	 Signing
67	 Distribution

69	 Programming Symbian Apps
70	 Prerequisites
70	 Carbide.c++
71	 Symbian/S60 Software Development Kits
71	 Testing
71	 Signing
72	 Distribution

75	 Programming webOS Apps
76	 Prerequisites
76	 Implementation
78	 Enyo vs Mojo
82	 Testing
84	 Distribution

86	 Programming Windows Phone Apps
86	 Development
88	 Functions and Services
90	 Distribution
91	 Testing And Analytics
91	 Resources

92	 Programming Mobile Widgets
93	 Widget Characteristics
96	 Prerequisites
97	 Writing Your Code

﻿

99	 Testing
99	 Signing
101	 Distribution

102	 Programming With Cross-Platform Tools
103	 Limitations And Challenges Of Cross Platform Approaches
108	 Cross-Platform Strategies
112	 Cross-Platform Solutions

116	 Creating Mobile Websites
116	 Usability In A Limited Environment
119	 Analyze Your Target Markets
120	 Content adaptation
122	 HTML Standards For Mobile
123	 Websites For Feature Phones
124	 Websites For Full Web Browsers
124	 Websites For Touch Devices
125	 Satisfy The Browser
130	 Using GPS
130	 Hybrid Apps
131	 Testing your Mobile Website
132	 Learn More – On The Web

134	 Implementing Rich Media
135	 Streaming vs. Local Storage
136	 Progressive Download
136	 Media Converters

137	 Implementing Location-Based Services
137	 How To Obtain Positioning Data
139	 How To Obtain Mapping Services
140	 Implementing Location Support On Different Platforms
142	 Tools For LBS Apps

﻿

144	 Implementing Near Field Communication (NFC)
146	 Support For NFC
146	 Creating NFC Apps

148	 Testing Your Application
148	 Testability: The Biggest Single Win
149	 Headless Client
149	 Separate The Generic From Specific
150	 Test-Driven Development
150	 Physical Devices
151	 Remote Control
151	 GUI Test Automation
152	 Beware Of Specifics
152	 Crowd-Sourcing
153	 Web-Based Content And Applications
153	 Next Steps

154	 Monetization
154	 Pay Per Download
156	 In-App Payment
157	 Mobile Advertising
158	 Indirect Sales
159	 Marketing And Promotion
160	 Strategy
161	 What Can You Earn?

162	 Appstores
163	 Basic Strategies To Get High
164	 Multi-Store vs Single Store

166	 Now What – Which Environment Should I Use?

168	 Epilogue

169	 About the Authors

1

Introduction
This is already the eighth edition of the Mobile Developer’s
Guide To The Galaxy. As you can see, it has become something
of a book – taking us a long way from where we started . The
first version was published for Mobile World Congress 2009 and
consisted of just 40 pages. At that time we did not expect the
guide would become a regular publication, with new editions
every three months. But the overwhelming volume of feedback
coupled with the ever-changing mobile market has driven us.

For this release, all the writers have checked their chapters
and updated them where necessary. This means that you will
learn everything about the latest developments in all the major
mobile platforms and technologies.

New for this edition is a chapter on Near Field Communica-
tion (NFC). While it is still early days for NFC, it might just
change the way we use our mobile phones – all over again.

Another new chapter covers monetization from a platform-
independent perspective. We feel this is an important addition
because many of the considerations are the same no matter
what technology you are using to create your mobile software.

While the guide has changed in size, we hope you will agree
that we have stuck with our original philosophy: Providing an
objective overview of mobile technology that is useful to deci-
sion makers and developers alike. Every business case is differ-
ent and there is no one platform that can cover them all. As a
result, decisions about how to deliver a mobile application can
be difficult; we hope that this booklet will help you make the
best decision. Despite the challenges it creates we hope you
will agree with us: Diversity is a good thing, equally so in the
mobile world.

Robert + Marco / Enough Software
Bremen, June 2011

4 An Overview Of Application Platforms

An Overview Of Application
Platforms
There is a wide selection of platforms with which you can realize
your mobile vision. This section describes the most common
environments and outlines their differences. More detailed de-
scriptions follow in the platform-specific chapters.

Native Applications

There are many mobile platforms used in the market – some
are open source, some are not. The most important na-
tive platforms are (alphabetically) Android, bada, BlackBerry,
iOS, MeeGo, Symbian, webOS and Windows Mobile/Windows
Phone. All these platforms enable you to create native appli-
cations without establishing a business relationship with the
respective vendor.

The main benefits of programming apps natively include bet-
ter integration with the platform’s features and often better
performance. Typical drawbacks are the effort and complexity
of supporting several native platforms (or limiting your app to
one platform).

Most mass market phones are, however, equipped with embed-
ded operating systems that do not offer the opportunity to create
native applications. Examples include but are not limited to
Nokia Series 40, Samsung SGH and Sony Ericsson Java Platform
phones.

5An Overview Of Application Platforms

The following table provides an overview of the main mobile
platforms:

Language(s)Platform Remarks

Android Java, C, C++ Open Source OS (based on Linux)
developer.android.com

MeeGo

webOS

Windows
Phone

Qt, C++, others

HTML, CSS,
JavaScript, C

C#, VB.NET

Intel and Nokia guided open
source OS (based on Linux)
meego.com/developers

Supports widget style
programming, (based on Linux)
developer.palm.com

Silverlight, XNA frameworks
create.msdn.com

bada

Symbian

Windows
Mobile

C, C++

C, C++, Java,
Qt, Web Apps,
others

C#, C

Samsung’s mobile platform running
on Linux or RealTime OS
developer.bada.com

OS built from the ground up for
mobile devices
www.forum.nokia.com/symbian

.NET CF or Windows Mobile API,
most devices ship with Java ME
compatible JVM
developer.windowsmobile.com

Blackberry Java, Web Apps

Java, Web Apps, Java ME compat-
ible, extensions enable tighter
integration
na.blackberry.com/eng/developers

iOS Objective-C, C Requires Apple Developer Account
developer.apple.com/iphone

6

7An Overview Of Application Platforms

Java ME (J2ME)

Around 80% of all mobile handsets worldwide support the mo-
bile Java standard (Java ME formerly known as J2ME), making
it by far the most widely distributed application environment.
In contrast to many other environments, Java ME is a standard
rather than a product, which can be implemented by anyone
(who pays Oracle the corresponding license fees that is). Stan-
dardization is the strength of Java ME but at the same time it’s
the source of many fragmentation problems.

On many feature phones, Java ME is the only way to real-
ize client side applications. With the increasing penetration of
smartphones, Java ME has lost importance, at least in the US
and Europe. However, for many emerging economies it remains
the main option to target the mass market.

Flash

Historically, Flash Lite was the mobile edition of Flash, an older
version of Adobe’s web Flash product with ActionScript 2.0 sup-
port. Adobe is phasing out Flash Lite for mobile and simply
using the full version of Flash.

Flash is favored by many designers, since they know the tools
already and it can be used to create engaging, powerful user
interfaces (UIs). It’s relatively easy to code thanks to the Ac-
tionScript language, which is very similar to JavaScript.

The drawbacks of Flash on mobile devices used to be poor
performance, suboptimal integration into host devices and small
market share in comparison to Java ME. However, all these
things are improving: There are millions of feature phones sup-
porting Flash today and many smartphones and tablets can sup-
port some Flash content including MeeGo,Symbian, iOS (through
Adobe AIR), Android and BlackBerry devices.

8

BREW

The Binary Runtime Environment for Wireless (BREW) is a fea-
ture phone programming environment promoted by Qualcomm1.

BREW services are offered by more than 60 operators in 28
countries, but it’s most popular within the US with CDMA devices
launched by Verizon, US Cellular and Metro PCS, among others.
While previous versions supported C development only, the
Brew Mobile Platform (Brew MP), supports applications written
in Java, Flash, TrigML or native C code2.

Widgets

The main advantage of widget environments is they offer simple,
straightforward programming based on web markup and script-
ing languages.

There are, however, several widget environments and some
require a player to be installed. This situation is changing, with
a trend towards standardization, based on W3C standards. The
move to standard web technology based widgets is alleviating
the main drawback of widgets: lack of integration with the un-
derlying platform. The standards-based environments are in-
creasingly offering APIs that enable widgets to access device
data, such as location or contacts, among others. All these en-
vironments use XML, a script language (usually Java Script) and
a page description language (usually HTML) to realize a widget.

1)  www.brewmp.com
2)  developer.brewmp.com

9An Overview Of Application Platforms

This table provides an overview of popular widget frameworks:

Language(s)Environment Remarks

Symbian
Web Runtime
(WRT)
Widgets

XML, HTML, CSS,
JavaScript

Standard web technology based
widgets, with a proprietary
packaging standard. JavaScript
APIs offer high degree of access to
platform features.
www.forum.nokia.com/Develop/Web

PhoneGap
HTML, CSS,
JavaScript

Cross platform widget platform
www.phonegap.com

BlackBerry HTML, CSS,
JavaScript

na.blackberry.com/eng/developers

Sony Ericsson
WebSDK

HTML, CSS,
JavaScript

Based on PhoneGap
developer.sonyericsson.com

WAC / JIL
XML, HTML,
JavaScript, CSS

A joint initiative by Vodafone,
China Mobile and other compa-
nies are pushing the W3C widget
standard
www.jil.org

Series 40
web apps

XML, HTML, CSS,
JavaScript

Web apps for the proxy based Ovi
Browser enabling UI manipulation
on a device through JavaScript.
W3C packaging standard used.
www.forum.nokia.com/webapps

Samsung XML, HTML, CSS,
JavaScript

innovator.samsungmobile.com

10

Websites

The browsing of web pages is supported by most phones, so
in principle this should be the environment of choice to get
the widest possible reach (after SMS text messaging). However,
the sheer number of browsers and their varying feature sets
can make this approach challenging. Some browsers are very
powerful and support CSS as well as JavaScript, others are less
sophisticated and support XHTML only. Thankfully the old WAP
standard with its WML pages doesn’t play any significant role
nowadays.

The main drawback of web pages is that they are available
when the device is online only and their access to device fea-
tures is extremely limited.

With the introduction of HTML5, this situation is improving:
Offline browsing and new device APIs are now becoming avail-
able for mobile websites, such as location information in the
Opera Mobile browser. The main benefits of the mobile web as a
platform are the ease of development and that, generally, you
control the deployment.

SMS Text Messaging

Almost everybody who has a mobile phone is also texting.
Texting limits interactions to less than 160 characters; and it
can be quite costly to send out text messages in bulk. On the
positive side, SMS enjoys a global audience of all ages. It also
plays an important role in emerging markets, where its use for
payments is common.

11Programming Android Apps

Programming Android Apps
The Android platform is developed by the Open Handset
Alliance led by Google and publicly available since November
2007.

Android is an operating system and an application framework
(Dalvik) with complete tooling support and a variety of prein-
stalled applications. In late 2010, Google announced that every
day 300,000 Android devices are shipped to end users. Since the
platform is supported by many hardware manufacturers, it is the
fastest growing smartphone operating system: In March 2011
it has been announced that Android surpassed both iOS and
BlackBerry in terms of subscriber share in the U.S. 1

Additionally, Android is used (or planned to be used) in tab-
lets, media players, set-top boxes, desktop phones and car en-
tertainment systems. Some non-Android devices are also able
to run Android Applications like RIM’s Playbook with its virtual
machine called App player2.

The platform also evolves rapidly with the regular additions
of new features every 6 months or so. For example, Android 2.3
(so-called “Gingerbread”) introduced NFC and VOIP communica-
tion, better game development and a lot more3, Android 3.0
(“Honeycomb”) has been especially designed for deployment on
tablets and other devices with larger screens.

1)  comscore.com/Press_Events/Press_Releases/2011/3/
2)  http://www.theregister.co.uk/2011/03/25/rim_playbook_android/
3)  developer.android.com/sdk/android-2.3-highlights.html

12 Programming Android Apps

Prerequisites

The main programming language for Android is Java. But be-
ware, only a subset of the Java libraries is supported and there
are lots of platform specific APIs. You can find answers to your
What and Why questions in the Dev Guide1 and to your How
questions in the reference documentation2.

To get started, you need the Android SDK3, which is available
for Windows, Mac OS X and Linux. It contains tools to build,
test, debug and analyse applications. You will probably also
want a good Java IDE. Eclipse or IntelliJ seem a good choice as
there is good support for development, deployment and impor-
tantly, so-called library projects that allow to share code and
resources between several projects.

Command line tools and Ant build scripts are also provided
so you can concoct almost any development and build process.

1)  developer.android.com/guide
2)  developer.android.com/reference
3)  developer.android.com/sdk

13Programming Android Apps

Implementation

An Android application is a mix of activities, services, message
receivers and data providers declared in the application mani-
fest. An activity is a piece of functionality with an attached user
interface. A service is used for tasks which should run in the
background and is therefore not tied directly to a visual repre-
sentation. A message receiver can handle messages broadcast by
the system or other applications. A data provider is an interface
to the content of an application and thereby abstracts from
underlying storage mechanisms. An application may consist of
several of these components, for instance an activity for the UI
and a service for long running tasks.

Communication between the components is done by intents.
An intent bundles data like the user’s location or an URL with an
action. These intents trigger behaviours in the platform. For in-
stance, the intent of showing a web page will open the browser
activity. The nice thing about this building-block philosophy is
that functionality can be replaced by other applications and the
Android system will use the preferred application for a specific
intent.

For example the intent of sharing a web page triggered by a
news reader app can open an email client or a text messaging
app depending on the user’s preference and the applications
installed. Any application that declares the sharing intent as
their interface can be used.

To aid development, you have a lot of tools from the SDK at
your disposal, the most important ones are:

—— android: Create an initial project or manage virtual de-
vices and versions of the SDK.

—— adb: Query devices, connect and interact with them (and
virtual devices) by moving files, installing apps etc.

—— emulator: Start it with a virtual device and it will emulate

14 Programming Android Apps

the defined features. It takes a while to start so do it once
and not on every build.

—— ddms: Look inside your device or emulator, watch log mes-
sages, and control emulator features like network latency
and GPS position. View memory consumption or simply kill
processes. If this tool is running, you can also connect the
Eclipse debugger to a process running in the emulator.

These tools and more – e.g. to analyze method trace logs, in-
spect layouts, or to test apps with random events or backup
functionality – can be found in the tools directory of the SDK.

The user interface of an application is separated from the
code in Android-specific xml layout files. Different layouts can
be created for different screen sizes, country locales and de-
vice features without touching Java code. To this end, localized
strings and images are organized in separate resource folders.
IDE plugins are available to help manage all these files.

If you are facing issues, e.g. exceptions are thrown,
be sure to check the ddms log. It allows you to check
if you have omitted to add necessary permissions like
android.permission.INTERNET via the uses-permission flags1.

If you are going to use Honeycomb related layout features for
large screens like Fragments2, be sure to add the Android Com-
patibility package from Google. It’s available via the SDK & AVD
Manager and helps to develop for Android 3.0 without causing
troubles with Android 1.63.

1)  developer.android.com/reference/android/Manifest.permission.html
2)  developer.android.com/guide/topics/fundamentals/fragments.html
3)  android-developers.blogspot.com/2011/03/fragments-for-all.html

15

Testing

The first step to test an app is to run it on the emulator or
device and debug it if necessary through the ddms tool. Android
is built to run on different devices and OS versions without
modification but hardware manufacturers might have changed
pieces of the platform4. Therefore, testing on a physical device
is paramount.

Automated Testing
To automate testing, the Android SDK comes with some capable
and useful testing and instrumentation5 tools. Tests can be
written using the standard JUnit format with some Android
mock objects that are contained in the SDK.

The Instrumentation classes can monitor the UI, send system
events like key presses, et cetera. You can test for the status of
your application after these events occur. The automated tests
can be run on physical devices or in a virtual device. Open-
source testing frameworks such as Robotium6 can complement
your other automated tests; it can even be used to test binary
apk files, if the source is not available. A maven plugin7 and a
helper for the continuous integration server Hudson may also
assist your testing8.

Signing

Your application will always be signed by the build process, ei-
ther with a debug signature or a real one. Your signature may
be self-signed, so forget about signing fees (and security). The
same signature is required for updates of your application.

4)  For an overview see e.g. www.androidfragmentation.com
5)  developer.android.com/guide/topics/testing/testing_android.html
6)  code.google.com/p/robotium
7)  code.google.com/p/maven-android-plugin/
8)  wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin and hudson-

16 Programming Android Apps

Distribution

After you have created the next killer application and tested it,
you should put it in the Android Market. It is a good place to
reach both customers and developers of the Android platform,
to browse for new exciting apps, and to sell your own apps.
It is used by other app portals as a source for app meta data.
Furthermore, it is part of the Google Backup Service1, the
Cloud to Device Messaging (C2DM)2 and the License Verification
Library (LVL)3. To upload your application to the Android
Market, start at market.android.com/publish.

You are required to register with the service with your Google
Checkout Account and a $25 registration fee. Once your registra-
tion is approved, you can upload your application, add screen-
shots and descriptions to finally publish it.

Make sure that you have defined a versionName, versionCode,
an icon and a label in your AndroidManifest.xml. Furthermore,
the declared features in the manifest (uses-feature nodes) are
used to filter apps for different devices. As there are lots of com-
peting applications in Android Market, you might want to use
alternative application stores. They provide different payment
methods and may target specific consumer groups4.

Android 1.6 upwards also supports in-app purchase. This al-
lows you to sell extra content, feature sets etc. from within your
app by using the existing infrastructure of the Android Market5.

1)  code.google.com/android/backup/index.html
2)  code.google.com/android/c2dm/index.html
3)  developer.android.com/guide/publishing/licensing.html
4)  www.wipconnector.com/index.php/appstores/tag/android
5)  developer.android.com/guide/market/billing/index.html

17

Programming bada Apps
Samsung announced bada their new mobile platform in late 2009
and released it to the public in June 2010. This new platform
has its foundation in Samsung`s proprietary platform. Building
on more than 10 years experience with low end devices bada can
run either on top of a Linux kernel for high-end devices or on
real-time OS kernels for low-end devices.

Developer support is available from the developer site1 of-
fering forum, premium support and giving direct access to Sam-
sung bada experts.

Samsung’s Application store gives developer a route to mar-
ket, but also specific features such as sales and download statis-
tics, advertisement and a direct feedback channel for customers.
The store is available in 3 ways, the website www.samsungapps.
com, a client application on the handset and through a PC cli-
ent, Samsung’s Kies. Samsung’s app store is available in over
120 Countries worldwide and has had over 100.000.000 down-
loads within the first 10 month since June 2010. Applications
can be offered as paid apps or for free. It is possible to get
revenues by placing advertisement in your app. In case of a paid
application, you will receive 70% of sales.

Over 5 million bada phones were sold between June and De-
cember 2010. In the future, Samsung plans to sell about 20
million bada phones per year. Currently there are 6 bada-based

1)  http://developer.bada.com

18

devices available with the Wave S8500 & Wave II being the cur-
rent flagship devices and Wave 578 with NFC coming mid 2011.

Getting Started

To start developing for bada you need to register (for free) at
developer.bada.com and download the latest bada SDK, which
is currently only available for Windows only. The SDK includes
the bada IDE (based on eclipse CDT), a simulator and a GNU
toolchain to provide developers with a familiar development en-
vironment Samsung also offer a GUI tool available for UI design.

Before starting programming you should familiarize yourself
with the application manifest which is a unique and needed
for deploying application onto devices and distribute them
into the store. A manifest can be generated and managed on
developer.bada.com under the menu item “My Application”.

19Programming bada Apps

Implementation

After creating an application manifest one can start with App
development with the bada SDK/IDE. Inside the IDE you will
find a lot of example code, which you can copy with one click
into your own workspace to familiarize yourself with Bada fea-
tures and programming paradigm.

Native bada apps are developed in C++. Some restrictions ap-
ply however, for example, the language does not use exceptions.
Instead, it return values and a combination of macros are used
for error handling and RTTI is turned off, so that dynamic_cast
does not work on bada.

When creating bada apps, you need to understand memory
management basics, because the language often leaves this to
the developer. You will have to delete any pointer returned by
a method ending in ‘N’. You should also make sure that each of
your own new variables has its delete:

MyType* var = new MyType(); // call delete
MyType* array 0 new MyType[10]; // call delete[]
MyType type, stackarray[];
// variable on stack will be destroyed by
//scope, no delete

The API only uses some parts of STL. Even though Samsung
claims that you could use STL in your own code the current
available STL implementation shipping with bada is missing
some parts. You might need to use STLPort for full STL support.
Similarly you could port modern C++ Libraries like Boost to work
on bada, but the lack of RTTI and exceptions can make it hard.

The bada API itself is wrapped in a number of namespaces.
The API offers UI Control and Container classes, but there are
no UI Layout management classes, so all your UI must be po-
sitioned by hand or within the code. You need to provide a UI

20 Programming bada Apps

layout for the landscape and/or the portrait mode. The API also
provides most standard classes for XML, SQL or Network and
resembles a pretty complete framework. Also make use of the
callbacks for important phone events in your application class,
like low battery level or incoming calls.

If you want to write games for bada, the SDK supports
OpenGL ES 1.1 and 2.0. Also the SDK wraps parts of OpenGL
for use in its own classes, so you can also easily port existing
OpenGL code to bada.

The central resource for bada developers is developer.bada.com
The biggest independent bada website and forum is currently
BadaDev.com where you will find great tutorials about coding
for bada. There is an IRC channel #bada at irc.freenode.net, and
of course there are groups for bada on most social networks.

Testing

The bada API offers its own logging class and an AppLog
method, so you should make extensive use of logging in debug
builds. The AppLog will show up in the IDE directly. With the
IDE you can test and debug in the simulator or on a device. As
mentioned in other chapters of this guide, we strongly recom-
mend testing on real devices in general.

Otherwise you can never be sure how the app performs and it
also might turn out that the code that worked perfectly on the
simulator will not do so on the handset.

Samsung provides the bada Remote Test Lab (RTL) which is
available for all registered developers and can be installed as
Eclipse-plugin.
Tools and frameworks for unit testing are available within
the IDE/SDK. For details about these tools, check out the
„bada Tutorial.Development Environment.pdf” included in the
documents folder in the SDK base directory.

21Programming bada Apps

Distribution

The distribution will be done through Samsung‘s apps store and
is the only distribution channel. Similar to Apples AppStore,
there are quite strict acceptance rules applied which are de-
scribed in the “Samsung Apps Publisher Guide“, downloadable
after you registered at the Samsung Apps Seller Office.

Once your app has made it to the store you will get 70% of
the revenue. For advertising Samsung allows you the inclusion
of third party ad network contents in your bada application.

What Comes Next?

During the Developer Day at the Mobile World Congress 2011,
Samsung revealed features of the upcoming bada 2.0 version.
One of the key features will be Multitasking, which should make
real background services possible. In addition, bada 2.0 will add
support for Near Field Communication as well as the possibility
for easy ad-hoc WiFi-P2P network setup from within the SDK.

Other interesting features will enhance the UIX like speech-
to-text (STT) and text-to-speech (TTS) and support for 3D sound
with OpenAL. Support for web-based application will also be
extended by supporting more Javascript frameworks, HTML5 and
a lot of API‘s from the WAC 2.0 standard within the Webcontrol.

Another great new feature will be the MIME-type registration
for you application, so that you can register your application
to the system for handling specific types like MP3. Beside the
SDK updates the IDE will extend its tools with code coverage
and performance monitoring functionality to support you code
optimization.

22 Programming Native BlackBerry Apps

Programming
Native BlackBerry Apps
The BlackBerry platform developed by the Canadian company
Research In Motion (RIM)1 was launched in 1999. BlackBerry
devices became extremely popular because they were tradition-
ally equipped with a full keyboard for comfortable text input
(which spawned a condition named BlackBerry Thumb2), their
long battery life and more and more for Blackberry Messenger,
their mobile social network offering. Add PDA applications such
as address book, secure mail, calendar, tasks and memopad to
these features and you will understand why the platform is very
popular among business and mainstream users alike.

The marketshare of BlackBerry phones has declined some-
what in the US in 20113, but it is still a succesful smartphone
platform. While the general consensus seems to be that Black-
Berry tablet, the PlayBook with its QNX OS has been launched
too early, the hardware and OS are highly praised.

Prerequisites

For the Blackberry OS, different development approaches are
available depending on the type and nature of your planned
project. For mid-sized to large applications native Java develop-
ment is the first choice. Small apps can also be developed with
the BlackBerry WebWorks SDK.

For the next generation BlackBerry OS based on QNX Neutrino
Realtime OS (RTOS), which RIM calls Tablet OS, and currently

1)  www.rim.com
2)  en.wikipedia.org/wiki/Blackberry_thumb
3)  gs.statcounter.com

23Programming Native BlackBerry Apps

only supported on ther the PlayBook Adobe AIR Flash and Web-
Works programming are supported., Native C and Java SDKs have
also been announced as well as an Android compatibility layer.
This chapter focuses on Java development, for more informa-
tion on WebWorks (web) and Flash programming please see the
respective chapters in this guide.

Java SDK
As for all Java-driven applications and development, you need
the Java SDK4 (not the Java Runtime Edition).

IDE
For native Java development, you first need to decide which IDE
to use. The modern option is to use Eclipse and the BlackBerry
plugin5, for previous BlackBerry OS versions you can also use the
BlackBerry Java Development Environments (JDEs)6.

These JDEs are complete environments enabling you to write,
compile, package and sign your applications. Device simulators
are included as well.

Desktop Manager
You should download and install the BlackBerry Desktop Man-
ager7 also. It enables you to deploy your app package on a
device for testing. For faster deployment, you might also use a
tool called javaloader that comes with the JDE.

4)  www.oracle.com/technetwork/java
5)  us.blackberry.com/developers/javaappdev/javaplugin.jsp
6)  us.blackberry.com/developers/javaappdev/javadevenv.jsp
7)  us.blackberry.com/apps-software/desktop/

24 Programming Native BlackBerry Apps

Coding Your Application

The BlackBerry JDE is partly based on J2ME and some of its
JSR extensions: Integrated into the SDK is the MIDP 2.0
standard with popular JSR extensions that provides APIs for
UI, audio, video, and location services among others1. This
means that one option is to create BlackBerry apps with
J2ME technologies alone.

Another option is to use BlackBerry’s proprietary extensions
and UI framework that enable you to make full use of the
platform. Native UI components can be styled to an extent,
however they inherit their look from the current theme (unless
you override the Field.applyTheme() method).

From OpenGL-ES over homescreen interaction to cryptography
the BlackBerry APIs provide you with everything you need to
create compelling apps. In addition to the official BlackBerry
tools, there are third party extensions that enable you to en-
hance your apps, for example J2ME Polish2 or WildBerry3 enables
you to design and animate your UI using CSS.

Services

BlackBerry offers many services that can be useful in developing
your applications including advertising, mapping, payment and
push services4.

1)  www.blackberry.com/developers/docs/6.0.0api/index.html
2)  www.j2mepolish.org
3)  www.wildberry-project.org
4)  http://us.blackberry.com/developers/platform

25Programming Native BlackBerry Apps

The push service is useful mainly in mail, messaging or news
applications. Its main benefit is that the device waits for the
server to push updates to it, instead of the device continuously
polling the server to find out if updates are available and then
pulling the updates from the server. This reduces network traffic,
battery usage and – for users on metered data plans or roam-
ing – lowers costs.

The push service1 works as follows: Your server sends a data
package of up to 8KB to the BlackBerry push infrastructure.

The infrastructure then broadcasts the message to all or a
group of clients (for content such as a news report) or to one
specific client (for content such as a chat message). The device
client then receives the message through BlackBerry’s Push API
and may confirm the reception back to the infrastructure. Your
server can then check if the message was delivered. BlackBerry
offers the push mechanism as a limited free service, with a pre-
mium paid extension which allows you to send more push mes-
sages.

Testing

BlackBerry provides simulators for various handsets in the JDE
and plug-ins or as separate downloads. These simulators enable
you to run an app on a PC in the same way it would be run
on a device. To assist with testing, the simulators include fea-
tures such as simulating incoming calls and setting the signal
strength enabling you to check how your application reacts if a
device is outside network coverage. Applications running on the
emulators are fully debuggable with breakpoints.

As a great plus, BlackBerry devices provide the capability to
perform on-device debugging with all the features that you en-
joy from the simulators.

1)  us.blackberry.com/developers/platform/pushapi.jsp

26 Programming Native BlackBerry Apps

Porting

Porting between BlackBerry devices is easy because the OS is
made by a single company that has been careful to minimize
fragmentation issues. However, this does not entirely eliminate
challenges:

—— Some classes and functionalities are available on specific
OS versions only. For example the FilePicker that is used to
choose a file is available on OS 5.0 onwards only.

—— You need to handle different screen resolutions and orien-
tation modes (landscape and portrait).

—— You need to handle touch and non-touch devices. In addi-
tion, the Storm devices use a touchscreen that is physical-
ly clickable, so there is a distinction between a touch and
a click on these devices. BlackBerry’s more recent touch
devices don’t use this technology anymore.

Porting to other Java platforms such as J2ME and Android is
complicated as it’s not possible to port the BlackBerry UI.
Self-written classes for server communication and storage
among others might be reused on J2ME and Android in certain
cases. In general, cross-platform portability strongly depends
on how frequently your app uses native BlackBerry components.
For example it is not possible to reuse BlackBerry push services
classes on other platforms.

27

Signing

Many security-critical classes and features of the platform (such
as networking or file APIs) require an application to be signed
such that the publisher can be identified. To achieve this, you
need to obtain a signing key directly from BlackBerry1. The sign-
ing itself is undertaken using the rapc tool which also packages
the application.

Distribution

BlackBerry’s own distribution channel is called App World2
where you can publish your apps. For paid applications, you’ll
get a 70% revenue share. In addition, GetJar3 is a well-known
independent website that also publishes BlackBerry apps.

1)  us.blackberry.com/developers/javaappdev/codekeys.jsp
2)  appworld.blackberry.com
3)  www.getjar.com

28 Programming Flash Apps

Programming Flash Apps
Adobe Flash has become the ubiquitous platform for developing
web-based applications, animations, and video. The tools are
fairly easy to use and enable beautiful graphics, animation and
audio to be packaged in a single, compact file that displays on
any screen size. Flash is simply a file format that bundles bitmap
images, video, audio, animations, and ActionScript into a single
SWF file. It is one of the best ways to manage multimedia con-
tent in an application or for a web browser.

The commercial potential in using Flash for mobile app de-
velopment is substantial, as it’s a very well-known platform with
over 3 million developers worldwide and it is already supported
in a large number of devices. Many feature phones have support
for Flash Lite (typically support for Flash 3, 6 or 8 depending
on when the device was manufactured). Flash Lite is perfect
for simple games such as puzzles and card games. Some smart-
phones and tablets have a Flash player pre-installed; Full Flash
10.x support has been announced for Android-based devices and
RIM’s BlackBerry PlayBook. For the iPhone, Adobe has released
a packager that enables Adobe AIR applications to run on iOS
devices.

Development of mobile Flash applications can be undertaken
using Adobe products and alternative Flash-compatible SDK
from a number of vendors. Flash brings the flexibility of
a web browser user interface (UI) to mobile applications,
allowing the developer to break free of a platform’s UI
constraints. Many developers are not aware of how easy it
is to implement Flash in an application. Using Adobe AIR
requires the entire application to be developed in Flash: It can
be a daunting task to learn ActionScript and how to create ani-
mations. However, several Flash-compatible SDKs are available
that enable the implementation of Flash content directly as part

29Programming Flash Apps

of a native 2D or 3D mobile application, a consequence of this
approach can be better application performance.

Prerequisites

Adobe open sourced the Flash specification, permitting inde-
pendent developers and companies to develop Flash-compatible
SDKs, engines and players. Authoring can be done using the
Adobe Flash Professional or Adobe Creative Suite (CS) software.
CS 5 supports ActionScript 3 and Flash 10.X offering the full 3D
and 2D feature set on some smartphones and tablets. If you
want to utilize features such as 3D and ActionScript 3 compat-
ibility, using the CS5 package and tools is the way to go.

However, one potential drawback of Flash is poor perfor-
mance: Large binary files may run slowly on less powerful de-
vices resulting in a poor user experience. Adobe CS 3, 4 and 5
can be used to author Flash content that runs on alternative
Flash-compatible SDKs, engines and players, giving developers
more options to optimize an application’s performance.

These alternative Flash-compatible SDKs generally support
ActionScript 2 and Flash 8 with a full 2D feature set. Note that
video and audio playback support was a feature introduced in
Flash 6.1, so all players have the ability to support video play-
back.

A Flash application typically consists of two distinct
pieces: The animation engine that renders determinis-

tic graphics for the display and the ActionScript engine
that uses input events (time, keyboard, mouse and XML) to

make runtime decisions about whether animations should be
played Flash-internally or externally. ActionScript is a script-
ing language based on ECMA-Script available in three ver-
sions.
Developing Flash applications, animations or video for mobile
devices does not differ significantly from developing browser-

30 Programming Flash Apps

based Flash applications for desktop computers. However, you
must be aware of the requirements and restrictions of the target
device. We anticipate that Flash support will become standard-
ized on most mobile devices, as the hardware platforms include
faster CPUs and GPUs with OpenGL ES graphics acceleration. But
until then, you have to find a way to deal with this fragmenta-
tion. Be sure to save your Flash files in a format that is compat-
ible with your target device’s software.

Pay special attention to the design of your Flash application.
Adobe CS provides the option to choose between developing
a browser-dependent or a standalone Adobe AIR application.
An Adobe AIR application is essentially a Flash player, browser
engine, and the native device’s APIs wrapped into one execut-
able file, so that it conforms to the developer terms and security
requirements of various mobile platforms. Alternative Flash-
compatible SDKs go further and integrate Flash content into
existing 2D and 3D software applications.

There are also open source versions including Gnash1 and
GameSWF2 that are designed for desktop systems. Many of the
alternative Flash-compatible platforms run outside the browser
environment, working directly with a device’s native APIs.

Tips And Tricks

As it is mentioned often in this guide, it is crucial to consider bat-
tery life when creating applications for mobile devices, Flash is no
exception. You should never create memory-intensive animations
purely for the sake of offering a fancy effect. A Flash animation
using ActionScript 3 will create a binary that could be more than

1)  www.gnashdev.org
2)  tulrich.com/geekstuff/gameswf.html

31Programming Flash Apps

3 times larger than that for an ActionScript 2 animation and will
likely result in poor performance.

In general, you should think carefully about whether you
need ActionScript 3: It’s a completely different scripting lan-
guage to ActionScript 2 and requires a lot more development
know-how and experience to implement efficiently.

You might also want to remember the following to avoid your
Flash app causing excessive battery drain:

—— Avoid sliding a Flash object across the screen, unless
you know it performs well. Redrawing every pixel mul-
tiple times in a frame without the support of a GPU is a
performance killer. Select a SDK toolkit that minimizes CPU
utilization to preserve battery life. If the Flash anima-
tion is not changing, the SDK toolkit should show 0% CPU
utilization.

—— If the target smartphone has one display resolution, use
correctly sized 2D bitmaps to replace SVG objects that will
never change size.

—— Minimize network connectivity to that which is required
only.

—— Use OS APIs with care. The greater number of OS APIs and
independent software you use, the more work is being
done and the faster the battery runs out of power.

—— Design the application to recover gracefully from power
failures. Many of the alternative Flash-compatible SDKs
have additional APIs to support power failures and include
database tools that you can implement in an application
(for example to save and restore settings). These tools
mean your user doesn’t need to re-key data after a power
failure.

32

Testing

The best approach for initial testing is determined by your
chosen architecture: If you have developed an Adobe Flash
browser-based application or Adobe AIR application, then it’s
best to test the application using the Adobe tools.

However, if you have developed a Flash animation (with or
without ActionScript) or Flash animations that will be integrated
into another 2D or 3D application, you should consider test-
ing the application with one of the alternative Flash-compatible
SDKs or tools.

Adobe CS5 has a built-in smartphone emulator also. This en-
ables developers to virtually test their application on selected
handsets and tablets.

In general: Always test on devices to gain information on
how much memory and battery is being used by the application.

33Programming Flash Apps

Packaging And Distribution

When you design Flash content for use in a mobile website,
packaging and distribution is straightforward: You simply follow
the same rules and procedures you would use in deployment for
use in a desktop browser.

Using Flash in a web widget is similar also. Generally you
include the Flash content in the widget as you would for a web-
site, package the widget and deploy the resulting application
in line with the widget environment’s requirements – for more
information see the Chapter Programming Widgets.

When the platform offers a built in Flash player that runs
Flash content as an application the packaging requirements can
be more complicated. At the simple end of the spectrum is Nokia
Series 40, where the packaging requirements are quite simple1:

You create some metadata, an icon and pack these with the
Flash content into a zip file with the extension *.nfl.

At the complex end of the spectrum is packaging for Symbian
devices, where the Flash app has to be given a Symbian C++
launcher and packed in a Symbian SIS file.

While some developers will do this manually, Nokia provides
an online packaging service that does the heavy lifting for you2.

Generally, when the packaging seems complex, it can often be
simplified by using the platform’s widget option to package
and deploy the content.

In general, once Flash content has been packaged into the
correct format for the platform, it can then be distributed
through any app store that services that platform.

1)  bit.ly/aqEmvv
2)  esitv008song.itlase.com/sispack

34 Programming iOS Apps

Programming iOS Apps
The iPhone, along with the iPod touch and iPad, is a highly in-
teresting and very popular development platform for many rea-
sons, a commonly named one being the App Store. When it was
introduced in July 2008, the App Store took off like no other
marketplace did before. Now there are far more than 350,000
applications in the App Store, and the number is growing daily.
This reflects the success of the concept but it also means that
it is getting more and more difficult to stand out in this mass
of applications.

Users have downloaded more than 10 billion iOS apps as of
January 2011, and with device sales reaching new all-time highs
just about each quarter, there is no sign of the current volume
of about a billion downloads per month slowing down. Over 190
million sold devices in the hands of users willing to try apps
and pay for content makes the App Store the most economically
interesting target for mobile app development.

The iOS SDK offers high-level APIs for a wide range of tasks
which helps to cut down on development time. New APIs are
added in every major update of iPhone OS, such as MapKit in
iPhone OS 3.0, (limited) multitasking in iPhone OS 4.0 and
Game Center in iOS 4.1.

The iPad which went on sale in April 2010, uses the same
operating system and APIs as the iPhone, therefore skills ac-
quired in iPhone development can be used in iPad development.
A single binary can even contain different versions for both
platforms with large parts of the code being shared. Since iOS
version 4.2 was released in November 2010, all iOS devices
currently sold use a common firmware version, this absence
of fragmentation makes it possible to develop universal apps
for multiple device classes much more easily than on other
mobile platforms.

35

Prerequisites

Apple’s iOS SDK
In order to develop iPhone (and iPod Touch and iPad) apps, you
will need the iOS SDK, which can be downloaded at developer.
apple.com/iphone. This requires a membership, which starts at
USD 99/year. If you do not plan on distributing your apps in
the App Store and don’t wish to test your apps on an actual
device, you can also download Xcode on the Mac App Store for
USD 4.95.

The iOS SDK contains various applications that will allow you
to implement, test, and debug your apps. The most important
applications are:

—— Xcode, the IDE for the iOS SDK
—— Interface Builder, to build user interfaces for iPhone app

(integrated into Xcode as of Xcode 4.0)
—— Instruments, which offers various tools to monitor app

execution
—— iOS Simulator, which allows the developer to test apps

quicker than by deploying to a device.

The iOS SDK will work on any Intel-based Mac running Mac OS
X 10.6 (Snow Leopard) or the yet to be released 10.7 (Lion).

A guide to get you started and introduce you to the tools is
included, as is a viewer application for API documentation and
sample code. References and guides are also available online at
developer.apple.com/iphone/library/navigation.

36

The SDK includes a large number of high-level APIs separated
into a number of frameworks and libraries, which include, among
others:

—— Cocoa Touch, which consists of the UI libraries, various
input methods such as multi-touch and accelerometer.

—— Media frameworks, such as OpenAL, OpenGL ES, Quartz,
Core Animation and various audio and video libraries

—— Core Services, such as networking, SQLite, threading and
various other lower level APIs.

The list of available frameworks constantly grows with each ma-
jor release of the iOS firmware, which usually happens once a
year in June or July.

Alternative third-party development environments
Since Apple relaxed their App Store distribution guidelines, de-
velopment using tools other than Objective-C, Cocoa Touch and
Xcode is officially permitted again and most commonly used in
game development, for example using the Unreal Development
Kit1, which Epic released for iOS to much fanfare in December
2010.

1)  www.udk.com

37Programming iOS Apps

Using third party development environments and languages
for iOS development offers a number of advantages and disad-
vantages compared to the official way of producing iOS apps.
The major advantage being that it is easy to support multiple
platforms from a single code base without having too much of
a maintenance burden. However, as experience with desktop
software has shown, cross-platform software development rarely
produces outstanding quality. In most cases the cross platform
tool concentrates on the lowest common denominator and the
resulting product doesn’t feel like it really belongs on any of the
targeted platforms.

For an overview on cross-platform technologies in general,
please see the corresponding chapter in this guide.

There are, however, third party development environments
which focus solely on iOS development, such as MonoTouch2.
The platform allows developers to build iOS apps using C# and
.NET while taking advantage of iOS APIs, making it the alterna-
tive that comes closest to what the original SDK has to offer
and still allowing code re-use, for example when creating similar
Windows Phone 7 apps.

Some of those alternative IDEs might, however, carry addi-
tional fees in addition to Apple’s yearly $99 for access to the
develop program and Apple’s 30% cut of all sales. As the per-
ceived quality of mobile apps comes in large part from a usable
and beautiful user interface, cross-platform development using
third party IDEs makes the most sense for games, which can
share almost all their code between different platforms. Java
IDE makers JetBrains recently released an Objective-C IDE of
their own, called AppCode, which is still in beta stage but looks
to provide advanced features.

2)  www.monotouch.net

38 Programming iOS Apps

Implementation

Usually, you will want to use Apple’s high-level Cocoa Touch
APIs when developing for the iPhone. This means that you will
write Objective-C code and create your user interfaces in Inter-
face Builder, which uses the proprietary XIB file format.

Objective-C is, as the name suggests, a C-based object-ori-
ented programming language. As a strict superset of C, it is fully
compatible with C, which means that you can use straight C
source code in your Objective-C files.

If you are used to other object-oriented languages such as
C++ or Java, Objective-C’s syntax might take some time getting
used to, but is explained in detail at developer.apple.com1. What
separates Objective-C most from these languages is its dynamic
nature, lack of namespace support and the concept of message
passing vs. method calls.

A great way to get you started is Apple’s guide “Your First
iPhone Application”, which will explain various concepts and
common tasks in an iPhone developer’s workflow2. Also check
out some of the sample code that Apple provides online3 to find
out more about various APIs available to you.

Testing

As performance in the iPhone Simulator may be superior to ac-
tual devices by several orders of magnitude, it is absolutely vital
to test on devices. It is highly recommended that you have at
least one device available to test on for each class of devices
you want to deploy your apps on.

1)  developer.apple.com/iphone/manage/overview/index.action
2)  developer.apple.com/iphone/manage/distribution/distribution.action
3)  developer.apple.com/iphone/library/navigation/SampleCode.htm

39Programming iOS Apps

For example, an iPhone-only app shouldn’t need to be tested
separately on an iPad, when an universal app would. However,
it cannot hurt to have several classes of devices, including older
models, since problems such as excessive memory consumption
sometimes will not present themselves on newer hardware.

Testing on real devices is also important because touch-
based input is completely different from a pointer–driven UI
model. For end-user testing you can distribute builds of your
application to up to 100 testers through Ad-Hoc Provisioning,
which you can set up in the Program Portal4. Each iPhone (and
iPad/ iPod touch) has a unique identifier (UDID – universal de-
vice identifier), which is a string of 40 hex characters based on
various hardware parts of the device.

If you choose to test using Ad-Hoc-Provisioning, simply fol-
low Apple’s detailed set-up instructions5. Every single step is vi-
tal to success, so make sure that you execute them all correctly.

With iOS 4.0, Apple has introduced the possibility for devel-
opers to deploy Over-The-Air (OTA) Ad-Hoc builds of their apps
to beta testers. There are open source projects6 to facilitate this
new feature, as well as commercial services7.

Google Toolbox for Mac8 runs the test cases using a shell
script during the build phase, while GHUnit9 runs the tests on
the device (or in the simulator), allowing the developer to at-
tach a debugger to investigate possible bugs. In version 2.2 of

4)  developer.apple.com/iphone/library/referencelibrary/GettingStarted/
Learning_Objective-C_A_Primer/index.html#//apple_ref/doc/uid/
TP40007594

5)  developer.apple.com/iphone/library/documentation/iPhone/Conceptual/
iPhone101/Articles/00_Introduction.html

6)  github.com/therealkerni/hockey
7)  www.testflightapp.com
8)  code.google.com/p/google-toolbox-for-mac
9)  github.com/gabriel/gh-unit

40 Programming iOS Apps

the SDK Apple included OCUnit; an example of how to create the
unit tests is available online1.
In version 4 of iOS Apple introduced a new tool, UIAutoma-
tion which aims to automate the testing of your application
by scripting touch events. UIAutomation tests are written in
JavaScript and a full reference is available in the iOS Reference
Library2. Several other third party testing automation tools for
iPhone applications are available as well, including FoneMon-
key3 and Squish4.

Distribution

In order to reach the broadest possible audience, you should
consider distributing your app on the App Store. There are other
means, such as the Cydia Store for jailbroken iOS devices, but
the potential reach isn’t nearly as large as the App Store’s.

To prepare your app for the App Store, you will need a
512x512 version of your app’s icon, up to five screen shots of
your app, and a properly signed build of your app. Log in to
iTunes Connect and upload your app according to the onscreen
instructions.

After Apple has approved your application, which usually
shouldn’t take more than 2 weeks, your app will be available
to customers in the App Store. Due to several rejections in the
past, the approval process receives more complaints than any
other aspect of the iPhone ecosystem. A list of common rejec-
tion reasons can be found on www.apprejections.com. Recently,
Apple has released their full App Store testing guidelines in

1)  www.mobileorchard.com/ocunit-integrated-unit-testing-in-xcode
2)  developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/

UIAutomationRef/_index.html
3)  www.gorillalogic.com/fonemonkey
4)  www.froglogic.com/products

41Programming iOS Apps

order to give developers a better chance to estimate their app’s
success of being approved. Also, the restrictions were relaxed
and apps which were previously rejected were approved after
being re-submitted.

Approximate review times as experienced recently by other
developers are gathered at reviewtimes.shinydevelopment.com
for your convenience. However, there is no guarantee that an
app will be approved in the timeframe specified on the site. Use
this only as a guideline.

Books

Over the past years, a number of great books have been written
on iOS development. Here is a short list of good tutorials and
references which makes no attempt to be complete:

Beginner books
These books are best for someone looking into getting started
with iOS development.

—— iPhone SDK Development by Bill Dudney and Chris
Adamson

—— Beginning iPhone 3 Development by Dave Mark & Jeff
LaMarche

Intermediate books
Books suited for those who have had some exposure to the iOS
SDK and are looking to deepen their knowledge of the platform.

—— More iPhone 3 Development by Dave Mark and Jeff
LaMarche

—— Programming in Objective-C 2.0 by Stephen Kochan

42 Programming iOS Apps

Professional books
If you already have some good knowledge of the iOS SDK, one of
these books is sure to increase your skills.

—— Cocoa Design Patterns by Erik M. Buck and Donald A.
Yacktman

—— Core Data by Marcus Zarra

Companion books
Books that every aspiring iOS developer should call their own
because they impart knowledge besides programming, such as
the importance of user experience using case studies and per-
sonal experiences.

—— Tapworthy by Josh Clark
—— App Savvy by Ken Yarmosh

Community

One of the most important aspects of iOS development is the
community. A lot of iOS developers are very outspoken and
open about what they do, and how they did certain things.

This is even more visible ever since Twitter and Github gained
momentum and became widely-known.

Search for iPhone, iPad or any other related search terms
on Github.com and you’ll find a lot of source code, frameworks,
tutorials, code snippets and complete applications – most of
them with very liberal licenses which even allow commercial
usage.

Practically all of the most important and most experienced
iOS developers use Twitter to share their thoughts about the
platform with others. There are many comprehensible lists
of iOS developers out there, a notable and well-curated one

43

being Robert Scoble’s list1. Following a list like that means
staying up to date on current issues and generally interesting
things about iOS development.

What makes the community especially interesting is that
many iOS developers pride themselves on taking an excep-
tional interest in usability, great user experience and beauti-
ful user interfaces. You can usually find out about the most
interesting trends on blog aggregators such as CocoaHub.de
and PlanetCocoa.org

1)  www.twitter.com/Scobleizer/iphone-and-ipad

44 Programming J2ME / Java ME Apps

Programming
J2ME / Java ME Apps
J2ME (or Java ME as it is officially called) is the world’s most
widespread mobile applications platform and the oldest one still
widely used. Developed by Sun Microsystems, which has since
been bought by Oracle, J2ME is designed to run primarily on fea-
ture phones. It has been very successful in this market segment,
with the overwhelming majority of feature phones supporting
it. J2ME is also supported natively on Symbian and BlackBerry
smartphones.

J2ME’s major drawback is that, due to its age and primary
market segment, it doesn’t fare all that well compared to more
modern platforms, such as Android, iPhone, BlackBerry and Sym-
bian: it offers a less powerful set of APIs, often runs on less
powerful hardware and tends to generate less money for the
developer. As a consequence, J2ME’s popularity in the developer
community has declined significantly in recent years, in favor of
development on smartphone platforms.

So why would you want to develop for J2ME? Mainly for one
reason: market reach.

With over 80% of phones worldwide supporting it, J2ME is
miles ahead of the competition in this regard. If your business
model relies on access to as many potential customers as pos-
sible, or on providing extra value to existing customers via a
mobile application, then J2ME is a great choice.

However, if your business model relies on direct application
sales, or if your application needs to make use of state-of-the-
art features and hardware, you might want to consider target-
ing a different platform (such as Android, BlackBerry, iPhone or
Symbian).

45Programming J2ME / Java ME Apps

That being said, it should be noted that Java ME’s capa-
bilities are constantly improving thanks to the Java Community
Process that standardizes new APIs: for example, modern fea-
tures such as GPS, sensors, 3D graphics and touchscreens are all
supported by the platform today. In addition, J2ME-compatible
hardware is becoming more powerful and less expensive all the
time, and with more and more devices implementing the ad-
vanced features mentioned. Overall the platform is evolving and
changing for the better, though admittedly at a considerably
slower pace compared to the competition.

Prerequisites

To develop a Java ME application, you will need:

—— The Java SDK1 (not the Java Runtime Environment) and an
IDE of your choice, such as Eclipse Pulsar for Mobile Devel-
opers2, NetBeans3 with its Java ME plug-in or IntelliJ4.

—— An emulator, such as the Wireless Toolkit5, the Micro Emu-
lator6 or a vendor specific SDK or emulator.

—— Depending on your setup you may need an obfuscator like
ProGuard7. If you build applications professionally you will
probably want to use a build tool such as Maven8 or Ant9
also.

1)  www.oracle.com/technetwork/java/javame/downloads/index.html
2)  www.eclipse.org
3)  www.netbeans.org
4)  www.jetbrains.com
5)  www.oracle.com/technetwork/java/download-135801.html
6)  www.microemu.org
7)  www.proguard.sourceforge.net
8)  maven.apache.org
9)  ant.apache.org

46

—— You may want to check out J2ME Polish, the open source
framework for building your application for various de-
vices1.

Complete installation and setup instructions are beyond the
scope of this guide, please refer to the respective tools’ docu-
mentation. Beginners often like to use NetBeans, with the Java
ME plug-in installed. Also download and read the JavaDocs for
the most important technologies and APIs: You can download
most Java-Docs from www.jcp.org. There are a couple of use-
ful vendor specific APIs that should be tracked down manually
from the vendor’s pages (such as the Nokia UI API and Samsung
APIs).

Implementation

The Java ME platform is fairly straight-forward: it comprises the
Connected Limited Device Configuration (CLDC)2 and the Mobile
Internet Device Profile (MIDP)3, which are both quite easy to
understand. These form the basis of any J2ME environment and
provide a standardized set of capabilities to all J2ME devices. As

1)  www.j2mepolish.org
2)  java.sun.com/products/cldc/overview.html
3)  java.sun.com/products/midp/overview.html

47Programming J2ME / Java ME Apps

both CLDC and MIDP were designed a decade ago, the default set
of capabilities they provide is rudimentary by today’s standards.

Manufactures can supplement these rudimentary capabilities
by implementing various optional Java Specification Requests
(JSRs). JSRs exist for everything from accessing the device’s
built in calendar, address book and file system (JSR 75) to using
the GPS (JSR 179) and Near Field Communication (JSR 257). For
a comprehensive list of JSRs related to Java ME development,
visit the Java Community Process’ “List by JCP Technology”1.

It is very important to remember that not all JSRs are avail-
able on all devices, so capabilities available on one device might
not be available on another device, even if the two devices have
similar hardware.

The Runtime Environment
J2ME applications are called MIDlets. A MIDlet’s lifecycle is
quite simple: it can only be started, paused and destroyed. On
most devices, a MIDlet is automatically paused when minimized;
it cannot run in the background. Some devices support concur-
rent applications, in which case it is possible for applications to
run in the background. However, this usually requires the use of
vendor-specific APIs and/or relies on device-specific behavior,
which can cause fragmentation issues.

MIDlets also run in isolation from one another and are very
limited in their interaction with the underlying operating sys-
tem – these capabilities are provided strictly through optional
JSRs (for example, JSR 75) and vendor-specific APIs.

1)  www.jcp.org/en/jsr/tech?listBy=1&listByType=platform

48

Creating UIs
You can create the UI of your app in several ways:

1.	 Highlevel LCDUI components: you use standard UI com-
ponents, such as Form and List

2.	 Lowlevel LCDUI: you manually control every pixel of your
UI using low-level graphics functions

3.	 SVG: you draw the UI in scalable vector graphics then
use the APIs of JSR 226 or JSR 2871.

In addition, you will find that some manufacturers provide ad-
ditional UI features. For example, Nokia recently introduced the
Touch and Type UI to its Series 40 platform. To enable develop-
ers to make best use of this UI in their applications, the Nokia
UI API was extended to provide features to capture screen ges-
tures and provide controlling data for UI animations. Similarly
Samsung provide pinch zoom features in their latest Java ME
APIs.

There are also tools that can help you with the UI develop-
ment. All of them use low-level graphics to create better looking
and more powerful UIs than are possible with the standard high-
level LCDUI components.

1.	 J2ME Polish2: This tool separates the design in CSS and
you can use HTML for the user interface. It is backward-
compatible with the highlevel LCDUI framework

2.	 LWUIT3: A Swing inspired UI framework
3.	 Mewt4: Uses XML to define the UI
4.	 TWUIK5: A powerful “Rich Media Engine”.

1)  www.jcp.org/en/jsr/detail?id=287
2)  www.j2mepolish.org
3)  lwuit.dev.java.net
4)  www.mewt.sourceforge.net
5)  www.tricastmedia.com/index.php?s=twuik

49

Despite the platform’s limitations, it is quite possible to create
great looking and easy to use Java ME user interfaces, particu-
larly if one of the tools mentioned above is used.

Open Source
There is a rich open source scene in the J2ME sector. Interesting
projects can be found via the blog on opensource.ngphone.com.
You will also find fascinating projects on the Mobile and Embed-
ded page of java.net6, for example the Bluetooth project Marge7.

Testing

Because of the fragmentation in the various implementations of
Java ME, testing your applications is vital. Test as early and as
often as you can on a mix of devices. Some emulators are quite
good (personal favorites are BlackBerry and Symbian) but there
are some things you have to test on devices.

Thankfully, vendors like Nokia and Samsung provide subsi-
dized or even free remote access to selected devices8.

6)  mobileandembedded.dev.java.net
7)  marge.dev.java.net
8)  www.forum.nokia.com/rda and innovator.samsungmobile.com/bbs/lab/view.

do?platformId=2

50 Programming J2ME / Java ME Apps

Automated Testing
There are various unit testing frameworks available for Java ME,
including J2MEUnit1, MoMEUnit2 and CLDC Unit3; System and
UI testing is more complex given the security model of J2ME,
however JInjector4 is a flexible byte-code injection framework
that supports system and UI testing. Code coverage can also be
gathered with JInjector.

Porting

One of the strengths of the Java environment for mobile devices
is that it is backed by a standard, so it can be implemented by
competing vendors. The downside is that the standard has to
be interpreted, and this interpretation process can cause differ-
ences in individual implementations. This results in all kinds of
bugs and non-standard behavior. In the following sections we
outline different strategies for porting your applications to all
Java ME handsets and platforms.

Direct Support
The best but hardest solution is to code directly for different
devices and platforms. So you create a J2ME app for MIDP
devices, a native BlackBerry app, a native Windows Mobile app,
a Symbian app, an iPhone app, a Web OS app, and so on. As you
can imagine, this approach has the potential to bring the very
best user experience, since you can adapt your application to
each platform’s UI. At the same time your development costs
will skyrocket. We advise the use of another strategy first, until
your application idea has proved itself to be successful.

1)  www.j2meunit.sourceforge.net
2)  www.momeunit.sourwceforge.net
3)  snapshot.pyx4me.com/pyx4me-cldcunit
4)  www.code.google.com/p/jinjector

51Programming J2ME / Java ME Apps

Lowest Common Denominator
You can prevent many porting issues by limiting the functional-
ity of your application to the lowest common denominator. In
the J2ME world this usually means CLDC 1.0 and MIDP 1.0. If
you only plan to release your application in more developed
countries/regions, you may consider targeting CLDC 1.1 and
MIDP 2.0 as the lowest common denominator (without any ad-
ditional APIs or JSR support).

Depending on the target region for the application you might
also consider using Java Technology for the Wireless Industry
(JTWI, JSR 185) or the Mobile Service Architecture (MSA, JSR
248) as your baseline. Both extensions are designed to ensure
a common implementation of the most popular JSRs. They are
supported by many modern devices and provide many more ca-
pabilities to your applications. However, in some regions such as
Africa, South America or India you should be aware that using
these standards may limit the number of your potential users,
because the more common handsets in these regions do not
implement the extensions.

Using the lowest common denominator approach is typically
easy: There is less functionality to consider. However, the user
experience may suffer if your application is limited in this way,
especially if you want to port your application to smartphone
platforms later. So this approach is a good choice for simple ap-
plications – for comprehensive, feature-rich applications it may
not be the way to go.

52 Programming J2ME / Java ME Apps

Porting Frameworks
Porting frameworks help you deal with fragmentation by au-
tomatically adapting your application to different devices and
platforms. Such frameworks typically feature the following
components:

—— Client libraries that simplify development
—— Build tool chains that convert code and resources to ap-

plication bundles
—— Device databases that provide information about devices
—— Cross compilers to port your application to different

platforms

For Java ME some of the options you can choose from are:
Celsius from Mobile Distillery1 that is licensed per month,

Bedrock from Metismo2 that provides a suite of cross compilers
on a yearly license fee and J2ME Polish from Enough Software3
that is available under both the GPL Open Source license and a
commercial license. Going in the other direction (from C++ to
Java ME) is also possible with the open source MoSync SDK4.

For more information about cross-platform development and
the available toolsets, please see the “Programming With Cross-
Platform Tools” chapter.

Good frameworks enable you to use platform and device spe-
cific code in your projects, so that you can provide the best user
experience. In other words: A good porting framework does not
hide device fragmentation, but makes the fragmentation more
manageable.

1)  www.mobile-distillery.com
2)  www.metismo.com
3)  www.enough.de
4)  www.mosync.com

53

Signing

The Java standard for mobile devices differentiates between
signed and unsigned applications. Some handset functionality is
available to trusted applications only. Which features are affect-
ed and what happens if the application is not signed but uses
one of those features largely depends on the implementation.

On one phone the user might be asked once to enable the
functionality, on another they will be asked every time the fea-
ture is used and on a third device they will not be able to use
the feature at all without signing. Most implementations also
differentiate between the certification authorities who have
signed an application.

Applications signed by the manufacturer of a device enjoy
the highest security level and can access every Java API avail-
able on the handset. Applications signed with a carrier certifi-
cate are similarly trusted.

Applications signed by JavaVerified5, Verisign6 or Thawte7
are on the lowest security level. To make matters worse, not
every phone carries all the necessary root certificates. And, in
the past, some well known device vendors have even stripped
away all root certificates. The result is something of a mess, so
consider signing your application only when required, that is
when deploying to an app store or when you absolutely need
access to security constrained features. However, in some cases
an app store may offer to undertake the signing for you, as Ovi
Store by Nokia does.

Another option is to consider using a testing and certifi-
cation service provider and leaving the complexity to them.
Intertek8 is probably the largest such supplier.

5)  www.javaverified.com
6)  www.verisign.com
7)  www.thawte.com
8)  www.intertek.com/wireless-mobile

54 Programming J2ME / Java ME Apps

Distribution

J2ME applications can be installed directly onto a phone in
a variety of ways; the most commonly used methods are over
a Bluetooth connection, via a direct cable connection or Over-
the-Air (OTA). However, app stores are probably the most ef-
ficient way to distribute your apps.: They manage the payment,
hosting and advertisements, taking a revenue share for those
services. Some of the most effective stores include:

—— Handmark1 and Mobile Rated2 provide carrier and vendor
independent application stores.

—— GetJar3 is one of the oldest distributors for free mobile
applications – not only Java applications.

—— LG distributes apps on www.lgapplication.com
—— Ovi Store4 targets Nokia users worldwide and provides a

revenue share to the developer at 70% from credit card
billing and 60% from operator billing

—— Carriers are in the game also, such as Orange5 and O26.

Basically almost everyone in the mobile arena has announced
an app store.

An overview of the available app stores (not those selling
J2ME apps alone) can be found in the WIP App Store Catalogue7.

1)  store.handmark.com
2)  www.mobilerated.com
3)  www.getjar.com
4)  www.publish.ovi.com
5)  www.orangepartner.com/site/enuk/mobile/application_shop/p_application_

shop.jsp
6)  www.o2litmus.coma
7)  www.wipconnector.com/appstores/

55

Furthermore there are various vendors who provide solutions
for provisioning of Java applications over a Bluetooth connec-
tion, including Waymedia1 and Futurlink2.

1)  www.waymedia.it
2)  www.futurlink.com

56

Programming MeeGo Apps
MeeGo is a mobile platform, launched by Intel and Nokia at
Mobile World Congress in 2010. The concept behind MeeGo is
one of a modular mobile operating system; consisting of a core
OS module, which is the same for all MeeGo platforms, and spe-
cialized system modules for the supported platforms. Currently
there are six platform targets: MeeGo Handset, MeeGo Tablet,
MeeGo Netbook, MeeGo Smart TV, MeeGo In-Vehicle and MeeGo
Media Phone.

MeeGo is a Linux based OS, which is the successor to Nokia’s
Maemo and Intel’s Moblin. As a result it shares traits of both;
Based on a SuSE Kernel (as was Moblin), it uses a UI platform
based on Nokia’s Qt Framework.

Currently, Intel is the main driving force behind MeeGo, as
Nokia has announced that Windows Phone will be its prima-
ry high-end smartphone platform. But Nokia is still support-
ing MeeGo, having stated it has a role in exploring disruptive
mobile technologies, and is bringing its first MeeGo device to
market in 2011.

The lack of devices is the biggest problem for the platform
right now, but as it is highly customizable and offers modular
design, many companies are already interested in MeeGo.

57Programming MeeGo Apps

Prerequisites

You can start developing for MeeGo using the MeeGo SDK1 or
Qt2. The SDK includes Qt Creator, which is the main IDE for de-
veloping for MeeGo and Qt. One nice feature of Qt is that apps
able to run on MeeGo will run on other Qt platforms, such as
Symbian and desktop computers. The SDK is available for Linux,
Windows and Mac.

Implementation

MeeGo apps are based on Qt. Qt offers C++ based app develop-
ment combined with Qt Quick that provides a new declarative UI
technique based on the QML language. Qt offers a full selection
of UI controls and backend classes for file IO, network communi-
cation and other tasks. Qt Mobility adds a set of 12 APIs to ac-
cess features and data on a device, such as location information
and contacts records. For more information about Qt, please see
the respective chapter in this guide.

For the UI QML offers the most modern approach. It even
allows building MeeGo apps purely in JavaScript since it is a
JavaScript-based UI modeling language. It is possible to mix
QML and Qt, so you can have a C++ backend coded in Qt con-
nected with a QML UI.

Games can be implemented in OpenGL ES 2.0, and Qt offers
OpenGL support of its own. QML is rendered through OpenGL,
and will be rendered in Qt 4.8 with the help of an Open Scene
Graph — currently it is implemented with Qt GraphicsView.

You can use the MeeGoTouch Library, which is build on top
of Qt, to develop touch friendly Qt applications for MeeGo. But
this is not recommended, as MeeGoTouch is seen by the com-

1)  www.meego.com/downloads
2)  http://qt.nokia.com

58

munity as (almost) deprecated. Techniques like QML and Qt are
more powerful and MeeGoTouch is not supported on other Qt
platforms.

Testing

Qt offers support for testing through the QTestLib. There are
also a number of testing libraries for C++, such as CPPUnit or
boost::test, but most of them will need to be built on MeeGo
first before they are usable. Besides, you might want to check
out the respective QA pages in the MeeGo wiki1.

Intel offers a number of free tools to analyze and optimize
your MeeGo app from a Windows or Linux host system2:

—— Intel C++ Compiler: A cross compiler which will build
your binary for MeeGo.

—— Vtune: Intel’s profiling tool, which will analyze your C++/
Qt Code during runtime on MeeGo.

With the Qt Creator IDE you can test and debug in a computer-
based simulator or using a device.

1)  http://wiki.meego.com/Quality
2)  Available at http://appdeveloper.intel.com/en-us/meego-sdk-suite

59Programming MeeGo Apps

Distribution

MeeGo as an OS is held by the Linux Foundation and has Nokia
and Intel as partners. Both companies will offer their own app
stores. AppUp1 is Intel’s cross platform app store, which is al-
ready offering some MeeGo apps. In order to use AppUp as a
distribution platform, you need to install Intel’s AppUp SDK2 on
top of the MeeGo SDK. Your app will be packaged as an rpm file
for AppUp on MeeGo.

Nokia will offer MeeGo apps through its Ovi Store3, as it al-
ready does for Java ME, Symbian and Maemo apps.

Both stores have their own validation processes.

Learn More

If you want to find out more about MeeGo, the best places to start
are meego.com/community and appdeveloper.intel.com/meego.
More information can be found at www.forum.nokia.com/MeeGo.
For those of you who speak German, www.meetmeego.org
is a good source. There is also an IRC channel #meego at
irc.freenode.net. The official Twitter account is @meegocom.

1)  www.appup.com
2)  http://appdeveloper.intel.com
3)  www.ovi.com

60 Programming Qt Apps

Programming Qt Apps
Pronounced “cute” – not “que-tee” – Qt is an application frame-
work that is used to create desktop applications and even a
whole desktop environment for Linux – the KDE Software Compi-
lation. The reason many developers have used Qt on the desktop
is that it frees them from having to consider the underlying
platform – a single Qt codeline can be compiled to run on Mi-
crosoft Windows, Apple Mac, and Linux.

When Nokia acquired Trolltech – the company behind Qt – it
was with the goal of bringing this same ease of development
for multiple platforms to Nokia mobile devices. Today, Qt can
be used to create applications for devices based on Symbian,
Maemo and MeeGo – the open source platform initiated by Nokia
and Intel. In fact, Qt can now be thought of as a platform in
its own right – you will create a Qt application and deploy it
to devices utilizing a number of different underlying operating
systems.

The challenge when developing with C and C++ is that these
languages place all the responsibility on you, the developer. For
example, if you make use of memory to store some data in your
application, you have to remove that data and free the memory
when it is no longer needed (if this is not done, a dreaded
memory leak occurs).

Qt uses standard C++ but makes extensive use of a special
pre-processor (called the Meta Object Compiler, or moc) to deal
with many of the challenges faced in standard C++ development.
As a consequence Qt is able to offer powerful features that are
not burden by the usual C++ housekeeping. For example, instead
of callbacks, a paradigm of signals and slots is used to simplify
communication between objects1; the output from one object

1)  doc.qt.nokia.com/4.7-snapshot/signalsandslots.html

is a “signal” that has a receiving “slot” function in the same or
another object.

Adding Qt features to an object is simply a case of including
QObject (which is achieved by adding the Q_OBJECT macro to
the beginning of your class). This meta-object adds all the Qt
specific features to an object. Qt then provides a range of ob-
jects for realizing Qt Quick content or creating GUIs (using the
QWidget object), building complex graphical views (the QGraph-
icView object), managing network connections and communica-
tions, using SVG, parsing XML, and using scripts among others.

Many developers who have used Qt report that applications
can be written with fewer lines of code and with greater in-built
reliability when compared to coding from scratch in C++. As a
result less time is needed to create an application and less time
is spent in testing and debugging. For mobile developers using
Qt is free of cost. It benefits from being open source also, with
a large community of developers contributing to the content
and quality of the Qt APIs. Should you wish to get involved the
source code is made available over Gitorious1.

1)  qt.gitorious.org

62 Programming Qt Apps

Prerequisites

Qt SDK installs everything you need to create, test, and debug
applications for Symbian and Maemo from a single package. It’s
also future proofed for MeeGo apps development. All versions of-
fer tools for compiling Symbian and Maemo apps, with Symbian
apps being compiled in the Linux and Apple Mac versions using
the Remote Compiler service.

Creating Your Application

Qt SDK is built around the Qt Creator development tool. Using
Qt Creator you define most of your application visually and then
add the specific program logic through a code editor that offers
full code completion support and integrated help. One of the
neat features of Qt is QML, a language for declarative UI defini-
tion. While QML generally simplifies UI development, its biggest
advantage is that the tools within Qt Creator enable the UI to
be defined by graphic designers who do not have to be aware of
the technical programming aspects.

In the past, one of the challenges with cross platform ap-
plications for mobile has been accessing platform features: Any-
time you want to find the device’s location or read a contact
record it has been necessary to revert back to the platform’s na-
tive APIs. This is where the Qt Mobility APIs come in. The APIs
provided by Qt Mobility offer a common interface to device data
such as contacts, location, messages, NFC, and several others.

This means that if you, for example, need the device’s loca-
tion the same API will obtain the location information on both
a Symbian and Maemo device. (The Qt SDK enables you to work
with the native APIs if you want to, as it includes the Symbian
APIs too.) As with Qt in general, working with the mobility APIs
is quite straightforward. The following code, for example, shows

63

that only a few lines are needed to access a device’s current
location:

void positionUpdated
(constQGeoPositionInfo&gpsPos) {
latitude = gpsPos.coordinate().latitude();
longitude = gpsPos.coordinate().longitude();
}

However, do be aware that Qt does not yet insulate you from
all the differences between platforms. For example, the X and
Y axes reported from the device accelerometers are transposed
between Symbian and Maemo devices. A simple enough issue to
address with a #IFDEF, but still an issue to be aware of.

If you are already familiar with C++ development on the desk-
top, creating Qt applications for Symbian or MeeGo is straight-
forward. Once you have mastered the Qt APIs you should find
you can code much faster and with fewer of the usual C++ frus-
trations – particularly if you take advantage of Qt Quick to cre-
ate your UI. Qt has many interesting features, such as WebKit

64 Programming Qt Apps

integration – enabling you to include web content into your app
– and scripting that can be used to add functionality quickly
during development or change runtime functionality. It is also
worth pointing out that, because Qt applications are compiled
to the platform they will run on, they deliver very good perfor-
mance, too. For most applications the levels of performance will
be comparable to that previously achieved by hardcore native
applications only.

Testing

Qt SDK includes a lightweight simulator enabling applications to
be tested and debugged on the development computer (Qt SDK
runs under Microsoft Windows, Ubuntu Linux and Apple Mac OS
X). The simulator includes tools that enable device data, such as
location or contacts records, to be defined so that the applica-
tion’s functionality can be tested fully. The simulator does not,
however, eliminate the need for on device testing.

In addition, the Qt SDK includes tools to perform on-device
debugging on Symbian and Maemo devices. This feature can
be handy to track down bugs that come to light only when the
application is running on a device. Such bugs are rare and tend
to surface in areas such as comms, where the Qt simulator uses
the desktop computer’s hardware, hardware that differs from the
equivalent technology on a mobile device.

QTestLib provides both unit testing and extensions for test-
ing GUIs. It replaced QtTestLib, however you may find useful
tips by searching for this term. A useful overview is available at
qtway.blogspot.com/2009/10/interesting-testing.html

65

Packaging

For a Qt application to run on a mobile device the Qt API frame-
work has to be present. The Nokia N900 has the Qt APIs built
in. In addition, Maemo and MeeGo devices provide a built-in up-
date mechanism that will install the necessary framework com-
ponents, should there be newer or additional versions needed
by the app.

For Symbian devices the situation is a little different.
Symbian^3 devices have the APIs built in. However, Symbian
does not include a built-in mechanism to add the APIs to earlier
devices or load new or updated APIs to Symbian^3. The solution
is Smart Installer, which is included automatically in Symbian
apps built with Qt SDK. As an app is installed on a Symbian
device, Smart Installer checks for the presence of the necessary
Qt packages and, if they are not there, downloads and installs
them. Using this mechanism, Qt apps can be easily targeted at
almost all recent S60 and Symbian devices.

66 Programming Qt Apps

Signing

As Qt applications install as native applications on Symbian and
Maemo devices they need to comply with each platform’s sign-
ing requirements. In the case of Maemo this means that sign-
ing is not required. For applications to be installed on Symbian
devices, signing is necessary. If you choose to use Ovi Store
to distribute your apps, Nokia will organize for your app to be
Symbian Signed, at no cost.

The process is straightforward and described in full in the
Distribute section of the Forum Nokia website1, but in summary:

—— You sign up as an Ovi publisher
—— You provide up to five device IMEIs and request a UID for

your application
—— The Ovi team provides you with a “developer certificate”

and a UID for your app
—— You create your app with the UID provided, sign your app

during development to run it on the five devices elected
and test it to ensure it complies with the Symbian Signed
Test Criteria2

—— Once tested, you submit an unsigned copy of the app to
the Ovi publishing portal

1)  www.forum.nokia.com/Distribute/Packaging_and_signing.xhtml
2)  http://wiki.forum.nokia.com/index.php/Symbian_Signed_Test_Criteria_V4_

Wiki_version

67Programming Qt Apps

Distribution

Ovi Store is the latest iteration of the Nokia app store solution,
with a history stretching back to 2003, and has grown to deliver
5 million downloads a day. Importantly, once an application has
met the store’s quality requirements – beyond removing inde-
cent or illegal applications – there is no restriction on the types
of applications that can be distributed.

So you will find many applications in Ovi Store that compete
directly against offerings from Nokia, such as alternative
browsers, music players, and email applications.

To use Ovi Store you need to register and pay a one-time €1
fee – registration is open to both companies and individuals.
When your application starts selling the revenue depends on the
payment method chosen by the user:

—— For credit card payments you get 70% of revenue after any
applicable taxes and costs

—— For operator billing purchases you get 60% of revenue
after applicable taxes and costs.

While the reduced revenue from purchases made through opera-
tor billing may seem a disadvantage it usually is not. This is
because operator billing is universal and trusted. As a result, for
each $1 in credit card revenue you can expect to receive over
$10 from operator billing purchases – making operator billing
the most lucrative option for generating revenue. (If you really
don’t like the idea of losing the 10% margin, you can opt to sell
apps through credit card purchases only.)

68

69Programming Symbian Apps

Programming Symbian Apps
The Symbian platform1 is a software platform for mobile devices.
It consists of an operating system (formerly known as Symbian
OS), middleware and user interface layers (formerly known as
S60). Its development is stewarded by Nokia. Although Nokia
has announced a transition to Microsoft Windows Phone for its
high-end smartphones, Symbian C++ still offers a viable devel-
opment option with over 200 million compatible devices in use
and Nokia forecasting additional sales of at least 150 million.

As a third-party developer you can create applications and
middleware in Symbian C++, the native programming language
of the Symbian platform. Symbian C++ is a specialized subset of
C++ with Symbian-specific idioms2.

However, it has a steep learning curve and your first steps
can be more frustrating than in other environments. It is for this
reason that Nokia is promoting Qt as the primary application
development for Symbian (and MeeGo).

So unless you have specialist development requirements,
such as low level video manipulation, we would suggest you
go to the Programming Qt Apps chapter and skip this section
altogether.

That said, native Symbian C++ APIs provide the most com-
prehensive access to device features and enable rich application
development. The APIs provide fine-grained control over all as-
pects of the operating system, including memory, performance
and battery life; and deliver a consistent performance advantage
over other runtimes. For these reasons Symbian C++ is still of
interest to many developers.

1)  symbian.nokia.com
2)  http://wiki.forum.nokia.com/index.php/Fundamentals_of_

Symbian_C%2B%2B

70 Programming Symbian Apps

Prerequisites

The official desktop development platforms for Symbian C++
are Microsoft Windows XP with Service Pack 2, Windows Vista
and Windows 7. All of the kits and tools supplied for Symbian
development are free. If your computer meets the requirements,
setting it up for Symbian C++ development is as simple:

1.	 Download the Symbian^3 SDK for Nokia devices1 and
install it

2.	 Install ActivePerl version 5.6.1.6382 from the SDK
3.	 Install Carbide.c++3

Linux and Mac OS X are not officially supported platforms. One
way around this is to use a virtual machine that hosts Windows.
Other options are more complex, but information can be found
online4.

Carbide.c++

Carbide.c++ is designed for developers who wish to create
applications that run on production phones – that is “on top”
of the Symbian platform. Typical users include professional ap-
plication and games developers, professional service companies,
hobbyist developers, students and research groups.

1)  www.forum.nokia.com/Develop/Other_Technologies/Symbian_C++/Tools
2)  found in the Symbian^3 SDK at epoc32\tools\distrib\ActivePerl-5.6.1.635-

MSWin32-x86.msi
3)  www.forum.nokia.com/Develop/Other_Technologies/Symbian_C++/Tools/
4)  www.forum.nokia.com

71Programming Symbian Apps

Carbide.c++, however, requires the installation of one or more
S60 or Symbian SDKs to enable development.

Based on Eclipse, Carbide.c++ includes the GCCE compiler,
a debugger that enables debugging on both the emulator and
production devices, analysis tools, and more.

Symbian/S60 Software Development Kits

The Symbian and older S60 SDKs contain the libraries and header
files that enable you to develop applications. Each SDK provides
access to the APIs that are guaranteed to work on devices based
on the corresponding version, that is the APIs in the Symbian^3
SDK will work on all Symbian^3 devices. Once you have installed
the SDKs for the Symbian/S60 versions you wish to build for,
you can use the built-in application wizard to build, debug and
run your first native application and download it to a Symbian
phone, without having to write a single line of code.

Testing

For automated unit testing, googletest5 works on Symbian,
and other Mobile C++ platforms. Each SDK includes an emulator
which enables apps to be run and debugged on the development
computer. And, as with all mobile technologies, testing on a
device is highly recommended.

Signing

Symbian uses a trust-based platform security model. This means
some APIs are protected by platform security “capabilities”. If
you use APIs protected by capabilities, your application will
need to be signed before it can be distributed. In addition,

5)  www.code.google.com/p/googletest

72 Programming Symbian Apps

it is necessary to sign an application during development in
order to install it to a device: This is done using a “develop-
ment certificate”. For most applications, signing and the provi-
sion of “development certificates” is free-of-cost as part of the
services offered by Ovi Store (see the chapter on Programming
Qt applications for more information on Ovi Store). For a limited
number of applications, those using more advanced APIs, it will
be necessary to obtain Certified Signed through the Symbian
Signed website1.

Distribution

Nokia Ovi Store will probably be your primary distribution chan-
nel (see the chapter on Programming Qt applications for more
information), but you can distribute applications independently
or through a number of operator and third-party application
stores also.

1)  www.symbiansigned.com

73

74

75

Programming webOS Apps
WebOS is a multitasking mobile operating system based on a
Linux kernel introduced January 2009 by Palm. Palm released
two webOS handsets: the Palm Pre and Palm Pixi. In Spring
2010, Palm was bought by Hewlett Packard who are now intro-
ducing webOS based tablets to increase the OS market share
(in Q1 2011, only 4% of US smartphones supported webOS1).

Since early 2011 the prototype-based framework “Mojo” is
replaced by “Enyo”. Enyo improves the performance of your
apps and enhances the layout handling. Probably the biggest
advantage of the platform is that there are very few coding
prerequisites needed. It is very easy to get started, especially
when you have a little experience with web developing: WebOS
applications can be built using common web standards like Ja-
vaScript, HTML and CSS. To implement advanced technologies
like 3D graphics, you will need to code in C language.

1)  http://blog.nielsen.com/nielsenwire/online_mobile/who-is-winning-the-u-s-
smartphone-battle/

Prerequisites

As a first step download the HP webOS SDK (which also includes
a PDK installer) and VirtualBox (needed for the Palm Emulator)
from developer.palm.com. The SDK/PDK is available for Windows,
Mac and Linux.

There is no need to sign up for an account at this point, but
you will need one for publishing your application later on. It
is also helpful to have a look into the user interface guidelines
before starting your project.

Implementation

Before you start developing you need to decide which Develop-
ment Kit can fulfill your needs.

SDK (Software Development Kit) PDK (Plug-in Development Kit)

Javascript, CSS, Prototype based
framework (Enyo)

C, C++

Swap between Ares and hand-
built workspace (since Enyo)

Eclipse plugin

No compiling needed (no com-
piling errors)

Porting applications from other
platforms

Source is viewable by users

Pre-configured Xcode template
with headers and libraries for MAC
machines, source is not viewable
for users

Easy developing for web devel-
opers

Implementing 3D graphics with
OpenGL and SDL

Ares, an online interface builder
via drag&drop and a built-in
editor

Integrate C/C++ code into apps
built with web technologies

77Programming webOS Apps

To use Ares1, Palm’s browser based IDE, you need to sign up
for a free account at developer.palm.com. The source code is
saved online so you can access it and continue your work from
anywhere you want.

Some major Ares features:

—— Drag-and-drop interface builder
—— Code editor
—— Visual debugger
—— Log viewer
—— Source control integration
—— Drag-and-drop calls to phone services and sensors
—— Preview apps in the browser
—— Run apps directly on the webOS emulator or device

(requires SDK installation)

1)  ares.palm.com

78 Programming webOS Apps

Enyo vs Mojo

With webOS 3.0 a new framework called Enyo was introduced to
replace Mojo. Compared to Mojo, Enyo has a shortened structure
and gets rid of the assistants and scenes. The sources are cen-
tralized into one sources folder.

Enyo

Project

Source

CSS

Images

appinfo.json

depends.js

icon.png

index.html

index.html

test.js

Mojo

Project

App

Stylesheets

Images

stage-assistant.js

test-assistant.js

Test

appinfo.json

sources.json

icon.png

Assistants

style.css

Views

test-scene.html

style.css

79

80

You will notice that the source folder contains only your
JavaScript files, the sources.json file is replaced with the de-
pends.js and there are no HTML files needed but index.html. All
controllers are structured in the components properties of the
kinds.

Here is the comparison of depends.js and sources.json:

So every time you add new files to the application, you also
need to add them to depends.js.

Enyo

enyo.depends(

 “source/test.js”,

 “css/style.css”

);

Mojo

[

 {“source”: “app\/assistants\/stage-

assistant.js”},

 {“source”: “app\/assistants\/test-

assistant.js”,

 “scenes”: “Test”

 }

]

81Programming webOS Apps

Let us have a look at the index.html:

<!doctype html>
<html>
	 <head>
		 <title>App Title</title>
		 <script src=”../../enyo/enyo.js”
type=”text/javascript”>
	 </script>
	 </head>
	 <body>
		 <script type=”text/javascript”>
		 new test().renderInto(document.body);
		 </script>
	 </body>
</html>

The <head> element contains a <title> tag with the ap-
plication name. There is also a <script> tag referencing the
location of the Enyo framework file (make sure to set the path to
enyo.js to match the location of your Enyo installation).

Within the <body> element is a call to instantiate a new
FeedReader object, which will then be rendered onscreen.

enyo.kind({
	 name: “test”,
	 kind: enyo.VFlexBox, components: [
		 {kind: “PageHeader”, content: “Enyo Test
Application”},
		 {kind: “RowGroup”, caption: “Test Group”,
components: [
			 {kind: “FancyInput”, components: [
				 {kind: “Button”, caption: “Press me”,
onclick: “btnClick”},

82 Programming webOS Apps

]}
]}
],
	 btnClick: function() {
		 // handle the button click
	 }
});

Taken as a whole, FeedReader.js defines a kind called “test”.
That is to say, it contains instructions for creating new test
objects.

The kind property tells you that a test object is a view that
inherits from enyo.VFlexBox. (A VFlexBox is a box that stacks
content vertically). The components property will eventually
contain UI elements that you want to show when you instanti-
ate a new test.

Then you add a header (of kind PageHeader) and a text input
box (of kind FancyInput) which includes an button.

Testing

There are various ways of testing and debugging. For testing you
can always run your application on the device or on the emula-
tor using these command-line tools.

—— palm-generate: Generates an empty project with the
necessary files and directory structure.

—— palm-package: Creates an installable application package.
—— palm-install: Installs an application package on the

device.

83Programming webOS Apps

The debugging tools depend based on which development kit
you decide to use:

1.	 If you are building with web technologies the most
common and easiest way of debugging is on-browser-de-
velopment: You can run your application on any (webkit
standards) browser and use its native tools for debug-
ging (e.g. Chrome inspector). This is especially useful
for developing for different devices and different screen
resolutions. Just resize the browser to the required reso-
lution and the application automatically behaves like on
a device with that resolution.

2.	 The Palm Inspector is another SDK debugging tool. It
allows to examine the DOM of an application running on
the emulator. First you need to launch the app using the
-i option with the palm-launch command (palm-launch -i
com.myapplication.app), then start the Palm Inspector

3.	 WebOS also provides on-device debugger C,C++ apps.
In order to use them, you need to shell into the device
or the emulator. Use novaterm on Mac OS X and putty
(putty -P 10022 root@localhost) on Windows. Type de-
bug to launch the debugger, or gdb for a standard linux
debugger. You can use breakpoints, display variables, and
trace the stack.

Programming webOS Apps84

Distribution

Be sure to have a look into the app submission checklist on
developer.palm.com to ensure you are following the HP guide-
lines. Based on your type of application you will have to choose
between the SDK and the PDK app submission checklists. Before
you submit an application you will need to create a developer
account. There are three different types, all of them are free.
Since you cannot change the membership type after the fact,
choose carefully.

After uploading your application it takes approximately 7
days for HP to review and publish your app. Your app can now
be purchased in the webOS app catalogue.

Community account Free No

Open source account Free Yes

Account Type Fees Publish Software

Full account Free Yes

85Programming webOS Apps

Access Forum Revenue Share Notes

Yes 70%

No Yes N/A

This type is obsolete. It
has no advantages but
you cannot publish any
software.

Yes 70%
All software must be open
source

Yes

Publish Software

Yes

86 Programming Windows Phone Apps

Programming
Windows Phone Apps
Microsoft has made a fresh start with the Windows Phone 7
platform. The Windows Mobile operating system was declining in
both user acceptance and market share, so the need for innova-
tion was clearly felt. Windows Phone is geared towards consum-
ers as much as business users, and has a simple user interface
that is focused on typography and content. A marketing budget
of 500 million USD has been spent to promote the new platform
and 1.5 million handsets were sold in the first six weeks after
launch1.

In February 2011, Nokia announced a partnership with Mi-
crosoft that underlines the future relevance of the platform:
Windows Phone will be the first choice smartphone platform for
Nokia devices from now on. However, the first Nokia Windows
Phone devices are not expected before 2012.

Development

Windows Phone development is undertaken in C# or VB.NET, us-
ing the Microsoft Visual Studio IDE. Depending on the type of
application you are developing, you will use one of two plat-
forms – Silverlight for event-driven applications or XNA for
games driven by a “game loop”. The UI for Silverlight applica-
tions can be created either in Microsoft Visual Studio or Micro-
soft Expression Blend.

The Windows Phone Developer Tools are free of charge and
include “Express” (feature-limited) editions of both Visual Stu-

1)  http://www.microsoft.com/Presspass/Features/2010/dec10/12-
21AchimBergQA.mspx

87Programming Windows Phone Apps

Windows Phone 7 Series Framework

Application Object

PhoneApplicationFrame

Sensors

Camera

Bing MapControl Pause / Resume

Device Integration Launchers & Choosers

FMRadio

PhoneApplicationPage PushNotification

Input

Content

AudioGraphics

GamerService

MediaControls

Isolated Storage

Drawing

Markup

Media

ShapesNavigation

Common Class Library

RuntimeReflectionLocation

Text

Threading Collections Configuration Linq

IO Net Diagnostics Security ComponentModel

Resources Globalization

Silverlight Presentation and Media XNA Frameworks

88 Programming Windows Phone Apps

dio 2010 and Microsoft Expression Blend. A notable limitation
is that the free tools support C# development only. The tools
also include a device emulator to run code against. The device
emulator uses hardware acceleration and as such performs rea-
sonably well when running 3D XNA games.

It is important to consider which platform you should lever-
age when building your application.

However, in the next major update of the platform – Windows
Phone 7.5 due for release during fall 2011 – it will be possible to
use Sliverlight and XNA in the same application.

Functions and Services

Windows Phone applications have access to input such as loca-
tion, multi-touch screen, accelerometer, and microphone. Avail-
able services include media playback and push notifications that
can update “live tiles” (animated application widgets that re-
side on the start page of the phone). The Windows Phone 7.5
update will add features such as a limited form of multitasking
similar to the iOS platform, pinning custom content to the start

Use Silverlight if… Use XNA if…

…you want to create an event-
driven application.

…you want to create a 2D or 3D
game.

…you want to use standard
Windows Phone 7 controls.

…you want to manage art assets
such as models, meshes, sprites,
textures, or animations.

…you want to target both
Windows Phone 7 and the web,
re-using some code.

…you want to target Windows
Phone 7, Windows, and Xbox 360,
re-using lots of code.

89

page, access to raw camera feed, TCP/IP sockets, and a database
engine, among other improvements1.

Currently Windows Phone 7 does not support multitasking,
and instead encourages developers to implement best practices
regarding saving and restoring an application state (“tombston-
ing”). This means the onus will be on the developer to cache
and restore things like data and UI state when resuming the ap-
plication, to create the appearance of an application that never
stopped running.

In contrast to Windows Mobile, developers cannot execute
native code or access the Windows API directly. While this en-
sures applications are sandboxed and cannot do anything that
will permanently affect the usability of the phone, it restricts
the extensibility of the platform and arguably limits the type of
applications that can be developed. For example, core platform
features such as the dialer and on-screen keyboard can generally
not be replaced or extended.

There are currently several native controls that are not includ-
ed in Silverlight for Windows Phone, such as context menu, date
picker, and others. At silverlight.codeplex.com you can download
an intermediate solution if you want to use such controls.

Distribution

Applications for Windows Phone 7 are distributed through a
single endpoint, Microsoft’s Marketplace service. While applica-
tion content is reviewed and restricted in a way similar to the
Apple App Store, Microsoft provides fairly comprehensive guide-
lines for submission, available at App Hub (create.msdn.com).
Although developer tools are provided free of charge, a paid App
Hub account is necessary to deploy software to devices and the
Marketplace. Currently, a developer account costs 99 USD for an
annual subscription.

1)  http://channel9.msdn.com/Events/MIX/MIX11/KEY02

91

Testing And Analytics

You can unit test applications using the Windows Phone Test
Framework1 or the Silverlight Unit Test Framework2. Check the
web for several public articles on unit testing Silverlight and
Windows Phone applications3.

For developers wishing to collect runtime data and analytics,
there are several options. Localytics4 and PreEmptive Solutions5
both provide analytics tools and services that are compatible
with Windows Phone 7. Developers can also use the Silverlight
Analytics Framework6 to connect to a variety of third-party
tracking services such as Google Analytics.

Resources

Visit create.msdn.com for news, developer tools and forums.
The development team posts on their blog on
windowsteamblog.com/windows_phone.

1)  www.wptestlib.codeplex.com
2)  www.silverlight.codeplex.com
3)  live.visitmix.com/mix10/sessions/cl5 and dotnet.dzone.com/news/test-

driven-development and www.smartypantscoding.com/a-cheat-sheet-for-
unit-testing-silverlight-apps-on-windows-phone-7

4)  http://www.localytics.com/app-analytics/
5)  http://www.preemptive.com/windowsphone7.html
6)  http://msaf.codeplex.com/

92

Programming Mobile Widgets
We have mentioned that some approaches to mobile develop-
ment require you to learn multiple languages and the unique
features of individual platforms. One of the latest approaches to
solving this problem, and offering one development technology
for many devices, is mobile web widgets. These widgets are cre-
ated using the scripting and mark-up languages used for web-
sites (HTML, CSS and JavaScript) and bundle this web content
into a zip archive which is installed on a device and run just like
any other application.

The big advantage of widgets is that they offer probably the
easiest route into mobile development. If you are a web de-
veloper widgets enable you to create mobile apps using your
existing web design skills and code in the languages you already
know. Equally, for anyone taking their first steps into mobile
development – or first steps into programming – HTML, CSS and
the JavaScript language are a lot easier to learn than the rela-
tively complex native languages.

93Programming Mobile Widgets

Widget Characteristics

In general, a widget can be characterized as a small website
installed on a device. But if that’s the case, why not simply use
a website? Well, widgets have several advantages of a widget
when compared with web pages:

—— Widgets can be more responsive than websites: In a wid-
get you work with raw data not HTML pages, the reduction
in data overhead means widgets make better use of mobile
network bandwidth.

—— Widgets are already first class apps on some phones:
Although widget environments vary, a user can open a
widget in just a few clicks, there is no URL to type or
bookmark to find. For example, on Symbian or BlackBerry
devices widgets are installed and accessed in the same
way as native applications.

—— Widgets can look like native applications: Some widget
environments include features that replicate the device’s
native menus and UI. Widgets that behave like native ap-
plications are much easier to use than websites.

—— Widgets can run on a device’s home screen: Some widget
environments, such as Symbian, are able to provide
summary views users can add to their device’s homepage
while others, such as Samsung’s Touchwiz can incorporate
arbitrarily sized widgets.

—— Widgets can use device data: The ability to use device
data, such as location or contact records, enables widgets
to offer information that has context, such as identify-
ing social network contacts based on the entries in the
device’s address book.

—— Widgets can generate revenue: They can be packaged and
distributed via application stores so you can sell them just
like native applications.

94 Programming Mobile Widgets

It is worth noting the emergence of a new type of widget: Proxy-
based web browser widgets. These widgets fall into two broad
categories:

—— Server-based, such as those for Opera Mini, which at the
time of writing were available through Vodafone only.
These widgets run entirely on the proxy server. An obvious
consequence of this is that these widgets cannot offer
device side features.

—— Hybrid, such as Series 40 web apps for Ovi Browser. In
these widgets some JavaScript execution can be performed
on the device. In the case of Series 40 web apps the Ovi
Browser client can run code that implements element
transitions and enables dynamic alterations to the UI on
the device. In addition to offering a richer user experience
this hybrid approach reduces round trips to the server, for
example by eliminating the need for the server to paint
every screen refresh.

If there is a challenge in creating widgets, it is the lack of
universal support for a common standard. W3C, together with
Wholesale Application Community (WAC) and Joint Innovation
Lab (JIL), is pushing forward with the definition of standards.
This standardization is still underway and information on its
progress can be found in the W3C Wiki1.

Because the standards are not complete, it is important to
note that each widget technology has slightly different ways of

1)  www.w3.org/2008/webapps/wiki/WidgetSpecs

95

implementing the draft specifications and not all environments
implement all of the draft standards. In general, a widget that
follows the specifications given by W3C will enable you to target
these widget environments:

—— BlackBerry (v5.0 or later): bit.ly/blackberry-widgets
—— Nokia WRT (on selected S60 3rd Edition, Feature Pack

2 devices and all S60 5th Edition and Symbian^3 de-
vices): bit.ly/nokia-wrt

—— Ovi Browser (selected Nokia Series 40 devices):
www.forum.nokia.com/webapps

—— Vodafone360: bit.ly/vf-widgets
—— WAC/ JIL: www.jil.org
—— Windows Mobile (v6.5): bit.ly/winmo-widgets

To port your widget over to platforms that don’t natively sup-
port widgets, such as iPhone or Android, you can use tools such

96

as PhoneGap1, Titanium from Appcelerator2, and Rhomobile3
among others. Of these options, PhoneGap offers a solution that
is closest to the W3C approach.

Prerequisites

Widgets, just like websites, are created entirely in plain text.
These text files are then packaged as a zip archive. This makes
it possible to create widgets using a text editor, zip application,
and a graphics application (to create an icon and graphics for
the widget). If you have a tool for web development it can be
used for widget development. The primary advantage of using
a web editor is the support these tools provide for composing
HTML, CSS and JavaScript.

There are a number of tools specifically designed for devel-
oping widgets also. These may be delivered as plug-ins or add-

1)  www.phonegap.com
2)  www.appcelerator.com
3)  www.rhomobile.com

97Programming Mobile Widgets

ons to web authoring tools, as with the BlackBerry Widget SDK1
which works in conjunction with Adobe Air, or standalone tools
such as Nokia Web Tools2. These tools generally provide tem-
plate projects, a preview environment, validation, packaging,
and deployment features.

Writing Your Code

In general, there are no special requirements for writing code
for a widget. The principal area where a widget differs from a
website is the variety of relatively small screen sizes it has to
work on. Devices running widgets may offer WVGA, nHD, QVGA,
or other resolution screens. CSS provides an elegant solution to
reformatting information to accommodate these varying screen
sizes.

By the way: Try to use CSS3 whenever possible and remove
any old compatibility code or you may run into issues.

You can start by simply:

1.	 Creating index.html and config.xml files.
2.	 Zipping them at the command line using zip

myWidget.wgt index.html config.xml.
3.	 Opening the myWidget.wgt  file in Opera.

Of course, your widget can use AJAX also and one of the many
JavaScript libraries, such as jQuery, MooTools, YUI, Dojo, or Gua-
rana.

Depending on the widget platform you are targeting you may
be able to use more advanced technologies such as Canvas, SVG,

1)  us.blackberry.com/developers/browserdev/widgetsdk.jsp
2)  www.forum.nokia.com/Develop/Web/Tools#NWT

98 Programming Mobile Widgets

Flash Lite, or even HTML5 features such as the <audio> and
<video> tags.

In addition, each environment’s APIs for retrieving device
information, accessing user data, storing data, or other envi-
ronment specific tasks will need to be mastered. In most cases
these APIs follow JavaScript conventions and are easy to learn.
For example, the following code uses Nokia Platform Services 2.0
APIs to asynchronously determine a device’s location:

serviceObj = nokia.device.load(“geolocation”);
serviceObj.getCurrentPosition(success_callback,
error_callback,positionOpts);
…
function success_callback(result){
	 Lat = result.coords.latitude;
	 Long = result.coords.longitude;
}

While standards are still to be finalized, overall the APIs are
moving in very similar directions. The W3C Geolocation API
Specification proposes an almost identical API for the same task:

navigator.geolocation.getCurrentPosition(
	 successCallback,errorCallback,
	 positionOptions);

All the widget runtimes are advancing quickly, with new features
being added regularly. While keeping up with these develop-
ments may be a challenge it is certainly worthwhile if you want
to create leading edge widgets.

99Programming Mobile Widgets

Testing

It is always good to be able to test on a PC. If your widget is
W3C compliant you can use Opera 9 or later as an all-purpose
option. However, if your widget includes device integration or
platform specific features you will need to look to other tools
and fortunately most widget development tools provide a com-
puter based preview environment as well. For example, when
creating Symbian WRT widgets or Ovi Browser web apps, Nokia
Web Tools include Web Apps Simulator that runs your app on
Microsoft Windows, Ubuntu Linux and Apple Mac computers.
The features offered by these widget specific preview tools vary,
but common features include being able to display widgets in
various screen resolutions and orientations, issue device triggers
(such as removal of a memory card) to the widget, and testing
against simulated device data (such as contacts and location
data). Of course, once you finish desktop testing, final testing
on your own phone will be essential. The way a widget looks
and behaves can only be fully assessed on a real screen, under
realistic lighting conditions, and in a real network.

Signing

Currently most widget environments don’t require widgets to be
signed, although there are exceptions, such as BlackBerry. This
situation may change as the APIs to access device features be-
come more advanced. It is worth noting that the W3C standards
include a proposal for widget signing.

100

101Programming Mobile Widgets

Distribution

While the W3C is working on standards that will enable widgets
to be discovered from websites, in very much the same way
RSS feeds are today, there is no universal mechanism for widget
discovery, yet.

However, some widget environments enable you to add a link
to a widget on a website so that the widget installs directly
into the environment or device when downloaded. For example,
by identifying a Nokia WRT widget with the MIME type AddType
x-nokia¬widget .wgz downloading the widget on a Symbian de-
vice will automatically initiate the installation process.

Distribution via a website is not the only option. Many ap-
plication stores welcome widgets. As we went to press, the only
store that supports W3C widgets is the Vodafone Widget store1,
but by packaging your widgets appropriately you can upload
them into Nokia Ovi store2, the Windows Marketplace3 or RIM
BlackBerry AppWorld4. You can use tools, such as PhoneGap,
to port your widget to a native application environment, thus
gaining the option to use other stores, such as Apple AppStore
and Android Market among others.

1)  widget.vodafone.com
2)  store.ovi.com
3)  www.windowsmarketplace.com
4)  appworld.blackberry.com/webstore

102

Programming With
Cross-Platform Tools
So many platforms, so little time: This accurately sums up the
situation that we have in the mobile space. There are more than
enough platforms to choose from: Android, bada, BlackBerry,
iOS, Symbian, webOS and Windows Phone are among the most
important smartphone platforms while Java ME and Brew MP
dominate on feature phones.

Before embarking on a mobile apps project one of the key
decisions to make is which platforms to target. In making this
decision — by looking at the market potential and cost of de-
velopment for each platform — it is well worth reviewing the
option of a cross platform framework. In considering a cross-
platform approach don’t confuse the market size of a platform
with the market potential for your application – while Android
and iPhone appear to have the biggest market places in 2011,
you will also need the biggest marketing effort to get noticed.
So taking a cross platform approach, even one that concentrates
on several seemingly smaller platforms, might be a smart choice
for some apps.

Another challenge is that most application sponsors, to
quote Queen’s famous lyrics, will tell the developer: “I want
it all, I want it all, I want it all ...and I want it now!” So the
choice may be between throwing money at the development or
adopting a cross platform strategy.

By the way, we are not talking about app stores here; this is a
different market fragmentation problem. The more than 100 app
stores, from operators, manufacturers and independent compa-
nies create challenges of their own, outlined in the Appstores
chapter.

Programming With Cross-Platform Tools

103

Limitations And Challenges Of
Cross Platform Approaches

If you want to deliver your app across different platforms you
have to overcome some obstacles. Some challenges are easier to
overcome than others:

Native Programming Languages
By now you will have noticed that most mobile platforms release
their own SDKs, which enable you to develop apps in the plat-
forms’ supported programming languages.

104 Programming With Cross-Platform Tools

However, these languages tend to belong to one of a few fami-
lies of root languages and the following table provides an over-
view of these and the platforms they are supported on:

1)  Supported natively by the platform, e.g. either the primary or only language
for creating applications

2)  Supported as an option by the platform, e.g. can be used as an alternative
to the native language but generally won’t provide the same level of access
to platform features.

Language 1st Class
Citizen1

2nd Class
Citizen2 Target Platforms

C, C++ 4 3

First class: bada, Brew MP,
Symbian, Windows Phone
Classic
Second class: Android
(partly, using the NDK), iOS
(partly), webOS (partly)

Java 3 2

First class: Android, Black-
Berry, Java ME devices
Second class: Symbian,
Windows Phone Classic

Objective-C 1 0 iOS

C# 1 0
Windows Phone and
Windows Phone Classic
(formerly Windows Mobile)

JavaScript 1 2
First class: webOS
Second class: BlackBerry
(Widget), Nokia (WRT)

105

Cross platform frameworks can overcome the programming lan-
guage barriers in different ways:

—— Web Technologies
This approach exploits the fact that most platforms pro-
vide direct support for web technologies through embed-
ded ‘webviews’ in native applications. Along with HTML
and CSS this approach supports JavaScript also.

—— Interpretation
Here the framework delivers an engine for each platform
that interprets a common or framework specific language.
In the gaming world Lua scripting is quite popular, for
example.

—— Cross Compilation
The holy grail of cross platform frameworks is cross compi-
lation, but it is also the most complex technical solution.
It enables you to write an app in one language and have it
transcoded into each platforms’ native language, offering
native runtime speed.

Most frameworks also provide a set of cross platform APIs
that enable you to access certain platform or device features,
such as a device’s geolocation capabilities, in a common way.

106 Programming With Cross-Platform Tools

UI + UX
A difficult hurdle for the cross platform approach is created by
the different User Interface (UI) and User eXperience (UX) pat-
terns that prevail on individual platforms. It is relatively easy
to create a nice looking UI that works the same on several plat-
forms. Such an approach, however, might miss important UI
subtleties that are available on a single platform only and could
improve the user experience drastically. The other challenge
with a cross-platform UI is that it can behave differently to the
native UI users are familiar with, resulting in your application
failing to “work” for users. Customizing and tailoring the UI
and UX to each platform can be a large part of your application
development effort and is arguably the most challenging aspect
of a cross platform strategy.

Desktop Integration
Integration of your application into devices’ desktops varies a
lot between the platforms; on iOS you can only add a badge
with a number to your app’s icon, on Windows Phone you can
create live tiles that add any simple information to the desktop,
while on Android and Symbian you can add a full-blown desk-
top widget that may display arbitrary data and use any visuals.
Using desktop integration might improve the interaction with
your users drastically.

Multitasking
Multitasking enables background services and several apps to
run at the same time. Multitasking is another feature that is re-
alized differently among operating systems. On Android, Black-
Berry and Symbian there are background services and you can
run several apps at the same time; on Android it’s not possible
for the user to exit apps as this is handled automatically by the
OS when resources run low. On iOS we have a limited selection
of background tasks that may continue to run after the app’s

107Programming With Cross-Platform Tools

exit. And then there is a freezing and unfreezing mechanism on
Windows Phone (although an announced update to the platform
will bring background services during 2011). So if background
services can improve your app’s offering, you should evaluate
cross platform strategies carefully to ensure it enables full ac-
cess to the phone’s capabilities in this regard.

Battery Consumption And Performance
Closely related to multitasking is the battery usage of your ap-
plication. While CPU power is roughly doubled every two years
(Moore’s law says that the number of transistors is doubled ev-
ery 18 months), by contrast battery capacity is doubling only
every seven years. This is why some smartphones like to spend
so much time on their charger. The closer you are to the plat-
form in a cross platform abstraction layer, the better you can
control the battery consumption and performance of your app.
As a rule of thumb, the longer your application needs to runs in
one go, the less abstraction you can afford.

Push Services
Push services are a great way to give the appearance that your
application is alive even when it’s not running. In a chat ap-
plication you can, for example, send incoming chat messages to
the user using a push mechanism. The way push services work
and the protocols they use, again, can be realized differently on
each platform.

108 Programming With Cross-Platform Tools

Cross-Platform Strategies

This section outlines some of the strategies you can employ to
implement your apps on different platforms.

Direct Support
You can support several platforms by having a specialized team
for each and every target platform. While this can be resource
intensive, it will most likely give you the best integration and
user experience on each system. An easy entry route is to start
with one platform and then progress to further platforms once
your application proves itself in the real world.

Asset Sharing
When you maintain several teams for different platforms you
can still save a lot of effort when you share some application
constructs:

—— Concept and assets
Mostly you will do this automatically: share the ideas
and concepts of the application, the UI flow, the input
and output and the design and design assets of the app
(but be aware of the need to support platform specific UI
constructs).

—— Data structures and algorithms
Go one step further by sharing data structures and algo-
rithms among platforms.

—— Code sharing of the business model
Using cross platform compilers you can also share the
business model between the platforms. Alternatively you
can use an interpreter or a virtual machine and one com-
mon language across a variety of platforms.

—— Complete abstraction
Some cross platform tools enable you to completely

109Programming With Cross-Platform Tools

abstract the business model, view and control of your ap-
plication for different platforms.

Player And Virtual Machines
Player concepts typically provide a common set of APIs across
different platforms. Famous examples include Flash, Java ME
and Lua. This approach makes development very easy. You are
dependent, however, on the platform provider for new features
and the challenge here is when those features are available in
one platform only.

Often player concepts tend to use a ‘common denomina-
tor’ approach to the offered features, to maintain commonality
among implementations for various platforms.

Generator concepts carry the player concept a step further,
they are often domain specific and enable you to generate apps
out of given data. They often lack flexibility compared to pro-
grammable solutions.

Cross Language Compilation
Cross language compilation enables coding in one language that
is then transformed into a different, platform specific language.
In terms of performance this is often the best cross platform
solution, however there might be performance differences when
compared to native apps. This can be the case, for example,
when certain programming constructs cannot be translated
from the source to the target language automatically. There are
three common approaches to cross language compilation: direct
source to source translation, indirectly by translating the source
code into an intermediate abstract language and direct compila-
tion into a platform’s binary format.

The indirect approach typically produces less readable code.
This is a potential issue when you would like to continue the de-

110 Programming With Cross-Platform Tools

velopment on the target platform and use the translated source
code as a starting point.

(Hybrid) Web Apps
While websites are inherently cross platform, they have some
big disadvantages:

1.	 Websites are not listed in the app stores, so users don’t
find them and monetization is difficult. (Although you
could create a simple application or widget that opens
your website and submit that to a store, but this will not
help with monetization.)

2.	 Websites only work online.
3.	 Websites have an inferior user experience compared to

native apps.

Some of the available web application frameworks are listed in
the following table. With these frameworks you can create web
apps that behave almost like real apps, including offline capa-
bilities. Typically you have no access to hardware features and
native UI elements, so in our opinion they don’t count as “real”
cross platform solutions: these solutions are therefore not listed
in the table at the end of this chapter. Web apps have some
advantages over traditional websites:

1.	 You can put a web app in an app store. Even when not
directly supported by the vendor, you can use web based
tools such as PhoneGap in combination with a web app
solution to make web apps available in app stores.

2.	 Web apps can work offline.
3.	 Web apps can look and behave in a similar fashion to

native apps, however there are often slight – albeit
annoying – differences compared with their native
counterparts.

111

A step further towards native applications is provided by hybrid
web apps, in which you create a native application that uses a
webview to display a website.

With this approach you can have access to any native func-
tionality that you require while keeping most of the functional-
ity on the server side.

This approach is easier than creating native apps for every
platform while enabling you to extend the native parts of your
app as required in an incremental fashion.

Web App Solution License Target Platforms

jQuery Mobile
www.jquerymobile.com

iWebKit
iwebkit.net

Sencha Touch
www.sencha.com/
products/touch

MIT and GPL

LGPL

GPL

Android, bada, BlackBerry,
iOS, Symbian, webOS, Win-
dows Phone

iOS

Android, iOS

JQTouch
www.jqtouch.com

MIT iOS

iUI
code.google.com/p/iui

BSD iOS

112 Programming With Cross-Platform Tools

Cross-Platform Solutions

There are many cross-platform solutions available, so it’s hard to
provide a complete overview. You may call this fragmentation,
I call it competition. A word of warning: we don’t know about
all solutions here, if you happen to have a solution on your
own that is publicly available, please let us know about it at
developers@enough.de

Solution License Input Output

Airplay
www.airplaysdk.com
(Ideaworks Labs)

Commercial C++

Android, bada,
brew, iOS, Symbian,
webOS, Windows
Phone Classic

Bedrock
www.metismo.com
(Metismo)

Commercial Java ME

Android, bada,
BlackBerry, brew,
Consoles, iOS, PC,
webOS, Windows
Phone, Windows
Phone Classic

Corona
www.anscamobile.com
(Ansca Software)

Commercial JavaScript Android, iOS

appMobi
www.appmobi.com

Commercial
HTML, CSS,
JavaScript

Android, iOS

Celsius
mobile-distillery.com
(Mobile Distillery)

Commercial
iOS,
Java ME

Android, Black-
Berry, brew,
iOS, Symbian,
Windows Phone
Classic

EDGELIB
www.edgelib.com
(elements interactive)

Commercial C++
Android, iOS, PC,
Symbian

113Programming With Cross-Platform Tools

Solution License Input Output

id Tech 5
www.idsoftware.com (id)

Commercial C++ Consoles, iOS, PC

J2ME Polish
www.j2mepolish.org
(Enough Software)

Open Source
+ Commercial

Java ME,
HTML, CSS,
JavaScript

Android, Black-
Berry, iOS, J2ME,
PC, Windows
Phone Classic

Rhodes
rhomobile.com/products/
rhodes (rhomobile)

Open Source
+ Commercial

Ruby,
HTML, CSS,
JavaScript

Android, Black-
Berry, iOS, Sym-
bian, Windows
Phone Classic

Irrlicht
irrlicht.sourceforge.net
gitorious.org/irrlicht-
android

Open Source C++
Android & iOS
with OpenGL-ES
version, PC

Flash
adobe.com/devnet/
devices.html (Adobe)

Commercial Flash Android, iOS, PC

PhoneGap
www.phonegap.com
(Nitobi)

Open Source
HTML, CSS ,
JavaScript

Android,
BlackBerry, iOS,
Symbian, webOS

Mono Touch
monotouch.net (Novell)

Commercial C# iOS

MoSync
www.mosync.com
(MoSync)

Open Source
+ Commercial

C

Android, J2ME,
Moblin, Symbian,
Windows Phone
Classic

Qt
qt.nokia.com
(Nokia)

Open Source
+ Commercial

C++

MeeGo, PC,
Symbian, and
Windows Phone
Classic as well as
desktop Windows,
Apple & Linux OS

114

Solution License Input Output

SIO2
sio2interactive.com
(sio2interactive)

Commercial C
iOS, other
announced

Unity3
unity3d.com
(Unity Technologies)

Commercial C# Android, iOS, PC

Whoop
www.whoop.com
(Whoop)

Commercial
Drag and
Drop

Android, Black-
Berry, iOS, J2ME,
Windows Phone
Classic

Titanium
www.appcelerator.com

Open Source JavaScript
Android, Con-
soles, iOS, PC

Unreal
www.unrealtechnology.
com (Epic Games)

Commercial
UnrealScript,
C++

Consoles, iOS, PC

XML VM
xmlvm.org

Open Source
+ Commercial

Java, .NET,
Ruby

C++, Java,
JavaScript, .NET,
Python

115Programming With Cross-Platform Tools

Here are some questions that you should ask when evaluating
cross platform tools. Not all of them might be relevant to you,
so weight the answers appropriately.

—— How does your cross platform tool chain work? What pro-
gramming language and what API can I use?

—— Can I access platform specific functionality? If so, how?
—— Can I use native UI components? If so, how?
—— Can I use a platform specific build as the basis for my own

ongoing development? What does the translated/generated
source code look like?

—— Is there desktop integration available?
—— Can I control multitasking? Are there background services?
—— How does the solution work with push services?

116 Creating Mobile Websites

Creating Mobile Websites
Why create a mobile website instead of an application? The dis-
cussion on web vs. apps is still ongoing and it depends on your
particular project which approach is the better choice. But aside
that discussion one thing is undoubtedly clear: the impact of
mobile internet is constantly increasing.

Using the web has a number of advantages, websites can be
browsed on almost all devices, the technology is flexible, and
it is easy to update sites so all users get the latest version. Be-
cause of this experts such as like Sundar Pichai, vice president
for product management for Google Chrome, forecast that the
web will prevail. Other see web delivering 70% of applications
while 30% will remain with apps running on a device. However
the distribution eventually looks: If you want to participate ef-
fectively in the growing mobile web market you have to follow
some guidelines. This chapter will explain what those guidelines
are.

Usability In A Limited Environment

The usage pattern at a desktop computer is often described as
“hunt and gather“. Mobile usage is totally different. When using
internet on a mobile handset, users are usually on the move.
They usually want to know more about their surrounding or oc-
cupy some spare time. Therefore, mobile internet usage is often
described as “quick fulfillment“.

Applications have to take these differences into account. For
example, a search interface for users at a desktop browser has to
offer comprehensive options, on the mobile handset it has to be
more straight-forward, focused on the primary action.
Other things to consider during design are that the mobile user
has no mouse, often they have no real keyboard and the size of

117Creating Mobile Websites

the screen is very limited. This means the content of a mobile
website has to be arranged accordingly: Images should not be
too large, all relevant elements should be easily accessible as
the user is not able to move a cursor freely around the site.
In addition to factors like markup, image formats and naviga-
tion, you should never forget about the most valuable feature
to a mobile user: battery life. Complex websites with many Ja-
vaScript, CSS and Flash elements need a lot of processing power,
which means battery power.

These adjustments cannot be realized by a machine. This
is one reason why it is indispensable to create special mobile
versions of websites rather than relying on proxy browsers to
reformat content.

These 10 basic hints should help you to adapt your content
properly for the mobile user:

1.	 Mobilize, don’t miniaturize: Create a concept that
utilizes the possibilities of the technology. You won’t
satisfy many people by simply offering a smaller version
of your classic website.

2.	 Keep all paths open: Leave it up to the user to access
either the mobile or desktop version of your website.

3.	 Keep it simple: Avoid complex navigation structures,
users will not dig that deep anyway while they are on
the go.

4.	 Avoid text input wherever possible: Text input on
mobiles sucks. If you really need the users to enter text,
use wide input boxes so that they see what they are
typing.

5.	 Adapt the media: Adapt all pictures, videos and alike
to be displayed properly on the handset (check the cor-
responding chapter in this guide: “Implementing Rich

118

Media“ for more information). Avoid formats such as .doc
and pdf.

6.	 The user is a creature of habit; respect that: Adapt us-
age patterns from classic websites such as linking logos
to the homepage or offering corrections to mistyped
search requests.

7.	 Think of stubby fingers: When optimizing your content
for touch screen phones do not use clickable areas
smaller than 1cm x 1cm.

8.	 Use sharp contrasts: Fonts and background colors that
guarantee legibility in any surrounding, including bright
sunlight.

9.	 Reflect continuously: Ask yourself if you would use the
implemented features yourself. Ask your friends and col-
leagues as well before realizing your ideas.

10.	Do not require the user to think. Try to implement in-
tuitive navigation, do not force users to make decisions

119Creating Mobile Websites

more often than necessary. Users will often click the first
link in a list anyway.

Analyze Your Target Markets

“In mobile, fragmentation is forever”1. When programming a
mobile website, the simple truth is that you have to deal with
a fragmented device market. Do you know what kinds of devices
your visitors use most? If not, you should start at the low-level
and implement a tool that detects the devices that are access-
ing your site.

Several providers are offering this kind of analysis software:

—— AdMob: www.admob.com
—— Bango: www.bango.com
—— Sevenval: www.device-trends.com
—— TigTags: www.tigtags.com/mobile_analytics/mobile_site_

tracking

Some providers also offer access to the data they collect,
which provides you an insight into which devices are accessing
the mobile web:

—— AdMob: http://metrics.admob.com
—— mobiForge: http://mobiforge.com/designing/story/effec-

tive-design-multiple-screen-sizes
—— Opera: www.opera.com/smw
—— Sevenval: www.slideshare.net/sevenval/tag/devicetrends
—— StatCounter Global Stats: http://gs.statcounter.com

When using these data, bear in mind where they come from
and how they have been generated: In which region have they

1)  Richard Wong, www.techcrunch.com, Mar. 4, 2010

120 Creating Mobile Websites

been collected, are they really reflecting the users’ mobile web
usage or just the general market share of various devices? Is it
possible that the data reflect the user base of certain operators
or technology platforms only? Are these data for page impres-
sions, visits or unique users?

Never trust any report blindly. Use several sources and do
your own analysis.

Content adaptation

Static Version
Of course you can simply ignore the possibilities of automatic
optimization and leave it up to the users: Create different ver-
sions of your content, let the user start with a low-level version
and let them decide manually which version they prefer for their
devices and usage patterns.

However, since you are dealing with a user who is on the
move and does not want to spend a lot of time discovering
which version suits them best, this is probably not the best
way to go.

121Creating Mobile Websites

Automatic adaption technologies
To adapt the content to different devices, you basically need
two components: The first contains logic that detects the device
and has information on its browser and that of the browser’s
characteristics – a device database. The second component uses
these characteristics to adjust the content for optimal usability.

The most popular open source device database is the WURFL
project1 that offers comprehensive information via XML. A num-
ber of tools deliver APIs for detecting the browser, gathering
its properties and adjusting the content: the markup and the
images. One example of an open source project that provides
adjusting content is MyMobileWeb2, financed by public funds
and Telefonica.

There are also commercial providers. Some concentrate on
device data and detection while others focus on offering soft-
ware platforms that adjust the content accordingly.

Examples of commercial device data and device detection
providers are:

—— dotMobi3 offers several APIs to access their device data-
base DeviceAtlas4 and intelligent detection

—— DetectRight5

1)  wurfl.sf.net
2)  mymobileweb.morfeo-project.org
3)  www.mtld.mobi
4)  www.deviceatlas.com
5)  www.detectright.com

122

While, some commercial content adaptation software providers
are:

—— Sevenval1, a platform independent technology that works
via HTTP and markup. This solution is available as a ser-
vice or can be installed on Linux systems

—— Volantis Mobility Server2 runs on a variety of Java-based
web application servers and SQL-compliant databases.
There are two versions available: one open source com-
munity version and one professional version

—— Mobile Interaction Server3 runs on BEA, IBM WebSphere,
JBoss, Tomcat and Caucho Resin

HTML Standards For Mobile

Today the vast majority of all mobile browsers support XHTML/
MP 1.0, for many low-end devices this language still delivers
the best results. On the other hand, many devices offer full web
browsers that support HTML/4.0, but these browsers still have
their differences when it comes to content-type or doctype and
choosing views that distinguish between mobile and desktop
websites.

The next big thing is HTML5 which is still under development.
However, some of the latest browsers already support parts of
this new standard: Scripting, GPS access, CSS3 elements, CSS an-
imations and the possibility of offline (on-device) data storage.

1)  www.sevenval.com
2)  www.volantis.com
3)  www.mobileaware.com

123Creating Mobile Websites

At the same time, the W3C Device APIs and Policy Working Group
(DAP) is defining client-side APIs. These APIs will make it pos-
sible to develop web applications and web widgets that inter-
act with device services such as calendar, contacts and camera
among others. Such websites might be expected to progressively
evolve to offer the features of web widgets (for more informa-
tion on widgets, see the Programming Mobile Widgets chapter).

Websites For Feature Phones

It is likely that the majority of your users will access your site
with a basic handset such as described by the W3C in the De-
fault Delivery Context4 or by Luca Passani in his baseline device
description5.

To fit the needs of feature phones, these are our recommen-
dations:

—— XHTML MP/1.0
—— screen size: 176x144 pixels
—— GIF and JPEG image
—— maximum of 20kb page size (including images and CSS)
—— basic Table Support, without “rowspan”, “colspan“ — no

nested tables
—— minimal CSS (WCSS 1.0)

Although even these basic characteristics exceed the capa-
bilities of many older handsets, mobile internet users usually
own handsets that properly display pages that follow the guide-
lines above. Surfing the internet with much older devices is no
fun anyway.

4)  www.w3.org/TR/mobile-bp/#ddc
5)  www.passani.it/gap/#baseline

124 Creating Mobile Websites

Websites For Full Web Browsers

Full web browsers are characterized by their capability to dis-
play any website. These include browsers based on WebKit, Op-
era Mobile, Microsoft Internet Explorer, Netfront (version 3.4
and later), UCWEB, Nokia Web Browser and Fennec. Devices that
use a full web browser don’t necessarily require any technology
concessions in website design, but we suggest the following
guidelines:

—— HTML/4.0 strict
—— screen size: 240x320 pixels
—— GIF, JPEG Images and PNG (without alpha transparency)

images
—— maximum of 50kb page size (including images and CSS)
—— basic table support, without “rowspan”,“colspan“ — no

nested tables
—— keep CSS simple, tables are not bad
—— script can be included, but avoid unnecessary or excessive

script as well as animation effects — think of the battery
—— if available, use AJAX to get content.

Websites For Touch Devices

Many modern devices with a powerful browser such as the
iPhone, Android or Symbian handsets also offer a touch screen.
Touch UIs offer users the possibility of moving more freely
within a website. At the same time, touch interaction makes
choosing one line from a list and other smaller elements within
a page difficult.

If your mobile site complies with the following requirements,
any touch device user will be able to navigate properly:

125Creating Mobile Websites

—— HTML/4.0 Strict
—— screen size: 320x480 pixels
—— GIF, JPEG and PNG (with alpha transparency) images
—— maximum of 100kb page size (including images and CSS)
—— full tables
—— script is allowed, but not needed
—— use CSS, especially Webkit styles for rounded corners
—— if available, use AJAX to get content
—— keep the limited battery life in mind
—— use a large font size (for example 18px) for links and click-

able lists
—— set a default viewport

(<meta name = “viewport” content = “width =
device-width”>).

Satisfy The Browser

Markup
Of course it would be great if there were one universal markup
standard – unfortunately this is not the case. There are many
standards, so be sure of validating your markup by using one of
these tools:

—— W3C Markup Validator: http://validator.w3.org
—— W3C mobileOK checker: http://validator.w3.org/mobile
—— dotMobi testing tool: http://mobiready.com
—— Korean MobileOK Test and Validation Service:

http://v.mobileok.kr

As general advice, it is recommended that you stick to UTF-8 en-
coding. You can also consider going low-level creating a XHTML
MP/1.0 site with WCSS/1.0 and without JavaScript.

126

127Creating Mobile Websites

Page Width
Always use dynamic layout. Avoid static width settings in pixels,
it is better to use percentage values. Even when using device
databases, the browsers still have different display methods
(such as full screen, landscape and portrait) and not all provide
for displaying a scrollbar. The web is dynamic, so is the hardware
landscape – keep your layout dynamic as well.

Images
Not everybody has a mobile data flat rate, so do not use images
excessively, avoid any unnecessary images. To reduce data and
processor workload, the images should always be scaled on the
server and not by the browser. ImageMagick offers functionality
to easily scale your images1.

When choosing image formats, GIF and JPEG are still the best
options. PNG offers more flexibility, but you cannot always be
sure to what degree transparency is supported.

Tables
For desktop web pages, tables are no longer used for web de-
sign. In the mobile environment they are still an effective
way to create simple layouts – just avoid unnecessary nested
tables and colspan/rowspan. Even though it breaks the rules
for valid XHTML MP/1.0, some browsers need the attributes
cellpadding=”0” and cellspacing=”0” to prevent un-
wanted spaces from being displayed. CSS simply cannot assure
this with all browsers.

1)  www.imagemagick.org

128 Creating Mobile Websites

CSS
Do not use CSS excessively. CSS interpretation is sometimes not
properly implemented and shortens battery life. To be on the
safe side, stick to the WCSS/1.0 set.

When determining sizes, avoid defining them in pixels, use
percentage values.

Fonts
Don’t be too adventurous with fonts: Mobile browsers usually
support a limited set of font-types. Better to limit the number
of fonts and focus on the font size to create differentiation. Use
relative values (small/medium/large) rather than fixed values
(pixels).

Cookies
You can use cookies and should do so, but only when really
needed. However, don’t put too much trust in cookies: Although
it might work fine during one session, the cookie might no lon-
ger be available at the start of the next.

This is why you should always offer alternatives such as an
URL based parameter or a personalized bookmark for permanent
settings.

Script / AJAX
According to www.device-trends.com, 85% of the mobile web us-
ers who visited the participating websites, were using a browser
that supports JavaScript and most of them were able to handle
AJAX. So it would be prudent to use the possibilities of these
technologies, but you should make sure that your site works fine
without them as well.

129

M
et

a
Se

tt
in

gs
Yo

u
ca

n
in

flu
en

ce
 t

he
 r

en
de

ri
ng

 m
od

e
by

 a
 n

um
be

r
of

 m
et

a
se

tt
in

gs
1 :

1)
 

Pl
ea

se
 c

om
pa

re
 le

ar
nt

he
m

ob
ile

w
eb

.c
om

/t
ag

/h
an

dh
el

df
rie

nd
ly

Vi
ew

po
rt

M
ob

ile
Op

ti
m

iz
ed

(W

in
do

w
s

M
ob

ile
)

De
fin

es
 v

ie
w

 a
nd

zo

om

De
fin

es
 w

id
th

 o
f

m
ob

ile
 p

ag
e

<
m
e
t
a

n
a
m
e
=
”
v
i
e
w
p
o
r
t
”

c
o
n
t
e
n
t
=
”
w
i
d
t
h
=
d
e
v
i
c
e
-
w
i
d
t
h
;

i
n
i
t
i
a
l
-

s
c
a
l
e
=
1
.
0
;
”
/
>

w
w

w.
qu

ir
ks

m
od

e.
or

g/
m

ob
ile

/t
ab

le
Vi

ew
po

rt
.h

tm
l

H
an

dh
el

dF
ri

en
dl

y
(R

IM
 B

ro
w

se
r)

De
ac

ti
va

te
s

zo
om

<
m
e
t
a

n
a
m
e
=
”
H
a
n
d
h
e
l
d
F
r
i
e
n
d
l
y
”

c
o
n
t
e
n
t
=
”
t
r
u
e
”
/
>

do
cs

.b
la

ck
be

rr
y.

co
m

/e
n/

de
ve

lo
pe

rs
/d

el
iv

er
ab

le
s/

61
76

/H
TM

L_
re

f_
m

et
a_

56
41

43
_1

1.
js

p

Au
to

 M
at

ch
(R

IM
 B

ro
w

se
r)

Nu
m

be
rs

 w
ill

 n
ot

au

to
m

at
ic

al
ly

be

 d
is

pl
ay

ed
 a

s
ph

on
e

nu
m

be
rs

<
m
e
t
a

n
a
m
e
=
”
x
-
r
i
m
-
a
u
t
o
-
m
a
t
c
h
”

h
t
t
p
-
e
q
u
i
v
=
”
x
-
r
i
m
-
a
u
t
o
-
m
a
t
c
h
”

f
o
r
u
a
=
”
t
r
u
e
”

c
o
n
t
e
n
t
=
”
n
o
n
e
”
/
>

<
m
e
t
a

n
a
m
e
=
”
M
o
b
i
l
e
O
p
t
i
m
i
z
e
d
”

c
o
n
t
e
n
t
=
”
w
i
d
t
h
”

/
>

m
sd

n.
m

ic
ro

so
ft

.c
om

/e
n-

us
/l

ib
ra

ry
/m

s8
90

01
4.

as
px

Fo
rm

at
 D

et
ec

ti
on

Nu
m

be
rs

 w
ill

 n
ot

au

to
m

at
ic

al
ly

be

 d
is

pl
ay

ed
 a

s
ph

on
e

nu
m

be
rs

<
m
e
t
a

n
a
m
e
=
”
f
o
r
m
a
t
-
d
e
t
e
c
t
i
o
n
”

c
o
n
t
e
n
t
=
”
t
e
l
e
p
h
o
n
e
=
n
o
”
/
>

m
sd

n.
m

ic
ro

so
ft

.c
om

/e
n-

us
/l

ib
ra

ry
/m

s8
90

01
4.

as
px

130 Creating Mobile Websites

Using GPS

Devices like the iPhone (firmware version 3 and later), the
Blackberry (firmware 4.2. and later) Opera Mobile and browsers
with Google Gears enable the use of GPS information within the
browser. There is a W3C specification published1, but unfortu-
nately this is not supported by all devices. Nevertheless you
can still use a simple JavaScript API that overlays the different
implementations2.

For further information about how to use GPS location infor-
mation for web-based apps and services, check out mobiforge3.

Hybrid Apps

The term “hybrid” is used in many technology fields. The auto
industry uses it where a internal combustion engine is combine
with a generator in an electric vehicle. The concept is the same
for hybrid web apps.

In the mobile space you find that hybrid web apps combine
a classic web browser with the features of a native application.
These may include:

—— a completely native app that is controlled by the down-
stream content (arguably this is just a browser)

—— a client that in addition to its existing function, displays
content in a web view format

—— an application framework that enables the execution of
web content that can interface with native application
code, such as by utilizing the WebKit integration provided
in Qt.

1)  dev.w3.org/geo/api/spec-source.html
2)  code.google.com/p/geo-location-javascript
3)  www.mobiforge.com/developing/blog/location-location-location

131Creating Mobile Websites

Testing your Mobile Website

There are several ways to test your mobile website:

User-Agent / Browser
Several desktop browsers offer the ability to change the user-
agent and thereby enable the emulation of device detection for
the testing of automatic adaption. For Firefox users, the User-
Agent Switcher is available4. MobiForge offers a configuration
file for this Add-On which contains some properties of mobile
handsets5.

Emulators / SDKs
Emulators or SDKs offered by manufacturers are the better op-
tion for testing. We have had good results using the following
tools:

—— Apple iPhone: developer.apple.com/iPhone/program
—— Palm Pre: developer.palm.com
—— Android: developer.android.com
—— BlackBerry: www.blackberry.com/developers/downloads/

simulators
—— Windows Mobile: msdn.microsoft.com/en-us/windowsmo-

bile
—— Opera Mini: www.opera.com/mini/demo
—— Symbian SDK: www.forum.nokia.com/S60SDK

Additional emulators can be found on
mobiforge.com/emulators/page/mobile-emulators

4)  addons.mozilla.org/en-US/firefox/addon/59
5)  www.mobiforge.com/developing/blog/user-agent-switcher-config-file

132 Creating Mobile Websites

Remote And Real Device Testing
It is best to test the usability of a site under real-life condi-
tions: Take your mobile handset to a busy public place and try
to find all the relevant information in your application by using
one hand. You will see very quickly where your mobile site may
need to be trimmed or optimized. Test on as many different
devices as possible.

Remote testing is an alternative, particularly where
your access to handsets is limited. Consider services like
www.deviceanywhere.com or www.perfectomobile.com.

Crowd sourcing testers, with the help of www.mob4hire.com,
is also worth considering.

Learn More – On The Web

If you want to dig deeper and learn more about how to satisfy
the mobile user with your web-based service, check out these
websites:

—— Mobile Best Practices / W3C: www.w3.org/TR/mobile-bp
—— dotMobi Mobile Web Developer‘s Guide / dotMobi:

mobiforge.com/starting/story/dotmobi-mobile-web-develop-
ers-guide

—— The Wireless FAQ / Andrea Trasatti and others:
www.thewirelessfaq.com

—— Global Authoring Practices for the Mobile Web / Luca
Passani: www.passani.it/gap

And always remember:

A mobile website is not simply a small website; it is a web-
site for mobile phone users. Keep it simple.

133

134

Implementing Rich Media
“As many standards as handsets.” - Again this is true for the
list of supported media formats on mobile phones. Contrary to
PCs where most audio and video formats are supported or a
codec can easily be installed to support it, mobiles are a differ-
ent story. To allow optimization for screen size and bandwidth,
specific mobile formats and protocols have been developed over
the past few years. Small variations in resolution, bit rate, con-
tainer, protocol or codec can easily fail playback, so always test
on real devices.

Most smartphones today do support MP4 h.264 320x240
AAC-LC, however multiple variations are possible among hand-
sets- even within one vendor or firmware version. Below are the
recommended formats:

Container

Protocol

Video

Audio

Resolution

mp4, 3gp, avi (BlackBerry only), wmv (Windows
Mobile/ Phone only)

320x240, 480x320, 480x800 (tablets only),
1024x768 (iPad only), 176x144

H.264, H.263

AAC-LC, MP3, AAC+

HTTP (progressive or download) or RTSP (streaming)

135

Streaming vs. Local Storage

There are two options to bring media content to mobile de-
vices: Either playing it locally or streaming it in real time from
a server.

To stream content through relatively unstable mobile net-
works, a specific protocol called RTSP was developed that solves
latency and buffering issues. Typical frame rates are 15 fps for
MP4 and 25 fps for 3gp with up to 48 kbps for GPRS (audio
only), 200 kbps for Edge, 300 kbps for 3G/UMTS/WCMDA and
500 kbps for Wi-Fi.

Apple’s open source Darwin streaming server1 can serve
streaming video and audio with highest compatibility and reli-
able RTSP combined with FFMPEG2 and is always a good choice
to stream 3gp or mp4 files.

When targeting Windows Mobile/Phone, Windows Media Serv-
er3 is preferred to support HTTP streaming. The tablet specific
Android version 3.0 is also supposed to support HTTP streaming.
When streaming is not available on the phone, blocked by the
carrier or you want to enable the user to display the media
without establishing a connection each time, you can of course
simply link and download the file. This is as easy as linking to
a download on the regular web, but mobile phones might be
stricter in checking the correct mime types. Use audio/3gp or
video/3gp for 3gp files and video/mp4 for mp4 files.

Some handsets simply use the file extensions for data type de-
tection, so when using a script like download.php a well-known
trick is to add a parameter like download.php?dummy=.3gp to
allow correct processing of the media. Some phones cannot
play 3gp audio without video, but a workaround is to include an
empty video track in the file or a still image of the album cover.

1)  http://dss.macosforge.org
2)  www.ffmpeg.org
3)  http://technet.microsoft.com/en-us/windowsserver/

Implementing Rich Media136

Depending on the extension and protocol, different players
might handle the request. On some phones, like Android, mul-
tiple media players can be available and a popup is displayed to
allow the user to select one.

Finally you might of course also simply include the local me-
dia file in your mobile app as a resource.

Progressive Download

To avoid configuring a streaming server, a good alternative is to
offer progressive downloads, for which your media files can be
served from any web server. To do this, you have to hint your
files. Hinting is the process of marking several locations in the
media, so a mobile player can start playing the file as soon
as it has downloaded a small part of it (typically the first 15
seconds). So far the most reliable open source hinting software
found is Mp4box. Note that a mp3 file doesn’t need and cannot
be hinted.

Media Converters

To convert a wide variety of existing media to mobile phone
compatible formats FFMPEG is a must have (open source) media
format converter. It can and adjust the frame rate, bit rate and
channels at the same time. Make sure you build or get the binary
with H263, AAC and AMR encoder support included. There are
good converters available based on FFMPEG, e.g. “Super” from
eRightSoft1 . For MAC users, QuickTime pro (paid version) is a
good alternative to encode and hint 3gp files. If you are looking
for a complete server solution with a Java/ open source back-
ground, check out Alembik2.

1)  www.erightsoft.com/super
2)  www.alembik.sourceforge.net

137Implementing Location-Based Services

Implementing
Location-Based Services
Knowing where a mobile user is located geographically enables
mobile services to be more accurate and timely: helping find a
nearby parking space, analyzing pollen reports for your local
area, finding friends at the trade fair or obtaining directions to
the local zoo. The zip code of your current location may be good
enough to locate a nearby barber, while higher precision will be
required to find your GPS-tagged hunting dog or lost toddler.

How To Obtain Positioning Data

Location-based applications can acquire location information
from several sources: one of the phone’s available network con-
nections, GPS satellites, short range systems based on visually
located tags or local short range radio or old-school by input-
ting data through the screen or keyboard.

—— Network positioning
Each GSM or UMTS base station carries a unique ID,
containing its country code, network id, five-digit Loca-
tion Area and two-digit Routing Area, from which geo
coordinates can be obtained by looking up the operator’s
declaration. More accurate methods include measuring the
difference in time-of-arrival of signals from several nearby
base stations (multilateration). For phones with WiFi
capabilities, known wireless LAN access points can also be
used. Several companies monitor WiFi signals by driving
around in cities, and sell these data sets to third parties
or use in-house. In general, accuracy depends on the cell

138

size (base station density). Higher accuracy is obtained in
urban areas than in rural areas.

—— GPS positioning
The built-in GPS module in the phone (or an external one)
gives you an accuracy ranging from 5 to 50 meters, de-
pending on quality of the hardware as well as the terrain,
canopy and wall materials. In cities urban canyons created
by clusters of tall buildings can distort the signal, giving
false or inaccurate readings. Combining GPS with network
positioning is increasingly common. Modern phones some-
times have an on-board assisted GPS chip, this minimizes
the delay until the first GPS fix is obtained by providing
orbital data, accurate network time and network-side
analysis of snapshot GPS information from devices. Yet an

139Implementing Location-Based Services

A-GPS does not provide a more accurate position, only a
faster result when the GPS is initially enabled, or when
exiting from an area of bad GPS satellite coverage.

—— Short range positioning
Systems based on sensors, such as near field communica-
tion (NFC), Bluetooth and other radio-based tag systems,
use active or passive sensors in proximity to points of
interest, such as exhibits in a museum or stores in a shop-
ping mall. Low-tech solutions include bar codes and other
visual tags (such as QR codes) that can be photographed
and analyzed on a server or the phone; such tags may
simply contain an id that needs to be looked up to obtain
a position, while others may provide the latitude and
longitude.

—— Manual input
The user selects a location on a map, inputs an area code
or address. This option is used typically for applications on
feature phones, which lack other means of determining a
location.

How To Obtain Mapping Services

A map service takes a position as parameters and returns a map,
often with metadata. The map itself can be in the form of one
or several image bitmaps, represented as vector data or a com-
bination of both. Vector data has the advantage of consuming
much less bandwidth than bitmaps do. Vector data also allows
for arbitrary zooming, but requires more processing on the client
side. Bitmaps are often provided in discrete zoom levels, each
with a fixed magnification.

Free maps – both served as bitmaps and vectors – include
Open Street Map or CloudMate, while Ovi Maps are at the time of
writing free for Nokia phones only. Commercially available maps
include NAVTEQ, Garmin and Microsoft to name a few. Some so-

140 Implementing Location-Based Services

lutions, such as Google Maps, are free when your application is
made available at no cost, but require you to obtain a map key.
Some map services, such as Google’s static maps, are limited to
serving a number of tiles, such as 1000 tiles from a single map
key. Several of the sources share similar map formats and are
thus interchangeable.

—— Cloudmade: developers.cloudmade.com/projects
—— Google Maps: code.google.com/apis/maps/
—— Microsoft Bing API:

www.microsoft.com/maps/developers
—— NAVTEQ: www.nn4d.com
—— Nokia: www.forum.nokia.com/Develop/Web/Maps/
—— Open Street Map:

wiki.openstreetmap.org/wiki/Slippy_map_tilenames

Implementing Location Support On
Different Platforms

Location API for Java ME offers accuracy, response time, altitude
derived from the on-board GPS, and speed based on performing
consecutive readings.

With iOS and the iPhone SDK, there is integrated support for
location but with restrictions on how the location data can be
generated by the supporting functions. Currently, there is also
an on-going debate on how location data is recorded and stored
on the iOS devices and how Apple are planning to use this data
for their own purposes. Android devices are more liberal with
map sources, even though they default to Google Maps. On Sym-
bian devices, Ovi Maps can be used for Nokia phones free of
charge and for commercial use.

141

Maps can be overlaid with geodata, in a number of formats.
One of the simplest is called geoRSS, and could look like this for
a single point-of-interest:

<entry>
	 <title>Byvikens fortress</title>
	 <description>Swedish 1900 century army
install, w. deep mote
	 </description>
	 <georss:point>18.425 59.401</georss:point>
</entry>

There are many more formats for geodata, but the basic idea is
similar, and more and more sources are harmonizing their data
streams for interoperability. Other important formats include the
Geography Markup Language (GML), an XML encoding specifi-
cally for the transport and storage of geographic information,
and KML that is an elaborate geoformat used in Google Earth.

142 Implementing Location-Based Services

Tools For LBS Apps

Several players in the industry provide developer-friendly tools
and APIs as a value added service. Using these dramatically
speeds up the development and deployment of location-aware
services. Each tool normally focuses on one or a few mobile
platforms.

Location aware does not always mean maps, for example Ad-
mob and NAVTEQ both offer developers a stand-alone location
aware advertisement program, where applications can exchange
location data for smarter display of location relevant ads.

—— Garmin Mobile XT SDK: developer.garmin.com
—— iPhone SDK: developer.apple.com
—— Offline tools: code.google.com/p/big-planet-tracks/
—— Android: developer.android.com/guide/topics/location/
—— NAVTEQ: www.nn4d.com
—— TeleAtlas: developerlink.teleatlas.com
—— Nutiteq: www.nutiteq.com
—— Qt Maps/Navigation API: qt.nokia.com/products/qt-

addons/mobility
—— Bing Maps: www.microsoft.com/maps/developers/
—— RIM: us.blackberry.com/developers/ (search for “map api”)
—— Spime: www.spime.com

143

144 Implementing Near Field Communication (NFC)

Implementing Near Field
Communication (NFC)
Near Field Communication (NFC) is one of the latest technolo-
gies to come to mobile devices. It is a very-short range radio
technology, typically operating in a 0 to 4cm range, that relies
on a tag – that stores data – and a reader to read and write a
tag’s data. NFC enabled mobile phones are typically able to act
as either a tag or a reader.

The appeal of NFC as a technology for mobile applications
is the simplicity of operation, the user simply needs to place
their phone in close proximity to a NFC tag or reader – there is
no setup or configuration to be done. The challenge with NFC
will be educating users about the technology, as its use will be
a new experience to many and not have a direct analogy in cur-
rent behavior. For example, for how many users will the action
of touching a poster be an obvious way of opening a related
website? However, there is an entire industry poised to educate
users on the technology, so there are many opportunities for
early adopters.
The NFC standards1 provide for three modes of operation that
can be used in mobile devices:

—— Read/Write – where a phone can read or write data to a
tag

—— Peer to Peer – where two NFC enabled phones can ex-
change data, from simple setup details for a Bluetooth
connection through to business cards and digital photos

—— Card Emulation – where a phone can act as a tag or con-
tactless card

1)  www.nfc-forum.org/specs/spec_list/

145Implementing Near Field Communication (NFC)

Types of use cases envisaged for NFC in mobile phones include:

—— Service Initiation – here a phone can read a tag embedded
or attached to everyday objects, the tag would provide
a URL, phone number or application specific string that
can be used to open a website, dial a number or initiate
application specific functionality. A practical application
might involve embedding a tag in a product’s packaging to
provide a way of opening the product’s website.

—— Sharing – here two NFC enabled phones could share a
piece of information, a business card for example.

—— Connecting devices – an NFC enabled phone could read
connection settings from another phone or peripheral. For
example, a Bluetooth headset could include a tag that
provides the information for pairing the headset with a
phone.

—— Ticketing – the NFC phone could be delivered a ticket
which is then “redeemed” by being read from the phone.

—— Rechargeable or cashless payment cards – here the phone
can act as a replacement for a credit card or bank card,
travel cards such as Oyster2 or payments cards such as
Snapper3.

2)  https://oyster.tfl.gov.uk/oyster
3)  www.snapper.co.nz

146 Implementing Near Field Communication (NFC)

Support For NFC

Support for NFC in mobile devices is still relatively new. However,
the technology is arriving in the mainstream with Apple, Black-
Berry, Google, Microsoft and Nokia1 all having announced NFC
support in their platforms and manufacturers such as Google,
BlackBerry, Nokia and Samsung having announced or already
started shipping smartphones with NFC capabilities2.

Creating NFC Apps

One challenge in creating NFC applications is that there is no
single standardized API. While Contactless Communication API
(JSR-257) provides a standard, it is not universally available
(Apple and Google for example certainly will not provide support
for it). Where it is offered, it can be supplemented with ad-
ditional manufacturer specific APIs, as Nokia does for example.

Nokia provides support for NFC in the Qt Mobility APIs3, mak-
ing it likely that a single set of APIs can be used for Symbian
and MeeGo devices.

Otherwise it will essentially be one set of APIs per platform,
such as the Google APIs for Android4.

However, conceptually NFC is not that complex so the num-
ber of APIs to master across multiple platforms should not be
a hindrance.

1)  www.forum.nokia.com/nfc
2)  www.nearfieldcommunicationsworld.com/nfc-phones-list/
3)  http://labs.qt.nokia.com/2011/04/12/qt-mobility-1-2-beta-package-

released/
4)  http://developer.android.com/reference/android/nfc/package-summary.html

147

148 Testing Your Application

Testing Your Application
After all your hard work creating your application how about
testing it before unleashing it on the world? Testing mobile
applications used to be almost entirely manual, thankfully au-
tomated testing is now viable for many of the mobile platforms.
This chapter covers the general topics; testing for specific plat-
forms is covered in the relevant chapter.

Testability: The Biggest Single Win

If you want to find ways to test your application effectively and
efficiently then start designing and implementing ways to test
it; this applies especially for automated testing. For example,
using techniques such as Dependency Injection in your code
enables you to replace real servers (slow and flaky) with mock
servers (controllable and fast).

Separate your code into testable modules. Several years ago,
when mobile devices and software tools were very limited, de-
velopers chose to ‘optimize’ their mobile code into monolithic
blobs of code, however the current devices and mobile platforms
mean this form of ‘optimization’ is unnecessary and possibly
even counter-productive.

Provide ways to query the state of the application, possibly
through a custom debug interface. You, or your testers, might
otherwise spend lots of time trying to fathom out what the
problems are when the application doesn’t work as hoped.

149Testing Your Application

Headless Client

The user-interface (UI) of a modern mobile application can con-
stitute over 50% of the entire codebase. If you limit your testing
to testing using the GUI designed for users you may needlessly
complicate your testing and debugging efforts. One approach is
to create a very basic UI that’s a thin wrapper around the rest
of the core code (typically this includes the networking and
business layers). This ‘headless’ client may help you to quickly
isolate and identify bugs e.g. related to the device, carrier, and
other environmental issues.

Another benefit of creating a headless client is that it may
be simpler to automate some of the testing e.g. to exercise all
the key business functions and/or to automate the capture and
reporting of test results.

You can also consider creating skeletal programs that ‘probe’
for essential features and capabilities across a range of phone
models e.g. for a J2ME application to test the File Handling
where the user may be prompted (many times) for permission to
allow file IO operations. Given the fragmentation and quirks of
mature platforms such probes can quickly repay the investment
you make to create and run them.

Separate The Generic From Specific

Many mobile applications include algorithms, et cetera, unre-
lated to mobile technology. This generic code should be sepa-
rated from the platform-specific code. For example, on Android
or J2ME the business logic can generally be coded as standard
Java, then you can write, and run, automated unit tests in your
standard IDE using JUnit.

Consider platform-specific test automation once the generic
code has good automated tests.

150 Testing Your Application

Test-Driven Development

Test-Driven Development (TDD) has become more popular and
widespread in the general development communities, particu-
larly when using Agile Development practices.

Although Mobile Test Automation tools are not capable of al-
lowing TDD for all aspects of a mobile application, we have seen
it used successfully on a variety of mobile projects, particularly
when used for the generic aspects of the client code.

Physical Devices

Although emulators and simulators can provide rough-and-ready
testing of your applications, and even allow tests to be fully-
automated in some cases, ultimately your software needs to run
on real phones, as used by your intended users. The performance
characteristics of various phone models vary tremendously from
each other and from the virtual device on your computer.

Here are some examples of areas to test on physical devices:

—— UI: Navigating the UI – for instance, can users use your
application with one hand? Effects of different lighting
conditions: the experience of the user interface can differ
in real sunlight when you’re out and about. It’s a mobile
device – most users will be on the move.

—— Location: if you use location information within your app:
move – both fast and slowly. Go to locations with patchy
network and GPS coverage to see how your app behaves.

—— Multimedia: support for audio, video playback and record-
ing facilities can differ dramatically between devices and
their respective emulators.

—— Internet connectivity: establishing an internet connec-
tion can take an incredible amount of time. Connection

151

delay and bandwidth depend on the network, its current
strength and the number of simultaneous connections.

For platforms such as Java ME and Android where there are so
many manufacturers and models, it’s particularly useful to test
on a range of these devices. A good start is to pick a mix of
popular, new, and models that include specific characteristics or
features such as: touch screen, physical keyboard, screen resolu-
tion, networking chipset, etc.

Remote Control

If you have physical devices to hand, use them to test your ap-
plication. However when you don’t, or if you need to test your
application on other networks, especially abroad and for other
locales, then one of the ‘remote device services’ might help you.
For instance they can help extend the breadth and depth of your
testing at little or no cost.

These days many of the manufacturers provide this service
free-of-charge for their new and popular phone models to regis-
tered software developers. You can also use commercial services
of companies such as PerfectoMobile or DeviceAnywhere for
similar testing across a range of devices and platforms.

You can even create a private repository of remote devices,
e.g. by hosting them in remote offices and locations. Beware of
privacy and confidentiality when using shared devices.

152 Testing Your Application

GUI Test Automation

GUI test automation is one of the elixirs of the testing industry,
many have tried but few have succeeded in creating useful and
viable GUI test automation for mobile applications.

Commercial companies tried to provide automated test-
ing “solutions”; however several have been mothballed. In
comparison, there are several open source cross platform
tools: Mobile End-to-end Testing (MOET) github.com/eing/
moet supports Android, BlackBerry and iPhone devices with a
consistent set of commands which can be used interactively
or automated. Google announced they have recently started
work on a project that will support the WebDriver protocols to
test native applications. Also, Tampere University in Finland
have had some success creating automated tests for various
mobile platforms, including Android and Nokia’s S60 phones.
See tema.cs.tut.fi for more information on their work.

Beware Of Specifics

Platforms, networks, devices, and even firmware, are all specific.
Any could cause problems for your applications. Test these man-
ually first, provided you have the time and budget to get fast
and early feedback.

Crowd-Sourcing

There are billions of users with mobile phones across the world.
Some of them are professional software testers, and of these,
some work for professional out-sourced testing service compa-
nies such as uTest and mob4hire. They can test your application
quickly and relatively inexpensively, compared to maintaining a
larger dedicated software testing team.

These services can augment your other testing, we don’t rec-

153

ommend using them as your only formal testing. To get good
results you will need to devote some of your time and effort to
defining the tests you want them to run, and to working with
the company to review the results, etc.

Web-Based Content And Applications

We can benefit from the extensive history of test automation
tools for desktop web-based content and applications to auto-
mate aspects of our Mobile equivalents.

Tools such as WebDriver wrap web browsers, including, head-
less WebKit, Android, iPhone, Mobile Opera, and BlackBerry as
well as the main desktop web browsers.
On the desktop the ability to wrap Firefox means it can crudely
emulate most mobile browsers by programmatically changing
browser parameters such as the user-agent string. There’s an
article on the Google Testing blog1 that includes an example of
how to emulate the iPhone browser2.

For interactive testing we can use the various emulators sup-
plied for various mobile platforms; and Opera have released Op-
era Mobile Emulator, which allows us to quickly test how sites
would look and behave on the various platforms supported by
Opera Mobile. www.opera.com/developer/tools/

Next Steps

There’s more material available on testing your mobile applica-
tions at tr.im/mobtest

1)  googletesting.blogspot.com
2)  googletesting.blogspot.com/2009/05/survival-techniques-for-web-app.html

154 Monetization

Monetization
Finally you have finished your app or mobile website and pol-
ished it as a result of beta testing feedback. Assuming you are
not developing as a hobby, for branding exposure or for a char-
ity, now it is time to make some money. But how do you do
that, what are your options? In general, you have the following
monetization options:

1.	 Pay per download: Sell your app per download
2.	 In-app payment: Add payment options into your app
3.	 Mobile ads: Earn money from advertising
4.	 Indirect sales: Affiliates, data reporting and physical

goods among others.

When you come to planning your own development, determining
the monetization business model should be one of the key ele-
ments of your early design as it might affect the functional and
technical behavior of the app.

Pay Per Download

Using pay per download (PPD) your app is sold once to each user
as they download and install it on their phone. Payment can be
handled by an app store, mobile operator, or you can setup a
mechanism yourself.

When your app is distributed in an app store — in most cases
it will be one offered by the target platform’s owner, such as Ap-
ple, Google, RIM, Microsoft or Nokia — the store will handle the
payment mechanism for you. In return the store takes a revenue
share (typically 30%) on all sales. In most cases stores offer a
matrix of fixed price points by country and currency ($0.99, EUR
0.79, $3 etc) to choose from when pricing your app.

155Monetization

Operator billing enables your customers to pay for your app
by sending a Premium SMS. This option is still very popular for
mobile web applications, Java games, wallpaper and ringtones.
However, this mechanism is very difficult to handle particularly
if you want to sell in several countries, as you need to sign
contracts with each operator in each country. The alternative is
to use a mediator that can do this for you. Each operator will
take a revenue share typically 45% to 65% of the sale price,
but some operators can take up to 95% of the sale price (and,
if you use them, a mediator will take its share too). Security
(how you prevent the copying of your app) and manageability
are common issues with PDD but for some devices this might be
the only option.

It is worth noting that most of the vendor app stores are
pursuing operator billing agreements, Ovi Store by Nokia has the
best coverage (112 operators in 36 markets at the time of writ-
ing) while Google and RIM are actively recruiting operators too.
The principal reason they are doing this is that typically, when
users have a choice of credit card and operator billing methods
users show a significant preference for operator billing. Nokia,
at least, also insulates developers from the variation in operator
share, offering developers a fixed 60% of billing.

The last option is to create your own website and implement
a payment mechanism through that, such as Pay Pal, PayPal
mobile, credit card (not supported on all devices), dial-in to
premium landlines (www.daopay.com), or similar.

Using PPD can typically be implemented with no special de-
sign or coding requirements for your app.

Overall, we would recommend starting with an app store as
it involves minimal setup costs and administrative overhead.

156 Monetization

In-App Payment

In-app payment is a way to charge for specific actions or assets
within your application. A very basic use might be to enable
the one-off purchase of your application after a trial period —
which may garner more sales than PPD if you feel the features
of your application justify a higher price point. Alternatively,
you can offer the basic features of your application for free, but
charge for premium content (videos, virtual credits, premium
information, additional features, removing ads and alike). Most
app stores offer an in-app purchase option or you could imple-
ment your own payment mechanism. If you want to look at
anything more than a one-off “full license” payment you have
to think carefully about how, when and what your users will be
willing to pay for and design your app accordingly.

This type of payment is particularly popular in games (for
features such as buying extra power, extra levels, virtual credits
and alike) and can help achieve a larger install base as you
can offer the basic application for free. Note, however, that
some app stores do not allow third party payment options to be
implemented inside your app. This is done to prevent you from
using the app store for free distribution while avoiding payment
of the store’s revenue share.

It should also be obvious that you will need to design and
develop your application to incorporate the in-app payment
method. If your application is implemented across various plat-
forms, you may have a different mechanism to build into each
platform’s version.

As with PPD we would recommend that you start with the in-
app purchasing mechanism offered by an app store, particularly
as some of these can leverage operator billing services too.

157

Mobile Advertising

As is common on websites, you could decide to earn money
by displaying advertisements. There are a number of players
who offer tools to display mobile ads and it is the easiest way
to make money on mobile browser applications. Admob.com,
Buzzcity.com and inmobi.com are a few of the parties that of-
fer mobile advertising. However because of the wide range of
devices, countries and capabilities there are currently over 50
large mobile ad networks. Each network offers slightly differ-
ent approaches and finding the one that monetizes your app’s
audience best may not be straightforward. There is no golden
rule; you may have to experiment with a few to find the one
that works best. However, for a quick start you might con-
sider using a mobile ad aggregator, such as www.Smaato.net,
www.Madgic.com or www.Inneractive.de as they tend to bring
you better earnings by combining and optimizing ads from 30+
mobile ad networks. Most ad networks take a 30% to 50% share
of advertizing revenue and aggregators another 20% to 30% on
top of that.

158 Monetization

If your app is doing really well and has a large volume in a
specific country you might consider selling ads directly to adver-
tising agencies or brands or hire a media agency to do it for you.

Again many of the device vendors offer mobile advertising
services as part of their app store offering and these mecha-
nisms are also worth exploring. In some cases you may have to
use the vendor’s offering to be able to include your application
in their store.

Similarly, in application advertising will require you to design
and code your application with it in mind. Also, the placing of
adverts needs to be considered with care. If adverts become
too intrusive users may abandon your app, while making the
advertising too subtle will mean you gain little or no revenue.
It may require some experimentation to find the right level and
positions in which to place adverts.

Indirect Sales

The final option is to use your application to drive sales else-
where. Here you usually offer your app or website for free and
then use mechanism such as:

159Monetization

1.	 Affiliate programs: Promote third party or your own
paid apps within a free app. See also www.mobpartner.
com. This can be considered a variation on mobile
advertising

2.	 Data reporting: Track behavior and sell data to inter-
ested parties. Mobile radio applications often use this
business model. Note that for privacy reasons you should
not reveal any personal information, ensure all data is
provided in anonymous, consolidated reports

3.	 Virtual vs. real world: Use your app as a marketing tool
to sell goods in the real world. Typical examples are
car apps, magazine apps and large brands such as Mac
Donald’s and Starbucks. Also coupon applications often
use this business model.

There is nothing to stop you combining this option with any
of the other revenue generation options if you wish, but take
care that you do not give the impression of overcharging.

Marketing And Promotion

The flip side of revenue generation is marketing and promo-
tion. The need might be obvious if you sell your application
through your own website, but it is equally important when
using a vendors app store — even the smallest stores have ap-
plication counts in the 10s of thousands, so there will be a lot
of competition competing for users’ attention.

Some stores enable you to purchase premium positioning ei-
ther through banners or list placings. But in most cases you will
also need to think about other promotion mechanisms, such as
social networks, reviews on fan websites and such like. Nokia

160 Monetization

provides a particularly useful page of information on marketing
your apps1.

Strategy

So with all these options what should your strategy be? It de-
pends on your goals, let us look at a few:

—— Do you want a large user base? Consider distributing
your application for free at first then start adding mobile
advertising when you have more than 100 thousand users
worldwide or split the app into free and paid versions.

—— Are you convinced users will be willing to buy your app
immediately? Then sell it as PPD for $0.99, but beware
while you might cash several thousand dollars per day it
could easily be no more than a few hundred dollars per
week if your assessment of your app is misplaced or the
competition fierce.

—— Are you offering premium features at a premium price?
Consider a time or feature limited trial application then
use in-app purchasing to enable the purchase of a full ver-
sion either permanently or for a period of time.

—— Are you developing a game? Consider offering the app for
free with in-app advertising or a basic version then use in-
app purchasing to allow user to unlock new features, more
levels, different vehicles or any extendable game asset.

—— Is your mobile app an extension to your existing PC web
shop or physical store? Offer the app for free and earn
revenue from your products and services in the real world.

1)  http://www.forum.nokia.com/Distribute/Public_relations_guidelines.xhtml

What Can You Earn?

One of the most common developer questions is about how much
money they can make with a mobile app. It is clear that some
apps have made their developer’s millionaires, while others will
not be given up their day job anytime soon. Ultimately, what
you can earn is about fulfilling a need and effective marketing.
Experience suggests that apps which save the user money or
time are most attractive (hotel discounts, coupons, free music
and alike) followed by games (just look at the success of Angry
Birds) and business tools (office document viewers, sync tools,
backup tools and alike) but often the (revenue) success of a
single app cannot be predicted. Success usually comes with a
degree of experimentation and a lot of perseverance.

162 Appstores

Appstores
Appstores are the curse and the blessing of mobile develop-
ers. On the bright side they give developers extended reach and
potential sales exposure that would otherwise be very difficult
to achieve. On the dark side the more popular ones now have
100,000+ apps decreasing the potential to stand out from the
crowd and be successful, leading many to compare the chances
of appstore success to the odds of winning the lottery.

Here are a few tips and tricks to help your raise your odds.

Top 5 Appstores

The volume of downloads makes some of these stores look prom-
ising. However, the stores with the highest volume attract the
largest number of applications fighting for attention, so you
might want to pick your niche carefully or spend more time
marketing your app.

Appstore Platform Daily Downloads Alternatives

Cydia (Jailbro-
ken iPhones)

~34 Million a dayiOSApple Appstore

AndroidAndroid Market

Java, Symbian,
Android, widget

GetJar

Symbian, Qt,
Widget, Java

Nokia Ovi

BlackBerry
Blackberry
App World

~5 Million a day

~4 Million a day

~3 Million a day

~11 Million a day

GetJar

Crackberry

Appia, Hand-
ster, Nexva

GetJar, Samsung,
Motorola,
Amazon and 50+
others

163Appstores

Basic Strategies To Get High

We have asked many developers about the tactics that brought
them the most attention and higher ranking in appstores, many
answers came back and one common theme emerged: “there’s no
silver bullet” you have to fire on all front!

However it will help if you try to keep the following in mind:

—— You need a kick ass app: Entertaining, easy to use, not
buggy… make sure you put it in the hands of users before
you put it in a store.

—— Polish your icons and images in the appstore, work on your
app description, and choose carefully your keywords and
category. If unsure or unsatisfied of the results, experi-
ment.

—— Getting reviewed by bloggers and magazines are some of
the best ways to get attention. In return some will be
asking for money, some for exclusivity, and some for early
access.

—— Get (positive) reviews as quickly as possible... Call your
friends and ask your users for a review regularly.

—— If you are going to do any advertising, use a burst of ad-
vertising over a couple of days, this is much more effective
than spending the same amount of money over 2 weeks.

—— Do not rely on the traffic generated by people brows-
ing the appstore, make sure you drive traffic to your app
through your website, SEO and social media.

164 Appstores

Multi-Store vs Single Store

With 115+ appstores there are many possibilities for you to get
your application distributed. However with 20 minutes needed
on average to submit an app to an appstore, you could be spend-
ing a lot of time posting apps in obscure stores that provide less
downloads. This is why a majority of developers stick to only 1
or 2 stores missing out on a huge opportunity but getting a lot
more time for the important things... coding! So should you go
multi-store or not?

Multi-store

The main platform appstores
can have serious limitation,
payment mechanism, penetra-
tion in certain countries, content
guidelines.

Smaller stores give you more vis-
ibility options (featured app)

Some operators’ stores have
easier billing processes leading
to higher conversion rates

Your own website can bring you
more traffic than appstores (es-
pecially if you have a well-known
brand)

Operators’ stores have notoriously
strict content guidelines and can
be difficult to get in.

Many smaller appstores scrape
data from large stores, so your
app may already be there.

iPhone developers only need 1
appstore

Smaller stores are more social
media friendly than large ones.

Some developers report that 50%
of their Android revenues comes
from outside of Android Market

90%+ of smartphone users only
use a single appstore, which
tends to be the platform appstore
shipping with the phone

Single store

165

Now What – Which
Environment Should I Use?
Unfortunately there is no definitive answer, we wish there was.
So, the short answer is: It depends.

However, you can still find the best solution to your need,
but it is a longer answer: think about your target region, the
market share achieved by each technology, define your target
users, their needs, their devices and data plans. Then consider
your vision and the requirements for your application as well as
your existing technology skills.

Remember that you are not necessarily restricted to a single
application environment. It often makes sense to combine dif-
ferent environments, for example by providing a mobile website
for your casual users, a native smartphone application for power
users and a Java ME app for regions where smartphones take a
smaller market share. If you want to concentrate on smartphone
platforms only, you may need to adjust your application con-
cept: On the iPhone you might make money by direct app sales
(if you somehow manage to gain visibility among the 350,000
iOS apps). For Android this approach may not work, Android us-
ers are less likely to pay for mobile software, therefore in-app
advertising could be the better choice for generating revenue.

The following table provides a very rough overview of the
strengths and limitations of each application environment.
However, one crucial aspect is not reflected here: market share.
The differences among regions are too big to simply talk about
global market share. To find out about market share in your
target region, check out online resources such as comscore1,
StatCounter2 or Gartner3.

1)  www.comscoredatamine.com/category/mobile/
2)  http://gs.statcounter.com
3)  www.gartner.com

167

In
te

rac
tiv

ity

On
lin

e /
 O

ffl
ine

De
ve

lop
er

Av
ail

ab
ili

ty

De
ve

lop
er

To
ols

Pe
rfo

rm
an

ce

Fra
gm

en
ta

tio
n

Android

bada

BREW

Flash

iOS

Java ME

Native BlackBerry

Native Symbian

SMS

Web

Widgets

Windows Mobile

Windows Phone

webOS

Qt (Symbian/MeeGo)

Green indicates good coverage or support, yellow for limited and
red for bad coverage of the respective topic

168

Epilogue
Thanks for reading this eighth of our Mobile Developer’s Guide.
We hope you’ve enjoyed reading it and that we helped you to
clarify your options. Don’t be put off by the difficulties in enter-
ing the mobile arena – once you’re in the water, you can and
will swim.

Would you like to contribute to this guide or sponsor upcoming
editions? Please send your feedback to developers@enough.de

169

About the Authors

Robert Virkus / Enough Software
Robert is working in the mobile space since 1998. He experi-
enced Java fragmentation first hand by developing and porting a
mobile client on the Siemens SL42i, the first mass market phone
with an embedded Java VM. With this experience he launched
the Open Source J2ME Polish project in 2004 that helps develop-
ers to overcome device fragmentation barriers. He is the founder
and CEO of Enough Software, the company behind J2ME Polish
and many mobile apps.
www.enough.de			 www.j2mepolish.org

Roland Gülle / Sevenval
In 2001 Roland joined Sevenval to experience the mobile in-
dustry. Since then his mission has been to expand the WWW by
creating a comfortable mobile world. Therefore he is respon-
sible for the development of the adaptation technology and the
FITML platform which enables developers to create mobile inter-
net portals and answer the challenge of device fragmentation.
Roland is an active member of the Mobile Web Initiative (MWI)
and attends several open source projects.
www.sevenval.com		 www.fitml.com

Thibaut Rouffineau / WIP
Community and passion builder with a mobile edge, Thibaut has
been conversing with the mobile developer community for the
past 5 years as the head of developer engagement at Symbian,
where he spearheaded the migration to open source. Today he
is the VP for Developer Partnerships at WIP (Wireless Industry
Partnership).
www.wipconnector.com

170 About the Authors

Chris Brady / Animated Media Inc. (AMI)
Chris is an expert on graphics and GPUs and has been develop-
ing software since the 1980’s. He founded ALT Software Inc.
growing it to the leading provider of safety critical, real-time,
OpenGL 3D device drivers and software in the aerospace market.
As AMI’s CEO, he is now leading the charge to bring Flash tech-
nology to devices and markets outside of Adobe’s focus – includ-
ing Flash on the iPhone.
www.animatedmedia.ca

Michel Shuqair / AppValley
Michel built his experience with Telecoms since 1999 where he
closely watched the mobile development space evolving from
Japan. Starting with black and white WAP applications, iMode
and SMS games, he was leading the mobile social network
m.wauwee.com with almost 1,000,000 members and supported
by a team of Symbian, iPhone, BlackBerry and Android special-
ists with headquarter in Amsterdam (acquired by MobiLuck).
www.appvalley.nl

Alexander Repty
Alexander has been developing software for Mac OS X since 2004.
When the iPhone SDK was released in 2008, he was among the
first registered developers for the program. Since then, he has
worked on a number of apps, one of which was featured in an
Apple TV commercial, and written a series of articles on iPhone
development. As of April 2011, he is an independent software
developer and contractor.
www.alexrepty.com

171About the Authors

Benno Bartels / InsertEFFECT
Benno’s entry to the mobile space was his diploma thesis about
porting J2ME applications. Afterwards he founded InsertEffect,
a company focusing on mobile web development. Today, the
team consists of 10 people focused mainly on usability opti-
mization of mobile websites, social network applications and
widgets.
www.inserteffect.com

Malte Adomeit / Sevenval
Malte got in touch with the mobile world in 2004. Since then
he experienced the mobile development in the telecommuni-
cation sector from a marketing perspective. A market oriented
approach and the aim to satisfy customer needs guided him
dealing with device innovation, content enrichment and mobile
strategy over the last few years. In 2011 he joined Sevenval as
a marketing manager.
www.sevenval.com 	www.fitml.com

Tim Messerschmidt
Tim is developing Android applications since 2008 in his own
business Messerschmidt-IT. Besides he is currently writing his
bachelor thesis about Android and Google App Engine.
www.messerschmidt-it.de

Ovidiu Iliescu / Enough Software
After developing desktop and web-based applications for sev-
eral years, Ovidiu decided mobile sofware is more to his lik-
ing. He’s been doing J2ME and Blackberry development for
Enough Software since 2009. He gets excited by anything re-
lated to efficient coding, algorithms and computer graphics.
www.enough.de		 www.ovidiuiliescu.com

172 About the Authors

Marco Tabor / Enough Software
Marco is responsible for PR, sales and much more at Enough
Software. He coordinates this project as well taking responsibil-
ity for finding sponsors and merging the input provided by the
mobile community.
www.enough.de

Alex Jonsson / MoSync	
Alex likes anything mobile, both apps and web technology and
connecting physical stuff to digital stuff. He holds a doctors
degree in on-line publishing and distributed education. Behind
this tech surface lies an eclectic urge to create new value by
exploiting aspects of communication and media to bring peo-
ple together. Alex holds a position as VP Creative Products at
MoSync Inc.
www.mosync.com

Richard Bloor / Sherpa Consulting Ltd
Richard has been writing about mobile applications develop-
ment since 2000. He contributes to popular websites, such as
AllAboutSymbian.com, and assists companies in creating re-
sources for developers. Richard brings a strong technical back-
ground to his work, having managed development and testing
on a number of major IT projects, including the Land Informa-
tion NZ integrated land ownership and survey system. When not
writing about mobile development, Richard can be found regen-
erating the native bush on his property north of Wellington.

173About the Authors

Jens Weller / Code Node
In 2002 Jens started his career in the mobile business at Voda-
fone. 5 years later, he founded his own company Code Node Ltd.
Since then Jens has been working in the industry as a specialist
in C++ and Qt. In 2009 he started to offer mobile development
for bada as well. Jens has a blog about mobile development with
C++, and has spoken at various events on this topic. He likes to
dance Salsa in his free time.
www.codenode.de

Julian Harty / eBay
Hired by Google in 2006 as the first Test Engineer outside
the USA and told he was responsible for testing Google’s mo-
bile phone applications. He helped others inside and outside
Google to learn how to do likewise; and he ended up writing the
first book on the topic. The material is also freely available at
tr.im/mobtest He continues to work on Test Automation for mo-
bile phones and applications. He now works for eBay where his
mission is to revamp testing globally.
www.ebay.com	 www.tr.im/mobtest

André Schmidt / Enough Software
André is developing mobile applications since 2001. He joined
Enough Software in 2007 where he heads the development of
Open Source products for mobile developers and mobile applica-
tions of any kind. He is mainly developing for J2ME, Android
and BlackBerry.
www.enough.de

174 About the Authors

Michael Koch / Enough Software
Michael joined the development team at Enough Software in
2005. He has not only headed the development of numerous mo-
bile projects (mainly for Windows Mobile and BlackBerry), but
is also an expert on server technology. And of course he is an
open source enthusiast, just like everybody at Enough Software.
www.enough.de

Gary Johnson / Hyland Software, Inc.
Gary has been working as a software developer for Hyland Soft-
ware, Inc. since 2005. He works primarily in Silverlight and WPF,
and has a strong passion for UX and mobile development. As a
hobbyist, he is heavily involved in Windows Phone 7 develop-
ment.
www.hyland.com

Oliver Graf / Enough Software
Oliver is coding software for several platforms since 2000. He is
working as a multi-platform developer for Enough Software and
writes about mobile development for several magazines. Oliver
was among the first registered developers for bada. As one of
the Samsung developer advocates, he connects developers with
Samsung (and vice-versa) to improve the bada ecosystem.
www.enough.de 	www.dm-graf.de

An initiative by:

Printing sponsor:

www.enough.de www.wipconnector.com

 »Really cool.«
—— Carlos Bernardi, Team Leader Handset Embedded Programs, Gameloft

»Short and sweet! Worth to read for beginners as well as decision
makers when entering the mobile business.«

—— Ralph Buchfelder, CEO, i-locate

»Wow, what an awesome guide. It gave me an excellent overview of
the alternatives available with their pros and cons.«

—— John Klippenstein, CTO, Cascading Glass

»This guide is the best short document I have read ever about mobile
development.«

—— David Contreras Magaña, Director I+D+i, Esidea

»A knowledgeable read for anyone trying to understand the difference
between programming for different mobile platforms. Kudos to the
authors!«

—— Mob4Hire Blog

	Introduction
	An Overview Of Application Platforms
	Native Applications
	Java ME (J2ME)
	Flash
	BREW
	Widgets
	Websites
	SMS Text Messaging

	Programming Android Apps
	Prerequisites
	Implementation
	Testing
	Signing
	Distribution

	Programming bada Apps
	Getting Started
	Implementation
	Testing
	Distribution
	What Comes Next?

	Programming
Native BlackBerry Apps
	Prerequisites
	Coding Your Application
	Services
	Testing
	Porting
	Signing
	Distribution

	Programming Flash Apps
	Prerequisites
	Tips And Tricks
	Testing
	Packaging And Distribution

	Programming iOS Apps
	Prerequisites
	Implementation
	Testing
	Distribution
	Books
	Community

	Programming
J2ME / Java ME Apps
	Prerequisites
	Implementation
	Testing
	Porting
	Signing
	Distribution

	Programming MeeGo Apps
	Prerequisites
	Implementation
	Testing
	Distribution
	Learn More

	Programming Qt Apps
	Prerequisites
	Creating Your Application
	Testing
	Packaging
	Signing
	Distribution

	Programming Symbian Apps
	Prerequisites
	Carbide.c++
	Symbian/S60 Software Development Kits
	Testing
	Signing
	Distribution

	Programming webOS Apps
	Prerequisites
	Implementation
	Enyo vs Mojo
	Testing
	Distribution

	Programming
Windows Phone Apps
	Development
	Functions and Services
	Distribution
	Testing And Analytics
	Resources

	Programming
Mobile Widgets
	Widget Characteristics
	Prerequisites
	Writing Your Code
	Testing
	Signing
	Distribution

	Programming With
Cross-Platform Tools
	Limitations And Challenges Of
Cross Platform Approaches
	Cross-Platform Strategies
	Cross-Platform Solutions

	Creating Mobile Websites
	Usability In A Limited Environment
	Analyze Your Target Markets
	Content adaptation
	HTML Standards For Mobile
	Websites For Feature Phones
	Websites For Full Web Browsers
	Websites For Touch Devices
	Satisfy The Browser
	Using GPS
	Hybrid Apps
	Testing your Mobile Website
	Learn More – On The Web

	Implementing Rich Media
	Streaming vs. Local Storage
	Progressive Download
	Media Converters

	Implementing
Location-Based Services
	How To Obtain Positioning Data
	How To Obtain Mapping Services
	Implementing Location Support On Different Platforms
	Tools For LBS Apps

	Implementing Near Field Communication (NFC)
	Support For NFC
	Creating NFC Apps

	Testing Your Application
	Testability: The Biggest Single Win
	Headless Client
	Separate The Generic From Specific
	Test-Driven Development
	Physical Devices
	Remote Control
	GUI Test Automation
	Beware Of Specifics
	Crowd-Sourcing
	Web-Based Content And Applications
	Next Steps

	Monetization
	Pay Per Download
	In-App Payment
	Mobile Advertising
	Indirect Sales
	Marketing And Promotion
	Strategy
	What Can You Earn?

	Appstores
	Basic Strategies To Get High
	Multi-Store vs Single Store

	Now What – Which Environment Should I Use?
	Epilogue
	About the Authors

