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Note to Students

This book may be different than other mathematics textbooks you have used since
one of the main goals of this book is to help you to develop the ability to construct
and write mathematical proofs. So this book is not just about mathematical content
but is also about the process of doing mathematics. Along the way, you will also
learn some important mathematical topics that will help you in your future study
of mathematics.

This book is designed not to be just casually read but rather to be engaged. It
may seem like a cliché (because it is in almost every mathematics book now) but
there is truth in the statement that mathematics is not a spectator sport. To learn and
understand mathematics, you must engage in the process of doing mathematics. So
you must actively read and study the book, which means to have a pencil and paper
with you and be willing to follow along and fill in missing details. This type of
engagement is not easy and is often frustrating, but if you do so, you will learn a
great deal about mathematics and more importantly, about doing mathematics.

Recognizing that actively studying a mathematics book is often not easy, sev-
eral features of the textbook have been designed to help you become more engaged
as you study the material. Some of the features are:

e Preview Activities. With the exception of Sections 1.1 and 3.6, each section
has exactly two preview activities. Some preview activities will review prior
mathematical work that is necessary for the new section. This prior work
may contain material from previous mathematical courses or it may contain
material covered earlier in this text. Other preview activities will introduce
new concepts and definitions that will be used when that section is discussed
in class. It is very important that you work on these preview activities before
starting the rest of the section. Please note that answers to these preview
activities are not included in the text. This book is designed to be used for
a course and it is left up to the discretion of each individual instructor as to
how to distribute the answers to the preview activities.

vi



Note to Students vii

e Progress Checks. Several progress checks are included in each section.
These are either short exercises or short activities designed to help you de-
termine if you are understanding the material as you are studying the material
in the section. As such, it is important to work through these progress checks
to test your understanding, and if necessary, study the material again before
proceeding further. So itis important to attempt these progress checks before
checking the answers, which are are provided in Appendix B.

e Chapter Summaries. To assist you with studying the material in the text,
there is a summary at the end of each chapter. The summaries usually list
the important definitions introduced in the chapter and the important results
proven in the chapter. If appropriate, the summary also describes the impor-
tant proof techniques discussed in the chapter.

o Answers for Selected Exercises. Answers or hints for several exercises are
included in an Appendix C. Those exercises with an answer or a hint in the
appendix are preceded by a star (*). The main change in Version 2.0 of this
textbook from the previous versions is the addition of more exercises with
answers or hints in the appendix.

Although not part of the textbook, there are now 107 online videos with about
14 hours of content that span the first seven chapters of this book. These videos
are freely available online at Grand Valley’s Department of Mathematics YouTube
channel on this playlist:

http://gvsu.edu/s/011

These online videos were created and developed by Dr. Robert Talbert of Grand
Valley State University.

There is also a website for the textbook. For this website, go to
www.tedsundstrom.com

and click on the TEXTBOOKS button in the upper right corner.

You may find some things there that could be of help. For example, there
currently is a link to study guides for the sections of this textbook. Good luck
with your study of mathematics and please make use of the online videos and the
resources available in the textbook and at the website for the textbook. If there are
things that you think would be good additions to the book or the web site, please
feel free to send me a message at mathreasoning @ gmail.com.

Qoce


http://gvsu.edu/s/0l1
www.tedsundstrom.com

Preface

Mathematical Reasoning: Writing and Proof is designed to be a text for the first
course in the college mathematics curriculum that introduces students to the pro-
cesses of constructing and writing proofs and focuses on the formal development
of mathematics. The primary goals of the text are to help students:

e Develop logical thinking skills and to develop the ability to think more ab-
stractly in a proof oriented setting.

e Develop the ability to construct and write mathematical proofs using stan-
dard methods of mathematical proof including direct proofs, proof by con-
tradiction, mathematical induction, case analysis, and counterexamples.

e Develop the ability to read and understand written mathematical proofs.
e Develop talents for creative thinking and problem solving.

e Improve their quality of communication in mathematics. This includes im-
proving writing techniques, reading comprehension, and oral communica-
tion in mathematics.

e Better understand the nature of mathematics and its language.

Another important goal of this text is to provide students with material that will be
needed for their further study of mathematics.

This type of course has now become a standard part of the mathematics major at
many colleges and universities. It is often referred to as a “transition course” from
the calculus sequence to the upper-level courses in the major. The transition is from
the problem-solving orientation of calculus to the more abstract and theoretical
upper-level courses. This is needed today because many students complete their
study of calculus without seeing a formal proof or having constructed a proof of
their own. This is in contrast to many upper-level mathematics courses, where

viii



Preface X

the emphasis is on the formal development of abstract mathematical ideas, and
the expectations are that students will be able to read and understand proofs and be
able to construct and write coherent, understandable mathematical proofs. Students
should be able to use this text with a background of one semester of calculus.

Important Features of the Book

Following are some of the important features of this text that will help with the
transition from calculus to upper-level mathematics courses.

1.

Emphasis on Writing in Mathematics

Issues dealing with writing mathematical exposition are addressed through-
out the book. Guidelines for writing mathematical proofs are incorporated
into the book. These guidelines are introduced as needed and begin in Sec-
tion 1.2. Appendix A contains a summary of all the guidelines for writing
mathematical proofs that are introduced throughout the text. In addition, ev-
ery attempt has been made to ensure that every completed proof presented in
this text is written according to these guidelines. This provides students with
examples of well-written proofs.

One of the motivating factors for writing this book was to develop a textbook
for the course “Communicating in Mathematics” at Grand Valley State Uni-
versity. This course is part of the university’s Supplemental Writing Skills
Program, and there was no text that dealt with writing issues in mathematics
that was suitable for this course. This is why some of the writing guidelines
in the text deal with the use of I&IEXor a word processor that is capable of
producing the appropriate mathematical symbols and equations. However,
the writing guidelines can easily be implemented for courses where students
do not have access to this type of word processing.

Instruction in the Process of Constructing Proofs

One of the primary goals of this book is to develop students’ abilities to
construct mathematical proofs. Another goal is to develop their abilities to
write the proof in a coherent manner that conveys an understanding of the
proof to the reader. These are two distinct skills.

Instruction on how to write proofs begins in Section 1.2 and is developed fur-
ther in Chapter 3. In addition, Chapter 4 is devoted to developing students’
abilities to construct proofs using mathematical induction.
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Students are introduced to a method to organize their thought processes when
attempting to construct a proof that uses a so-called know-show table. (See
Section 1.2 and Section 3.1.) Students use this table to work backward from
what it is they are trying to prove while at the same time working forward
from the assumptions of the problem. The know-show tables are used quite
extensively in Chapters 1 and 3. However, the explicit use of know-show ta-
bles is gradually reduced and these tables are rarely used in the later chapters.
One reason for this is that these tables may work well when there appears
to be only one way of proving a certain result. As the proofs become more
complicated or other methods of proof (such as proofs using cases) are used,
these know-show tables become less useful.

So the know-show tables are not to be considered an absolute necessity in
using the text. However, they are useful for students beginning to learn how
to construct and write proofs. They provide a convenient way for students to
organize their work. More importantly, they introduce students to a way of
thinking about a problem. Instead of immediately trying to write a complete
proof, the know-show table forces students to stop, think, and ask questions
such as

Just exactly what is it that I am trying to prove?

How can I prove this?

What methods do I have that may allow me to prove this?

What are the assumptions?

How can I use these assumptions to prove the result?

Being able to ask these questions is a big step in constructing a proof. The
next task is to answer the questions and to use those answers to construct a
proof.

3. Emphasis on Active Learning

One of the underlying premises of this text is that the best way to learn and
understand mathematics is to be actively involved in the learning process.
However, it is unlikely that students will learn all the mathematics in a given
course on their own. Students actively involved in learning mathematics
need appropriate materials that will provide guidance and support in their
learning of mathematics. There are several ways this text promotes active
learning.

ooce
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e With the exception of Sections 1.1 and 3.6, each section has exactly

two preview activities. These preview activities should be completed
by the students prior to the classroom discussion of the section. The
purpose of the preview activities is to prepare students to participate
in the classroom discussion of the section. Some preview activities
will review prior mathematical work that is necessary for the new sec-
tion. This prior work may contain material from previous mathemati-
cal courses or it may contain material covered earlier in this text. Other
preview activities will introduce new concepts and definitions that will
be used when that section is discussed in class.

Several progress checks are included in each section. These are either
short exercises or short activities designed to help the students deter-
mine if they are understanding the material as it is presented. Some
progress checks are also intended to prepare the student for the next
topic in the section. Answers to the progress checks are provided in
Appendix B.

Explorations and activities are included at the end of the exercises of
each section. These activities can be done individually or in a collab-
orative learning setting, where students work in groups to brainstorm,
make conjectures, test each others’ ideas, reach consensus, and, it is
hoped, develop sound mathematical arguments to support their work.
These activities can also be assigned as homework in addition to the
other exercises at the end of each section.

4. Other Important Features of the Book

e Several sections of the text include exercises called Evaluation of Proofs.

(The first such exercise appears in Section 3.1.) For these exercises,
there is a proposed proof of a proposition. However, the proposition
may be true or may be false. If a propositionis false, the proposed proof
is, of course, incorrect, and the student is asked to find the error in the
proof and then provide a counterexample showing that the proposition
is false. However, if the proposition is true, the proof may be incorrect
or not well written. In keeping with the emphasis on writing, students
are then asked to correct the proof and/or provide a well-written proof
according to the guidelines established in the book.

To assist students with studying the material in the text, there is a sum-
mary at the end of each chapter. The summaries usually list the im-
portant definitions introduced in the chapter and the important results

Qoce



Xii Preface

proven in the chapter. If appropriate, the summary also describes the
important proof techniques discussed in the chapter.

e Answers or hints for several exercises are included in an appendix. This
was done in response to suggestions from many students at Grand Val-
ley and some students from other institutions who were using the book.
In addition, those exercises with an answer or a hint in the appendix are
preceded by a star (*).

Content and Organization

Mathematical content is needed as a vehicle for learning how to construct and write
proofs. The mathematical content for this text is drawn primarily from elementary
number theory, including congruence arithmetic; elementary set theory; functions,
including injections, surjections, and the inverse of a function; relations and equiv-
alence relations; further topics in number theory such as greatest common divisors
and prime factorizations; and cardinality of sets, including countable and uncount-
able sets. This material was chosen because it can be used to illustrate a broad
range of proof techniques and it is needed as a prerequisite for many upper-level
mathematics courses.

The chapters in the text can roughly be divided into the following classes:

e Constructing and Writing Proofs: Chapters 1, 3, and 4
e Logic: Chapter 2

e Mathematical Content: Chapters 5, 6, 7, 8, and 9

The first chapter sets the stage for the rest of the book. It introduces students to
the use of conditional statements in mathematics, begins instruction in the process
of constructing a direct proof of a conditional statement, and introduces many of
the writing guidelines that will be used throughout the rest of the book. This is not
meant to be a thorough introduction to methods of proof. Before this is done, it is
necessary to introduce the students to the parts of logic that are needed to aid in the
construction of proofs. This is done in Chapter 2.

Students need to learn some logic and gain experience in the traditional lan-
guage and proof methods used in mathematics. Since this is a text that deals with
constructing and writing mathematical proofs, the logic that is presented in Chap-
ter 2 is intended to aid in the construction of proofs. The goals are to provide

ooce



Preface Xiii

students with a thorough understanding of conditional statements, quantifiers, and
logical equivalencies. Emphasis is placed on writing correct and useful negations
of statements, especially those involving quantifiers. The logical equivalencies that
are presented provide the logical basis for some of the standard proof techniques,
such as proof by contrapositive, proof by contradiction, and proof using cases.

The standard methods for mathematical proofs are discussed in detail in Chap-
ter 3. The mathematical content that is introduced to illustrate these proof methods
includes some elementary number theory, including congruence arithmetic. These
concepts are used consistently throughout the text as a way to demonstrate ideas in
direct proof, proof by contrapositive, proof by contradiction, proof using cases, and
proofs using mathematical induction. This gives students a strong introduction to
important mathematical ideas while providing the instructor a consistent reference
point and an example of how mathematical notation can greatly simplify a concept.

The three sections of Chapter 4 are devoted to proofs using mathematical in-
duction. Again, the emphasis is not only on understanding mathematical induction
but also on developing the ability to construct and write proofs that use mathemat-
ical induction.

The last five chapters are considered “mathematical content” chapters. Con-
cepts of set theory are introduced in Chapter 5, and the methods of proof studied
in Chapter 3 are used to prove results about sets and operations on sets. The idea
of an “element-chasing proof™ is also introduced in Section 5.2.

Chapter 6 provides a thorough study of functions. Functions are studied be-
fore relations in order to begin with the more specific notion with which students
have some familiarity and move toward the more general notion of a relation. The
concept of a function is reviewed but with attention paid to being precise with
terminology and is then extended to the general definition of a function. Various
proof techniques are employed in the study of injections, surjections, composition
of functions, inverses of functions, and functions acting on sets.

Chapter 7 introduces the concepts of relations and equivalence relations. Sec-
tion 7.4 is included to provide a link between the concept of an equivalence relation
and the number theory that has been discussed throughout the text.

Chapter 8 continues the study of number theory. The highlights include prob-
lems dealing with greatest common divisors, prime numbers, the Fundamental
Theorem of Arithmetic, and linear Diophantine equations.

Finally, Chapter 9 deals with further topics in set theory, focusing on cardinal-
ity, finite sets, countable sets, and uncountable sets.

Qoce



X1V Preface

Designing a Course

Most instructors who use this text will design a course specifically suited to their
needs and the needs of their institution. However, a standard one-semester course
in constructing and writing proofs could cover the first six chapters of the text and
at least one of Chapter 7, Chapter 8, or Chapter 9. Please note that Sections 4.3,
5.5, 6.6, 7.4, and 8.3 can be considered optional sections. These are interesting
sections that contain important material, but the content of these sections is not
essential to study the material in the rest of the book.

Supplementary Materials for the Instructor

Instructors for a course may obtain pdf files that contain the solutions for the pre-
view activities and the solutions for the exercises.

To obtain these materials, send an email message to the author at
mathreasoning @ gmail.com, and please include the name of your institution (school,
college, or university), the course for which you are considering using the text, and
a link to a website that can be used to verify your position at your institution.

Although not part of the textbook, there are now 107 online videos with about
14 hours of content that span the first seven chapters of this book. These videos
are freely available online at Grand Valley’s Department of Mathematics YouTube
channel on this playlist:

http://gvsu.edu/s/011

These online videos were created and developed by Dr. Robert Talbert of Grand
Valley State University.

There is also a website for the textbook. For this website, go to
www.tedsundstrom.com

and click on the TEXTBOOKS button in the upper right corner.

You may find some things there that could be of help to your students. For
example, there currently is a link to study guides for most of the sections of this
textbook. If there are things that you think would be good additions to the book or
the web site, please feel free to send me a message at mathreasoning @ gmail.com.

ooce
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Chapter 1

Introduction to
Writing Proofs in Mathematics

1.1 Statements and Conditional Statements

Much of our work in mathematics deals with statements. In mathematics, a state-
ment is a declarative sentence that is either true or false but not both. A statement
is sometimes called a proposition. The key is that there must be no ambiguity. To
be a statement, a sentence must be true or false, and it cannot be both. So a sen-
tence such as “The sky is beautiful” is not a statement since whether the sentence
is true or not is a matter of opinion. A question such as “Is it raining?” is not a
statement because it is a question and is not declaring or asserting that something
is true.

Some sentences that are mathematical in nature often are not statements be-
cause we may not know precisely what a variable represents. For example, the
equation 2x + 5 = 10 is not a statement since we do not know what x represents.
If we substitute a specific value for x (such as x = 3), then the resulting equation,
2-345 = 10 is a statement (which is a false statement). Following are some more
examples:

e There exists a real number x such that 2x + 5 = 10.
This is a statement because either such a real number exists or such a real
number does not exist. In this case, this is a true statement since such a real
number does exist, namely x = 2.5.
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5
For each real number x, 2x +5 =2 (x + 5)

This is a statement since either the sentence 2x + 5 = 2| x + 5 is true

when any real number is substituted for x (in which case, the statement is
true) or there is at least one real number that can be substituted for x and
produce a false statement (in which case, the statement is false). In this case,
the given statement is true.

Solve the equation x2 — 7x + 10 = 0.
This is not a statement since it is a directive. It does not assert that something
is true.

(@ + b)?> = a? + b? is not a statement since it is not known what ¢ and b
represent. However, the sentence, “There exist real numbers a and b such
that (@ + b)? = a? + b?” is a statement. In fact, this is a true statement since
there are such integers. For example, if ¢ = 1 and b = 0, then (a + b)? =
a? + b2,

Compare the statement in the previous item to the statement, “For all real
numbers a and b, (a + b)?> = a® + b2 This is a false statement since there
are values for a and b for which (a + b)? # a® + b2. For example, ifa = 2
and b = 3, then (a + b)? = 52 = 25and a? + b? = 22 4 32 = 13.

Progress Check 1.1 (Statements)

Which of the following sentences are statements? Do not worry about determining
whether a statement is true or false; just determine whether each sentence is a
statement or not.

1. 3+4=28. 3. (x—1)=+V/x+11
2. 2-748 =22 4. 2x + 5y =17.
5. There are integers x and y such that 2x 4 5y = 7.

8.
9.

There are integers x and y such that 23x + 37y = 52.

. Given a line L and a point P not on that line and in the same plane, there is

a unique line in that plane through P that does not intersect L.
(a+b)*> =a®+ 3a2b + 3ab? + b>.

(a + b)> = a® + 3a%b + 3ab? + b3 for all real numbers a and b.
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10. The derivative of the sine function is the cosine function.
11. Does the equation 3x2 — 5x — 7 = 0 have two real number solutions?

12. If ABC is a right triangle with right angle at vertex B, and if D is the
midpoint of the hypotenuse, then the line segment connecting vertex B to D
is half the length of the hypotenuse.

13. There do not exist three integers x, y, and z such that x> + y3 = z3.

How Do We Decide If a Statement Is True or False?

In mathematics, we often establish that a statement is true by writing a mathemat-
ical proof. To establish that a statement is false, we often find a so-called coun-
terexample. (These ideas will be explored later in this chapter.) So mathematicians
must be able to discover and construct proofs. In addition, once the discovery has
been made, the mathematician must be able to communicate this discovery to oth-
ers who speak the language of mathematics. We will be dealing with these ideas
throughout the text.

For now, we want to focus on what happens before we start a proof. One thing
that mathematicians often do is to make a conjecture beforehand as to whether
the statement is true or false. This is often done through exploration. The role of
exploration in mathematics is often difficult because the goal is not to find a specific
answer but simply to investigate. Following are some techniques of exploration that
might be helpful.

Techniques of Exploration

e Guesswork and conjectures. Formulate and write down questions and con-
jectures. When we make a guess in mathematics, we usually call it a conjec-
ture.

e Examples. Constructing appropriate examples is extremely important.
Exploration often requires looking at lots of examples. In this way, we can
gather information that provides evidence that a statement is true, or we
might find an example that shows the statement is false. This type of ex-
ample is called a counterexample.

For example, if someone makes the conjecture that sin(2x) = 2 sin(x), for
all real numbers x, we can test this conjecture by substituting specific values
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for x. One way to do this is to choose values of x for which sin(x) is known.

_ T
Using x = e we see that

sin(2 (%)) = sin (%) =1, and

2sin(%) :2(? = V2.

Since 1 # +/2, these calculations show that this conjecture is false. How-
ever, if we do not find a counterexample for a conjecture, we usually cannot
claim the conjecture is true. The best we can say is that our examples indi-
cate the conjecture is true. As an example, consider the conjecture that

If x and y are odd integers, then x 4 y is an even integer.

We can do lots of calculations, suchas 3+7 = 10and 5+ 11 = 16, and find
that every time we add two odd integers, the sum is an even integer. However,
it is not possible to test every pair of odd integers, and so we can only say
that the conjecture appears to be true. (We will prove that this statement is
true in the next section.)

e Use of prior knowledge. This also is very important. We cannot start from
square one every time we explore a statement. We must make use of our ac-
quired mathematical knowledge. For the conjecture that sin (2x) = 2 sin(x),
for all real numbers x, we might recall that there are trigonometric identities
called “double angle identities.” We may even remember the correct identity
for sin (2x), but if we do not, we can always look it up. We should recall (or
find) that

for all real numbers x, sin(2x) = 2 sin(x)cos(x).

We could use this identity to argue that the conjecture “for all real numbers
x, sin(2x) = 2sin(x)” is false, but if we do, it is still a good idea to give a
specific counterexample as we did before.

e Cooperation and brainstorming. Working together is often more fruitful
than working alone. When we work with someone else, we can compare
notes and articulate our ideas. Thinking out loud is often a useful brain-
storming method that helps generate new ideas.

ooce
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Progress Check 1.2 (Explorations)
Use the techniques of exploration to investigate each of the following statements.
Can you make a conjecture as to whether the statement is true or false? Can you
determine whether it is true or false?

1. (a + b)*> = a® + b2, for all real numbers a and b.

. There are integers x and y such that 2x 4 5y = 41.

2

2
3. If x is an even integer, then x~ is an even integer.
4

. If x and y are odd integers, then x - y is an odd integer.

Conditional Statements

One of the most frequently used types of statements in mathematics is the so-called
conditional statement. Given statements P and (, a statement of the form “If P
then Q” is called a conditional statement. It seems reasonable that the truth value
(true or false) of the conditional statement “If P then Q” depends on the truth val-
ues of P and Q. The statement “If P then O means that Q must be true whenever
P is true. The statement P is called the hypothesis of the conditional statement,
and the statement Q is called the conclusion of the conditional statement. Since
conditional statements are probably the most important type of statement in math-
ematics, we give a more formal definition.

Definition. A conditional statement is a statement that can be written in
the form “If P then Q,” where P and Q are sentences. For this conditional
statement, P is called the hypothesis and Q is called the conclusion.

Intuitively, “If P then Q” means that Q0 must be true whenever P is true.
Because conditional statements are used so often, a symbolic shorthand notation is
used to represent the conditional statement “If P then Q.” We will use the notation
P — Q to represent “If P then Q. When P and Q are statements, it seems
reasonable that the truth value (true or false) of the conditional statement P — Q
depends on the truth values of P and Q. There are four cases to consider:

e P istrue and Q is true. e P isfalse and Q is true.

e P istrue and Q is false. e P isfalse and Q is false.
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The conditional statement P — Q means that Q is true whenever P is true.
It says nothing about the truth value of Q when P is false. Using this as a guide,
we define the conditional statement P — Q to be false only when P is true and
Q is false, that is, only when the hypothesis is true and the conclusion is false. In
all other cases, P — Q is true. This is summarized in Table 1.1, which is called
a truth table for the conditional statement P — Q. (In Table 1.1, T stands for
“true” and F stands for “false.”)

P 0 P -0
T T T
T F F
F T T
F F T

Table 1.1: Truth Table for P — Q

The important thing to remember is that the conditional statement P — Q
has its own truth value. It is either true or false (and not both). Its truth value
depends on the truth values for P and Q, but some find it a bit puzzling that the
conditional statement is considered to be true when the hypothesis P is false. We
will provide a justification for this through the use of an example.

Example 1.3 Suppose that I say
“If it is not raining, then Daisy is riding her bike.”

We can represent this conditional statement as P — Q where P is the statement,
“It is not raining” and Q 1is the statement, “Daisy is riding her bike.”

Although it is not a perfect analogy, think of the statement P — Q as being
false to mean that I lied and think of the statement P — Q as being true to mean
that I did not lie. We will now check the truth value of P — Q based on the truth
values of P and Q.

1. Suppose that both P and Q are true. That is, it is not raining and Daisy is
riding her bike. In this case, it seems reasonable to say that I told the truth
and that P — Q is true.

2. Suppose that P is true and Q is false or that it is not raining and Daisy is not
riding her bike. It would appear that by making the statement, “If it is not
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raining, then Daisy is riding her bike,” that I have not told the truth. So in
this case, the statement P — Q is false.

3. Now suppose that P is false and Q is true or that it is raining and Daisy
is riding her bike. Did I make a false statement by stating that if it is not
raining, then Daisy is riding her bike? The key is that I did not make any
statement about what would happen if it was raining, and so I did not tell
a lie. So we consider the conditional statement, “If it is not raining, then
Daisy is riding her bike,” to be true in the case where it is raining and Daisy
is riding her bike.

4. Finally, suppose that both P and Q are false. That is, it is raining and Daisy
is not riding her bike. As in the previous situation, since my statement was
P — @O, I made no claim about what would happen if it was raining, and so
I did not tell a lie. So the statement P — Q cannot be false in this case and
so we consider it to be true.

Progress Check 1.4 (Explorations with Conditional Statements)
1. Consider the following sentence:
If x is a positive real number, then x? + 8x is a positive real number.

Although the hypothesis and conclusion of this conditional sentence are not
statements, the conditional sentence itself can be considered to be a state-
ment as long as we know what possible numbers may be used for the vari-
able x. From the context of this sentence, it seems that we can substitute any
positive real number for x. We can also substitute O for x or a negative real
number for x provided that we are willing to work with a false hypothesis
in the conditional statement. (In Chapter 2, we will learn how to be more
careful and precise with these types of conditional statements.)

(a) Notice that if x = —3, then x> 4+ 8x = —15, which is negative. Does
this mean that the given conditional statement is false?

(b) Notice that if x = 4, then x> + 8x = 48, which is positive. Does this
mean that the given conditional statement is true?

(¢) Do you think this conditional statement is true or false? Record the
results for at least five different examples where the hypothesis of this
conditional statement is true.
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2. “If n is a positive integer, then (n2 —n +41) is a prime number.” (Remember
that a prime number is a positive integer greater than 1 whose only positive
factors are 1 and itself.)

To explore whether or not this statement is true, try using (and recording
your results) forn = 1, n = 2,n =3, n = 4,n = 5, and n = 10. Then
record the results for at least four other values of n. Does this conditional
statement appear to be true?

Further Remarks about Conditional Statements

1. The conventions for the truth value of conditional statements may seem a bit
strange, especially the fact that the conditional statement is true when the
hypothesis of the conditional statement is false. The following example is
meant to show that this makes sense.

Suppose that Ed has exactly $52 in his wallet. The following four state-
ments will use the four possible truth combinations for the hypothesis and
conclusion of a conditional statement.

e If Ed has exactly $52 in his wallet, then he has $20 in his wallet. This
is a true statement. Notice that both the hypothesis and the conclusion
are true.

e If Ed has exactly $52 in his wallet, then he has $100 in his wallet. This
statement is false. Notice that the hypothesis is true and the conclusion
is false.

e If Ed has $100 in his wallet, then he has at least $50 in his wallet. This
statement is true regardless of how much money he has in his wallet.
In this case, the hypothesis is false and the conclusion is true.

e If Ed has $100 in his wallet, then he has at least $80 in his wallet. This
statement is true regardless of how much money he has in his wallet.
In this case, the hypothesis is false and the conclusion is false.

This is admittedly a contrived example but it does illustrate that the conven-
tions for the truth value of a conditional statement make sense. The message
is that in order to be complete in mathematics, we need to have conventions
about when a conditional statement is true and when it is false.

2. The fact that there is only one case when a conditional statement is false often
provides a method to show that a given conditional statement is false. In
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Progress Check 1.4, you were asked if you thought the following conditional
statement was true or false.

If n is a positive integer, then (n2 —n+ 41) is a prime number.

Perhaps for all of the values you tried for 7, (n2 —n+ 41) turned out to be
a prime number. However, if we try n = 41, we get

n?—n+41 =412 —41+ 41
n? —n +41 = 412,

So in the case where n = 41, the hypothesis is true (41 is a positive integer)
and the conclusion is false (412 is not prirne). Therefore, 41 is a counterex-
ample for this conjecture and the conditional statement

“If n is a positive integer, then (n2 —n+ 41) is a prime number”

is false. There are other counterexamples (such as n = 42, n = 45, and
n = 50), but only one counterexample is needed to prove that the statement
is false.

3. Although one example can be used to prove that a conditional statement is
false, in most cases, we cannot use examples to prove that a conditional
statement is true. For example, in Progress Check 1.4, we substituted val-
ues for x for the conditional statement “If x is a positive real number, then
x2 + 8x is a positive real number.” For every positive real number used
for x, we saw that x2 + 8x was positive. However, this does not prove the
conditional statement to be true because it is impossible to substitute every
positive real number for x. So, although we may believe this statement is
true, to be able to conclude it is true, we need to write a mathematical proof.
Methods of proof will be discussed in Section 1.2 and Chapter 3.

Progress Check 1.5 (Working with a Conditional Statement)

Sometimes, we must be aware of conventions that are being used. In most calculus
texts, the convention is that any function has a domain and a range that are subsets
of the real numbers. In addition, when we say something like “the function f is
differentiable at a”, it is understood that a is a real number. With these conventions,
the following statement is a true statement, which is proven in many calculus texts.

If the function f is differentiable at a, then the function f is continuous at a.

Qoce
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Using only this true statement, is it possible to make a conclusion about the func-
tion in each of the following cases?

1. It is known that the function f, where f(x) = sinx, is differentiable at 0.

2. It is known that the function f, where f(x) = J/x, is not differentiable at
0.

3. It is known that the function f, where f(x) = |x|, is continuous at 0.

. . X| . .
4. It is known that the function f', where f(x) = u is not continuous at 0.
X

Closure Properties of Number Systems

The primary number system used in algebra and calculus is the real number sys-
tem. We usually use the symbol R to stand for the set of all real numbers. The real
numbers consist of the rational numbers and the irrational numbers. The rational
numbers are those real numbers that can be written as a quotient of two integers
(with a nonzero denominator), and the irrational numbers are those real numbers
that cannot be written as a quotient of two integers. That is, a rational number can
be written in the form of a fraction, and an irrational number cannot be written in
the form of a fraction. Some common irrational numbers are \/5, 7w, and e. We
usually use the symbol Q) to represent the set of all rational numbers. (The letter
Q is used because rational numbers are quotients of integers.) There is no standard
symbol for the set of all irrational numbers.

Perhaps the most basic number system used in mathematics is the set of nat-
ural numbers. The natural numbers consist of the positive whole numbers such
as 1, 2, 3, 107, and 203. We will use the symbol N to stand for the set of natural
numbers. Another basic number system that we will be working with is the set of
integers. The integers consist of zero, the natural numbers, and the negatives of
the natural numbers. If 7 is an integer, we can write n = % So each integer is a

rational number and hence also a real number.

We will use the letter Z to stand for the set of integers. (The letter Z is from the
German word, Zahlen, for numbers.) Three of the basic properties of the integers
are that the set Z is closed under addition, the set Z is closed under multiplica-
tion, and the set of integers is closed under subtraction. This means that

e If x and y are integers, then x + y is an integer;
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e If x and y are integers, then x - y is an integer; and

e If x and y are integers, then x — y is an integer.

Notice that these so-called closure properties are defined in terms of conditional
statements. This means that if we can find one instance where the hypothesisis true
and the conclusion is false, then the conditional statement is false.

Example 1.6 (Closure)

1. In order for the set of natural numbers to be closed under subtraction, the
following conditional statement would have to be true: If x and y are natural
numbers, then x — y is a natural number. However, since 5 and 8 are nat-

ural numbers, 5 — 8 = —3, which is not a natural number, this conditional
statement is false. Therefore, the set of natural numbers is not closed under
subtraction.

2. We can use the rules for multiplying fractions and the closure rules for the

integers to show that the rational numbers are closed under multiplication. If
a c _ .
— and 7 are rational numbers (so a, b, ¢, and d are integers and b and d are

b

not zero), then
a c ac

b'd bd
Since the integers are closed under multiplication, we know that ac and bd
are integers and since » # 0 and d # 0, bd # 0. Hence, % is a rational

number and this shows that the rational numbers are closed under multipli-
cation.

Progress Check 1.7 (Closure Properties)
Answer each of the following questions.

1. Is the set of rational numbers closed under addition? Explain.
2. Is the set of integers closed under division? Explain.

3. Is the set of rational numbers closed under subtraction? Explain.
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Exercises for Section 1.1

* 1. Which of the following sentences are statements?

(a) 32 +4% =52,

(b) a® +b% = 2.

(¢) There exist integers a, b, and ¢ such that a? = b? 4 2.
(d) If x2 = 4, thenx = 2.

(e) For each real number x, if x2 = 4, then x = 2.

(f) For each real number 7, sin?  + cos? ¢ = 1.

(g) sinx < sin(%).

(h) If n is a prime number, then n? has three positive factors.
() 1+ tan® 6 = sec? 4.

(j) Every rectangle is a parallelogram.

(k) Every even natural number greater than or equal to 4 is the sum of two

prime numbers.

* 2. Identify the hypothesis and the conclusion for each of the following condi-
tional statements.
(a) If n is a prime number, then n? has three positive factors.

(b) If a is an irrational number and b is an irrational number, then a - b is
an irrational number.

(¢) If p is a prime number, then p = 2 or p is an odd number.
(d) If p is a prime number and p # 2, then p is an odd number.

(e) If p # 2 and p is an even number, then p is not prime.

* 3. Determine whether each of the following conditional statements is true or

false.
(a) If 10 < 7, then 3 = 4. (¢) If 10 <7,then3 + 5 = 8.
(b) If 7 < 10, then 3 = 4. (d) If 7 < 10,then 3 + 5 = 8.

* 4. Determine the conditions under which each of the following conditional sen-
tences will be a true statement.
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(@) Ifa+2=5,then8 < 5. (b) If 5 < 8,thena +2 = 5.

5. Let P be the statement “Student X passed every assignment in Calculus 1,”
and let Q be the statement “Student X received a grade of C or better in
Calculus 1.”

(a) What does it mean for P to be true? What does it mean for Q to be
true?

(b) Suppose that Student X passed every assignment in Calculus I and
received a grade of B—, and that the instructor made the statement
P — Q. Would you say that the instructor lied or told the truth?

(c) Suppose that Student X passed every assignment in Calculus I and
received a grade of C—, and that the instructor made the statement
P — Q. Would you say that the instructor lied or told the truth?

(d) Now suppose that Student X did not pass two assignments in Calculus
I and received a grade of D, and that the instructor made the statement
P — Q. Would you say that the instructor lied or told the truth?

(e) How are Parts (5b), (5c), and (5d) related to the truth table for P — Q?

6. Following is a statement of a theorem which can be proven using calculus or
precalculus mathematics. For this theorem, a, b, and ¢ are real numbers.
Theorem. If f is a quadratic function of the form
f (x) = ax? 4+ bx + ¢ and a < 0, then the function f has a
—b
2a°
Using only this theorem, what can be concluded about the functions given
by the following formulas?

maximum value when x =

*(a) g(x):—8x2+5x—2 (d) J(X) :—%X2+210
N 1

(b) /(x) = —3x* + 3x © f(x) = —4x2—3x+7
*(e) k(x) =8x2—-5x—7 ® F(x)=—x*+x349

7. Following is a statement of a theorem which can be proven using the quadratic
formula. For this theorem, a, b, and ¢ are real numbers.
Theorem If f is a quadratic function of the form
f (x) = ax? + bx + ¢ and ac < 0, then the function f has two
x-intercepts.
Using only this theorem, what can be concluded about the functions given
by the following formulas?
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(@ g(x) = —-8x24+5x—-2 @ j(x) = _%xz 1210
1

(B) h(x) = —3x2 + 3x © f(x) = —4x%—3x+7

(€) k(x) =8x2—-5x—7 ) F(x)=—x*+x3+9

8. Following is a statement of a theorem about certain cubic equations. For this
theorem, b represents a real number.

Theorem A. If f is a cubic function of the form f(x) = x> — x + b and
b > 1, then the function f has exactly one x-intercept.

Following is another theorem about x-intercepts of functions:

Theorem B. If f and g are functions with g(x) = k - f(x), where k is a
nonzero real number, then f and g have exactly the same x-intercepts.

Using only these two theorems and some simple algebraic manipulations,
what can be concluded about the functions given by the following formulas?

@ f(x)=x3-x+7 d) k(x) =2x3+2x +3
b)) gx)=x>+x+7 (e) r(x) =x*—x+11
(€ h(x) =—x>+x-5 ) F(x)=2x>—-2x+7

*9. (a) Is the set of natural numbers closed under division?
(b) Is the set of rational numbers closed under division?
(¢) Is the set of nonzero rational numbers closed under division?
(d) Is the set of positive rational numbers closed under division?
(e) Is the set of positive real numbers closed under subtraction?
() Is the set of negative rational numbers closed under division?

(g) Is the set of negative integers closed under addition?

Explorations and Activities

10. Exploring Propositions. In Progress Check 1.2, we used exploration to
show that certain statements were false and to make conjectures that certain
statements were true. We can also use exploration to formulate a conjecture
that we believe to be true. For example, if we calculate successive powers of
2 (21, 2223 024 25 . ) and examine the units digits of these numbers, we
could make the following conjectures (among others):
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e If n is a natural number, then the units digit of 2" must be 2, 4, 6, or 8.

e The units digits of the successive powers of 2 repeat according to the
pattern “2, 4, 8,6.”

(a) Is it possible to formulate a conjecture about the units digits of succes-
sive powers of 4 (41, 4243 4% 45, ... )? If so, formulate at least one
conjecture.

(b) Is it possible to formulate a conjecture about the units digit of numbers
of the form 7% — 2", where n is a natural number? If so, formulate a
conjecture in the form of a conditional statement in the form “If n is a
natural number, then ....”

(¢) Let f (x) = e?*. Determine the first eight derivatives of this function.
What do you observe? Formulate a conjecture that appears to be true.
The conjecture should be written as a conditional statement in the form,
“If n is a natural number, then ... .”

1.2 Constructing Direct Proofs

Preview Activity 1 (Definition of Even and Odd Integers)

Definitions play a very important role in mathematics. A direct proof of a proposi-
tion in mathematics is often a demonstration that the proposition follows logically
from certain definitions and previously proven propositions. A definition is an
agreement that a particular word or phrase will stand for some object, property, or
other concept that we expect to refer to often. In many elementary proofs, the an-
swer to the question, “How do we prove a certain proposition?”, is often answered
by means of a definition. For example, in Progress Check 1.2 on page 35, all of the
examples should have indicated that the following conditional statement is true:

If x and y are odd integers, then x - y is an odd integer.
In order to construct a mathematical proof of this conditional statement, we need

a precise definition of what it means to say that an integer is an even integer and
what it means to say that an integer is an odd integer.

Definition. An integer a is an even integer provided that there exists an
integer n such that a = 2n. An integer a is an odd integer provided there
exists an integer n such thata = 2n + 1.
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Using this definition, we can conclude that the integer 16 is an even integer since
16 = 2 - 8 and 8 is an integer. By answering the following questions, you should
obtain a better understanding of these definitions. These questions are not here just
to have questions in the textbook. Constructing and answering such questions is
a way in which many mathematicians will try to gain a better understanding of a
definition.

1. Use the definitions given above to
(a) Explain why 28, —42, 24, and 0 are even integers.
(b) Explain why 51, —11, 1, and —1 are odd integers.

It is important to realize that mathematical definitions are not made randomly. In
most cases, they are motivated by a mathematical concept that occurs frequently.

2. Are the definitions of even integers and odd integers consistent with your
previous ideas about even and odd integers?

Preview Activity 2 (Thinking about a Proof)
Consider the following proposition:

Proposition. If x and y are odd integers, then x - y is an odd integer.

Think about how you might go about proving this proposition. A direct proof of
a conditional statement is a demonstration that the conclusion of the conditional
statement follows logically from the hypothesis of the conditional statement. Defi-
nitions and previously proven propositions are used to justify each step in the proof.
To help get started in proving this proposition, answer the following questions:

1. The proposition is a conditional statement. What is the hypothesis of this
conditional statement? What is the conclusion of this conditional statement?

2. If x =2and y = 3, thenx -y = 6, and 6 is an even integer. Does this
example prove that the proposition is false? Explain.

3. If x = 5and y = 3, then x - y = 15. Does this example prove that the
proposition is true? Explain.

In order to prove this proposition, we need to prove that whenever both x and y are
odd integers, x - y is an odd integer. Since we cannot explore all possible pairs of
integer values for x and y, we will use the definition of an odd integer to help us
construct a proof.
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4. To start a proof of this proposition, we will assume that the hypothesis of the
conditional statement is true. So in this case, we assume that both x and y
are odd integers. We can then use the definition of an odd integer to conclude
that there exists an integer m such that x = 2m 4+ 1. Now use the definition
of an odd integer to make a conclusion about the integer y.

Note: The definition of an odd integer says that a certain other integer exists.
This definition may be applied to both x and y. However, do not use the
same letter in both cases. To do so would imply that x = y and we have not
made that assumption. To be more specific,if x =2m+1and y = 2m 41,
then x = y.

5. We need to prove that if the hypothesis is true, then the conclusion is true.
So, in this case, we need to prove that x - y is an odd integer. At this point,
we usually ask ourselves a so-called backward question. In this case, we
ask, “Under what conditions can we conclude that x - y is an odd integer?”
Use the definition of an odd integer to answer this question.

Properties of Number Systems

At the end of Section 1.1, we introduced notations for the standard number systems
we use in mathematics. We also discussed some closure properties of the standard
number systems. For this text, it is assumed that the reader is familiar with these
closure properties and the basic rules of algebra that apply to all real numbers. That
is, it is assumed the reader is familiar with the properties of the real numbers shown
in Table 1.2.

Constructing a Proof of a Conditional Statement

In order to prove that a conditional statement P — Q is true, we only need to
prove that Q is true whenever P is true. This is because the conditional statement
is true whenever the hypothesisis false. So in a direct proof of P — Q, we assume
that P is true, and using this assumption, we proceed through a logical sequence
of steps to arrive at the conclusion that Q is true.

Unfortunately, it is often not easy to discover how to start this logical sequence
of steps or how to get to the conclusion that Q is true. We will describe a method
of exploration that often can help in discovering the steps of a proof. This method
will involve working forward from the hypothesis, P, and backward from the con-
clusion, Q. We will use a device called the “know-show table” to help organize
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For all real numbers x, y, and z

Identity Properties Xx+0=xandx-1=x

1
Inverse Properties X+ (—=x)=0andifx # 0,thenx - — = 1.

X
Commutative 4y =y +xand _
Properties rry=ywL Ay =X
Associative
Propertios (43 +z=x+(+2)and (xy)z = x(yz)
Distributive x(y+z)=xy+xzand(y +2z)x = yx + zx
Properties Y =X Y =Y

Table 1.2: Properties of the Real Numbers

our thoughts and the steps of the proof. This will be illustrated with the proposition
from Preview Activity 2.

Proposition. If x and y are odd integers, then x - y is an odd integer.

The first step is to identify the hypothesis, P, and the conclusion,Q, of the condi-
tional statement. In this case, we have the following:

P: x and y are odd integers. Q: x -y is an odd integer.

We now treat P as what we know (we have assumed it to be true) and treat Q as
what we want to show (that is, the goal). So we organize this by using P as the first
step in the know portion of the table and Q as the last step in the show portion of
the table. We will put the know portion of the table at the top and the show portion
of the table at the bottom.

Step Know Reason

P x and y are odd integers. Hypothesis
P1

01

0 X - y is an odd integer. ?

Step Show Reason

We have not yet filled in the reason for the last step because we do not yet know
how we will reach the goal. The idea now is to ask ourselves questions about what
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we know and what we are trying to prove. We usually start with the conclusion
that we are trying to prove by asking a so-called backward question. The basic
form of the question is, “Under what conditions can we conclude that Q is true?”
How we ask the question is crucial since we must be able to answer it. We should
first try to ask and answer the question in an abstract manner and then apply it to
the particular form of statement Q.

In this case, we are trying to prove that some integer is an odd integer. So our
backward question could be, “How do we prove that an integer is odd?” At this
time, the only way we have of answering this question is to use the definition of an
odd integer. So our answer could be, “We need to prove that there exists an integer
g such that the integer equals 2¢g + 1.” We apply this answer to statement  and
insert it as the next to last line in the know-show table.

Step Know Reason
P x and y are odd integers. Hypothesis
Pl
01 There exists an integer g such
that xy = 2q + 1.
0 x -y is an odd integer. Definition of an odd integer
Step Show Reason

We now focus our effort on proving statement Q1 since we know that if we can
prove Q1, then we can conclude that Q is true. We ask a backward question
about Q1 such as, “How can we prove that there exists an integer g such that
x+y = 2q + 177 We may not have a ready answer for this question, and so we
look at the know portion of the table and try to connect the know portion to the
show portion. To do this, we work forward from step P, and this involves asking
a forward question. The basic form of this type of question is, “What can we
conclude from the fact that P is true?” In this case, we can use the definition of an
odd integer to conclude that there exist integers m and n such that x = 2m 4 1 and
y = 2n 4+ 1. We will call this Step P1 in the know-show table. It is important to
notice that we were careful not to use the letter g to denote these integers. If we had
used g again, we would be claiming that the same integer that gives x - y = 2g + 1
also gives x = 2¢g + 1. This is why we used m and n for the integers x and y since
there is no guarantee that x equals y. The basic rule of thumb is to use a different
symbol for each new object we introduce in a proof. So at this point, we have:

e Step P1. We know that there exist integers m and n such that x = 2m + 1
and y =2n 4+ 1.
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e Step Q1. We need to prove that there exists an integer ¢ such that
x-y=2q+1.

We must always be looking for a way to link the “know part” to the “show part”.
There are conclusions we can make from P1, but as we proceed, we must always
keep in mind the form of statement in Q1. The next forward question is, “What
can we conclude about x - y from what we know?” One way to answer this is
to use our prior knowledge of algebra. That is, we can first use substitution to
write x - y = (2m + 1) (2n + 1). Although this equation does not prove that
x -y is odd, we can use algebra to try to rewrite the right side of this equation
(2m 4 1) 2n + 1) in the form of an odd integer so that we can arrive at step Q1.
We first expand the right side of the equation to obtain

x-y=0C2m+1)2n+1)
=4mn+2m+2n+1
Now compare the right side of the last equation to the right side of the equation in
step Q1. Sometimes the difficult part at this point is the realization that ¢ stands
for some integer and that we only have to show that x - y equals two times some
integer plus one. Can we now make that conclusion? The answer is yes because
we can factor a 2 from the first three terms on the right side of the equation and
obtain
x-y=4mn+2m+4+2n+1
=22mn+m+n)+1

We can now complete the table showing the outline of the proof as follows:

Step Know Reason

P x and y are odd integers. Hypothesis

P1 There exist integers m and n Definition of an odd integer.
such that x = 2m 4 1 and
y =2n+1.

P2 xy=0Q2m+1)(2n+1) Substitution

P3 xy =4mn+2m+42n+1 Algebra

P4 xy=2QCmn+m-+n)+1 Algebra

P5 (2mn 4+ m + n) is an integer. Closure properties of the

integers

01 There exists an integer ¢ such Use g = 2mn +m + n)
that xy = 2q + 1.

0 X -y is an odd integer. Definition of an odd integer
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It is very important to realize that we have only constructed an outline of a
proof. Mathematical proofs are not written in table form. They are written in
narrative form using complete sentences and correct paragraph structure, and they
follow certain conventions used in writing mathematics. In addition, most proofs
are written only from the forward perspective. That is, although the use of the
backward process was essential in discovering the proof, when we write the proof
in narrative form, we use the forward process described in the preceding table. A
completed proof follows.

Theorem 1.8. If x and y are odd integers, then x - y is an odd integer.

Proof. We assume that x and y are odd integers and will prove that x - y is an odd
integer. Since x and y are odd, there exist integers m and n such that

x=2m+landy =2n + 1.
Using algebra, we obtain

x-y=0C2m+1)(2n+1)
=4mn+2m+2n+1
=22mn+m+n)+ 1.

Since m and n are integers and the integers are closed under addition and multipli-
cation, we conclude that (2mn + m + n) is an integer. This means that x - y has
been written in the form (2¢g + 1) for some integer ¢, and hence, x - y is an odd
integer. Consequently, it has been proven that if x and y are odd integers, then x - y
is an odd integer. |

Writing Guidelines for Mathematics Proofs

At the risk of oversimplification, doing mathematics can be considered to have two
distinct stages. The first stage is to convince yourself that you have solved the
problem or proved a conjecture. This stage is a creative one and is quite often how
mathematics is actually done. The second equally important stage is to convince
other people that you have solved the problem or proved the conjecture. This
second stage often has little in common with the first stage in the sense that it does
not really communicate the process by which you solved the problem or proved
the conjecture. However, it is an important part of the process of communicating
mathematical results to a wider audience.
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A mathematical proof is a convincing argument (within the accepted stan-
dards of the mathematical community) that a certain mathematical statement is
necessarily true. A proof generally uses deductive reasoning and logic but also
contains some amount of ordinary language (such as English). A mathematical
proof that you write should convince an appropriate audience that the result you
are proving is in fact true. So we do not consider a proof complete until there is
a well-written proof. So it is important to introduce some writing guidelines. The
preceding proof was written according to the following basic guidelines for writing
proofs. More writing guidelines will be given in Chapter 3.

1. Begin with a carefully worded statement of the theorem or result to be
proven. This should be a simple declarative statement of the theorem or
result. Do not simply rewrite the problem as stated in the textbook or given
on a handout. Problems often begin with phrases such as “Show that” or
“Prove that.” This should be reworded as a simple declarative statement of
the theorem. Then skip a line and write “Proof™ in italics or boldface font
(when using a word processor). Begin the proof on the same line. Make
sure that all paragraphs can be easily identified. Skipping a line between
paragraphs or indenting each paragraph can accomplish this.

As an example, an exercise in a text might read, “Prove that if x is an odd
integer, then x2 is an odd integer.” This could be s